Decentralized Utilization Control in Distributed Real-Time Systems

Xiaorui Wang, Dong Jid, Chenyang L, Xenofon Koutsoukds
fDepartment of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130
tDepartment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
§ Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235
{wang, lut@cse.wustl.edu djia@andrew.cmu.edu xenofon.koutsoukos@vanderbilt.edu

Abstract systems become increasingly important to our society, a new
paradigm of real-time computing based Auaptive QoS

Many real-time systems must control their CPU utiliza- Control (AQC)has received significant attention. In contrast
tions in order to meet end-to-end deadlines and prevent overto traditional approaches to real-time systems that rely on
load. Utilization control is particularly challenging in dis-  accurate knowledge about system workload, AQC can pro-
tributed real-time systems with highly unpredictable work- vide robust QoS guarantees in unpredictable environments
loads and a large number of end-to-end tasks and processoryy adapting to workload variations based on dynamic feed-
This paper presents the Decentralized End-to-end Utilizationpack. A key advantage of AQC is that it adopts a control-
CONtrol (DEUCON) algorithm that can dynamically enforce theoretic framework for systematically developing adapta-
desired utilizations on multiple processors in such systemstion strategies. This rigorous design methodology is in sharp
In contrast to centralized control schemes adopted in earliercontrast to heuristic-based adaptive solutions that rely on ex-
work, DEUCON features a novel decentralized control struc-tensive empirical evaluation and manual tuning.
ture that only requires localized coordination among neigh-  |n this paper, we focus on an important instance of AQC
bor processors. DEUCON is systematically designed basegalled utilization control for distributed soft real-time sys-
on recent advances in distributed model predictive controltems. The goal of utilization control is to enforce desired
theory. Both control-theoretic analysis and simulations showcpu utilizations on all the processors in a distributed system
that DEUCON can provide robust utilization guarantees and despite significant uncertainties in system workloads. Uti-
maintain global system stability despite severe variations injization control can be used to enforce appropriate schedula-
task execution times. Furthermore, DEUCON can effectivelyple utilization bounds on all processors to guarantee end-to-
distribute the computation and communication cost to dif-end task deadlines. It can also enhance system survivability
ferent processors and tolerate considerable communicationhy providing overload protection against workload fluctua-
delay between local controllers. Our results indicate that tjgn.
DEUCON can prOVide scalable and robust utilization con- DRE Systems introduce many new research Cha”enges
trol for large-scale distributed real-time systems executing inthat have not been addressed in earlier work on single-

unpredictable environments. processor systems. First, they requireilti-input-multi-
_ output (MIMO)control solutions to manage the system QoS
1 Introduction on multiple processors. Second, the QoS of different pro-

cessors are oftenoupledwith each other due to complex

Recent years have seen rapid growth of Distributed Realinteractions among distributed application components. In
time Embedded (DRE) applications executing unpre-  particular, many DRE systems employ the comneon-to-
dictableenvironments in which workloads are unknown and end task moddlL7], where a task may comprise of a chain of
vary significantly at run-time. Such systems include data-subtasks on different processors. In such systems, the CPU
driven and open systems whose execution is heavily influ-utilizations of different processors cannot be controlled in-
enced by volatile environments. For example, task execudependently from others. For example, changing the rate
tion times in vision-based feedback control systems dependf a task will affect the CPU utilizations of all the proces-
on the content of live camera images of changing environ-sors where its subtasks are located. Therefore, the coupling
ments [11]. Likewise, the supervisory control and data ac-among processors must be modeled and addressed in the de-
quisition (SCADA) systems for power grid control may ex- sign of QoS control algorithms. Finally, a utilization con-
perience dramatic load increase during a cascade power faitrol algorithm must be highly scalable in order to handle
ure [8]. Furthermore, as DRE systems become connectethrge DRE systems (e.g. power grid management and smart
to the Internet, they are exposed to load disturbances due tepaces). A centralized control algorithm is often inadequate
variable user requests and even cyber attacks [8]. As sucfor such systems since its communication and computation



overhead usually depends on the size ofdhtre DRE sys-  systems. In contrast, the feedback control approach and rate
tem. adaptation techniques adopted in this paper can be easily im-
In this paper, we present thHeecentralizedEnd-to-end  plemented at the application or middleware layer on top of
Utilization CONtrol DEUCON) algorithm for large DRE  COTS platforms [19].
systems with end-to-end tasks. In sharp contrast to earlier Control theoretic approaches have been applied to a num-
solutions based on centralized control schemes [20], DEUber of computing systems. A survey of feedback perfor-
CON employs a completelglecentralizectontrol approach  mance control in computing systems is presented in [1]. Sev-
that can scale well in large distributed systems and tolerateral projects that applied control theory to real-time schedul-
individual processor failures. Specifically, the contributions ing and utilization control are directly related to this paper.
of this paper are four-fold. Steere et al. and Goel et al. developed feedback-based
schedulers [10] [28] that guarantee desired progress rates for
e We propose a new approach for decomposing the globajeal-time applications. Abeni et al. presented control analy-
multi-processor utilization control problem into local sjs of a reservation-based feedback scheduler [2]. Authors
subproblems to facilitate the design of decentralizedof [18] developed feedback control scheduling algorithms
control solutions. that controlled the CPU utilization and deadline miss ratio.
These algorithms have been implemented as a middleware

* We describe the DEUCON algorithm featuring a noveI. service called FCS/nORB [19]. Feedback control schedul-

peer—to—peer cqntrol structure that enforces QeS|red utI'ing has also been successfully applied to processor power
lizations of multiple processors through localized coor-

o control [33] and digital control applications [9] [25]. All
dination among controllers. the aforementioned projects focused on controlling the per-
formance ofsingleprocessor systems. Their algorithms are
based on single-input-single-output linear control techniques
which are not applicable to DRE systems with multiple pro-
cessors.

Two recent papers [27][15] proposed feedback control
e We present simulation results showing that DEUCON scheduling algorithms for distributed real-time systems with
can provide robust statistical utilization guaranteesindependentasks. These algorithms do not address the de-
to multiple processors through task rate adaptafion pendencies among processors caused by end-to-end tasks
while achieving scalability by effectively distributing commonly available in DRE systems. Our earlier work pro-
the computation and communication overhead to localduced EUCON (End-to-end Utilization CONtrol) [20] that
controllers. is the first utilization control algorithm designed for DRE
systems with end-to-end tasks. This control algorithm has
The rest of this paper is organized as follows. Section 2a|so been validated and extended in a real middleware sys-
reviews related work. Section 3 formulates the end-to-endem [31]. EUCON manages and coordinates the adaptation
utilization control problem. Section 4 describes an existingof multiple processors with eentralizedcontroller that can-
centralized utilization control algorithm as a starting point not scale effectively in large-scale DRE systems because its
for this work. Section 5 presents the design and analysis otommunication and computation overhead depends on the
DEUCON. Section 6 evaluates DEUCON with simulations. sjze of anentire DRE system. We discuss EUCON in more
The paper concludes with Section 7. detail in Section 5.

e We give control analysis based on tistributed model
predictive controlDMPC) theory [7] which establishes
the stability properties of the DEUCON algorithm in
face of uncertain task execution times.

2 Related Work 3 End-to-End Utilization Control

Traditional approaches for handling end-to-end tasks such In this section, we formulate the end-to-end utilization
as end-to-end scheduling [29] and distributed priority ceil-
ing [23] rely on schedulability analysis, which requiras
priori knowledge about worst-case execution times. When3_l Task Model
task execution times are highly unpredictable, such open-
loop approaches may severely under-utilize the system. An We adopt an end-to-end task model [17] implemented by
approach for dealing with unpredictable task execution timesmany DRE applications. A system is comprisedrofpe-
is resource reclaiming [5][26]. A drawback of existing re- iogic tasks{T;|l < i < m} executing onn Processors
source reclaiming techniques is that they often require mod- Pl <i< ﬁ}_ TaskT: is composed of a chain of sub-
ifications to low-level scheduling mechanisms in Operati”gtaslks{l_“--\l_<j < ;) Ioéated on different processors. The

1] = = I .

10ther control strategies such as task migration, quality level adaptatiorf€/€ase of subtasks is subject to precedence ConStra|nt§a €.,

and possible combinations of them are subjects of our future research. ~ subtaskZ;;(1 < j < n;) cannot be released for execution

control problem for DRE systems.
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until its predecessor subtadk; _; is completed. If a non- v

greedy synchronization protocol (e.g., release guard [29]) is un.(k) (mljtfézgu;edriél:;?rs)
used to enforce the precedence constraints, all the subtasks of : ’ ‘I’ i
a periodic task share the same rate as the first subtask. ThereH Runs le:| 4 zai [um] ] [uw] ﬂ
fore, the rate of a task (and all its subtasks) can be adjusted P T‘L _
by changing the rate of its first subtask. In this paper, the pro- LB L Ruan Rran Lmu:.awr [ru=
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cessorP; hosting the first subtask of a tagk is calledZ;’s

master processoand we sayP; mastersl;. Only a task’s Control A  bresoonce consrains
master processor can change its rate. Input r'(k) ® subtask

Our task model has two important properties. First, while "
each subtasi;; has anestimatedexecution timer;; avail-  Figure 1. EUCON's feedback control loop with a cen-

able at design time, itactual execution time may be differ- tralized controller
ent from its estimation and vary at run time. Modeling such

o S The rate constraints ensure all tasks remain within their
uncertainty is important to DRE systems operating in UNPI€-5cceptable rate ranges. The optimization formulation maxi-
dictable environments. Second, the rate of a tBskay be

. . o X mizes task rates by making the utilization of each processor
dynamically adjusted within a rand®,,,i. i, Rmaz.i]- This y 9 b

ion is based he f hat th K : as close to its set point as allowed by the constraints. The de-
assgmppon IS basec on the fact that the task rates in mangign goal is to ensure that all processors quickly converge to
applications (e.g., digital control [21][24], sensor update

d mulimedia 13114 be d ically adi d with 'their utilization set points after a workload variation, when-
and multimedia [3][4]) can be dynamically adjusted without ever it is feasible under the rate constraints. Therefore, to

causing system failure. A task running at a higher rate con-

ib hiah | h licati h ¢ hiah I’guarantee end-to-end deadlines, a user only needs to specify
Lr;iliuztaet?o?\s igher value to the application at the cost of highefy, ¢ g point of each processor to be a value below its schedu-

h h h ftend d dead lable utilization bound. Utilization control algorithms can be
i We ?ssgme that ea_lcd talgk as azo en c;to'ind l_ea " used to meet all the end-to-end deadlines by enforcing the set
Ine related to its period. In an end-to-end scheduling ap-,,in(s of all the processors in a DRE system.
proach [29], the deadline of an end-to-end task is divided into

subdeadlines of its subtasks [12][22]. Hence the problem of ) . .
meeting the deadline can be transformed to the problem ofl EUCON: A Centralized Algorithm

meeting the subdeadiline of each subtask. A well known ap- In this section, we briefly describe the EUCON algorithm

proach for meeting the subdeadlines on a processor is to eT'ZO] which orovides a starting point and baseline for our
sure its utilization remains below its schedulable utilization worl'< P gp

bound [13][16] As shown in Figure 1, EUCON features a feedback con-

3.2 Problem Formulation trol loop composed of a centralized model predictive con-
troller (MPC) and a utilization monitor and rate modula-

Utilization control can be formulated as a dynamic con- tor on each processor. EUCON is invoked periodically at
strained optimization problem. We first introduce several no-each sampling point. The controlled variables are the uti-
tations. T}, the sampling period, is selected so that multiple lizations of all processorax(k) = [u1(k)...un(k)]". The
instances of each task may be released during a sampling pgontrol inputs from the controller are the change in task
riod. u;(k) is the CPU utilization of processd®, in the k' ratesAr(k) = [Ari(k)...Ar,(k)]", where Ar;(k) =
sampling period, i.e., the fraction of time thBtis notidle  7i(k) —ri(k —1) (1 <i<m).

during time interval(k — 1)T%, kTs). B; is the desired uti- The feedback control loop works as follows: (1) the uti-

lization set point onP;. r;(k) is the invocation rate of task lization monitor on each processé} sends its utilization

T; in the (k + 1)*"* sampling period. ui(k) in the last sampling periof(k — 1)T, kT;) to the
Given the utilization set point vectoB = [B; ... B,]T centralized controller; (2) the controller collects the utiliza-

and the rate constrain{®,,,,, ;, Rimaz,;) for each taskry, tion vectoru(k) = [u1 (k) ... u,(k)]T including the utiliza-

the control goal ak*" sampling point (timekT}) is to dy-  tions of all processors, computes a new rate change vec-

namically choose task ratés; (k)|1 < j < m} to minimize  tor Ar(k) = [Ari(k)...Ar,(k)]", and sends the new

the difference betweeB; andu; (k) for all processors: task ratesr(k) = r(k — 1) + Ar(k) to the rate modula-

tors on master processors (i.e., processors that master at least
one task); and (3) the rate modulators on master processors

n

: 2
(1 S<m) Z(Bi —ui(k +1)) () change the rates of tasks according-ta). The details of
=1 the controller design in EUCON are described in [20].
subject to constraints EUCON relies on a centralized controller to manage the

adaptation of multiple processors in a DRE system. A cen-
Riing <1j(k) < Rpmaz,; (1<7<m) tralized control scheme has several disadvantages. First, the



run-time overhead depends on the size of an entire DRE syghe ratio between the change in the actual utilization and its
tem. Specifically, the worst-case computational complexityestimation. The exact value gf is unknowndue to the un-

of a model predictive controller is polynomial in the total predictability in execution times. Note thét describes the
number of tasks and the total number of processors in the sysffect of uncertainty in workload on the utilization of a DRE
tem. Furthermore, since every processor in the system needg/stem. As an example, Figure 2 shows a DRE system with
to communicate with the controller in every sampling period, five processors and five tasks. It is modeled by (2) with the
the processor executing the controller can become a commuellowing parameters:

nication bottleneck. Therefore, a centralized control scheme up (k) cip O 0 0 51
cannot scale effectively in large DRE systems. Second, the us (k) c12 coa O 0 0
control design of EUCON assumes that communication deu(k) = | us(k) | ,F=| 0 ¢ ¢33 0 0
lays between the control processor and other processors are ug(k) 0 0 ¢332 cyg O
negligible compared to the sampling period of the controller. us (k) 0 0 33 c2 0
This assumption may not hold in networks with significant g 0 0 0 0 Ary(k) ]
delays such as the Internet and wireless sensor networks. In 0 go 0 0 O Ary (k)
addition, the processor executing the controlleris asinglecG=| 0 0 g3 0 0 |,Ar(k)=| Ars(k)
point of failure. The entire system will lose the capability to 0 0 0 g4 O Ary(k)
adapt to the environment if it fails. 0 0 0 0 g5 Ars(k)

Centralized solutions are therefore not suitable for large-
scale DRE systems (e.g., wide-area power grid managed-2 Problem Decomposition
ment). In this paper we focus on developidgcentralized
control algorithms to improve the scalability and reliability
of adaptive utilization control in DRE systems.

Although our previous work showed that the above global
system model is sufficient for designing a centralized con-
troller for EUCON [20], it cannot be used for designing de-
centralized control algorithms because it includes informa-
tion about the entire system. To address this problem, we

: ropose a new approach to decompose the global utilization
In contrast to the centralized control scheme adopted b)P b bp P 9

control problem into a set of localized subproblems.

E_UCON, DEUCON employs a peer-to-peer control structure From a local controlleC;'s perspective, the goal of de-
v]gth 2 sehparat;a lﬁcal C?ntrolléi‘;onteach.tr:aster plrlocesst()) ' composition is to partition the set of system variables into

;- =ach controtier only coordinates with a smail NUMDBET y, o subsets, includinpcal variableson host processor
of processors callgd Its (Ioglcah)e|ghbors A f.u'ndamental ._P;, neighbor variableon P;’s neighbors, and all other vari-
de_glgn_ challe_nge IS to ach|eve sygtem stab_|I|ty an_d desire bles in the system(;’s subproblem only includes its lo-
ut|I|zat|§)tr;]s V(\j”th.OUt gflgbsbgg),ilrr;)atlorg In tr(;'.stS%Ctt'og' W% é:al and neighbor variables. A key feature of our decomposi-
prezt_er:. € ets,lgln BMPC f asek 02 a |fs " 3 et' mofeion scheme is that it balances two conflicting goals. On one
predictive contro ( . ) framework. As a foundation o hand, the number of neighbor variables should be minimized
our control design, we first present a dynamic model of the,

ntir tem and an roach for decomposing the al bt improve system scalability. On the other hand, the neigh-
entire system and an approach for decomposing the giobgy ., iaples must capture the coupling among processors
system model into localized control subproblems. We then

. ) . so that local controllers can achieve global system stability
des_crlbe the design and cont_rol analysis of the DEUCON al'through coordination in their neighborhoods.
gorithm based on the dynamic models.

We give several definitions before presenting our decom-
5.1 Global System Model position scheme.

In a control-theoretic methodology a control algorithm Definition 1. Processor’; is I's direct neighborif (1) P

. ay 9 has a subtask belonging to an end-to-end task mastergd by
should be designed based on a model of the system. As d%'nd (2)P; is not P, itself
scribed in [20], a DRE system can be approximated by the J ! '
following global system model: Definition 2: Theconcerned tasksf P; are the tasks which

have subtasks located @t or P;'s direct neighbors.

5 Design of DEUCON

u(k+1) =uk) + GFAr(k) (2)
Definition 3: Processor; is P;'s indirect neighborif (1)

The vectorAr(k) represents the changes in task rates. p. s the master processor of anyRfs concerned tasks and
Thesubtask allocation matrp&, is ann x m matrix, where () P; is not P;'s direct neighbor of?; itself.

fij = c; if a subtaskl’;; of taskTj is allocated to processor

P;, and f;; = 0 if no subtask of task’; is allocated to pro- For example, we consider controll€f, in the system
cessorP;. F captures theouplingamong processors due to shown in Figure 2.P; has one direct neighboi$) due to
end-to-end tasksG = diag|g; ... gn] Whereg; represents task7; mastered byP;. Its concerned tasks includg, T5
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Figure 2. Data exchange between (; and its neigh-
bors (other data exchanges are not shown)

andT; (which has a subtask on direct neighld®y). Hence
P3, the master processor 6%, is P;’s indirect neighbor.

The subproblem of a controller includes a set of utiliza-
tions ascontrolled variablesand a set of task rates am-
nipulated variables In our decomposition scheme, the con-
trolled variables of controlle€’; includew;(k), the host pro-
cessorP;’s utilization, andU D; (k), the set of utilizations of
P;’s direct neighbors.U D; (k) are considered’;’'s neigh-

bor variables because they are affected by the rates of tasks

mastered byP;. Since each concerned task contributes to
the utilizations of P, and/or its direct neighborg};'s ma-
nipulated variables include the rates of all@fs concerned
tasks. Note that a concerned task may be masterdd by
self, its direct neighbor, or its indirect neighbor. For example,
C4 has two controlled variables, (k) andus(k), and three
manipulated variables, (k), ro (k) andrs (k).

Let us setVR;(k) includes the rates of all aP;’s con-
cerned tasks, and s&U,;(k) = UD;(k) U {u;(k)}, the
subproblem of”; then becomes the following localized con-
strained optimization problem within its neighborhood:

. _ 2
Nr}r%%f) Z (Br —w(k+1)) 3)
u (k)ENU; (k)
subject to

Ruin,j <7j(k) < Rpax,j  (rj(k) € NR;i(k))

In contrast to the global model (2) used in EUCON, each
controller in DEUCON has a localized model which only in-

From (4),C1’s local model is

uy (k) + g1(c11Ar1(k) + cs1Ars(k))
Ug(k) + gg(ClgArl(k) + CQQAT’Q(]{I))

5.3 Localized Feedback Control Loop

Ul(k =+ ].)
Ug(k + 1)

We now present DEUCON's localized feedback control
loop based on our decomposition scheme. The execution of
a controllerC; at each sampling poiritincludes three steps:

1. Local control computationC; executes an MPC algo-
rithm to solve its local subproblem. The feedback input
to the control algorithm includes (&) (k) from the lo-
cal utilization monitor, (2) a set qiredicted utilizations
U D/ (k) of its direct neighbors, and (3) the rates of con-
cerned tasksN R;(k — 1) in the last sampling period.
The output from the controlle?; includes the new rates
for concerned tasksy R; (k). The details of the control
algorithm are presented in Section 5.4.

2. Local actuation:The rate modulator o®; changes the
rates of the set of tasks masterediyaccording to the
control input fromC;. The other task rates in the control
input will be ignored because they are not mastered by

P;.

. Data exchange among neighbors; sends itgredicted
utilizationat the next sampling point;(k+ 1), to other
controllers of which it serves as a direct neighb6t,
also sends the rates of tasks masteredpbyo those
controllers which have these tasks as their concerned
tasks. In additionC; receives new predicted utiliza-
tions from its direct neighbors, and the actual rates of
the concerned tasks which are not mastered by itself,
from its direct and indirect neighbors. They will be used
for the local control computation at the next sampling
point (k + 1).

Compared to centralized control schemes, a fundamen-
tal advantage of DEUCON is that both the computation and

cludes its local and neighbor variables. This local model ofcommunication overhead of a controller depends on the size

C; is described as:

nu;(k + 1) = nu; (k) + G;F;Anr;(k) (4)
wherenu; (k) andnr; (k) are vectors comprised of all ele-
ments inNU; (k) and N R;(k), respectively.G; andF; are
defined in the same way &% andF in (2), but include only
the processors iVU; (k) and the task rates iN R; (k).

For example, the controller; shown in Figure 2 is mod-
eled with the following parameters.

w1 |- 0]
G, = [ o 02 } , Anr (k) = iggz;
Ars (k)

of its neighborhood instead of the entire system. This feature
allows DEUCON to scale effectively in many large DRE sys-
tems.

Another important advantage of DEUCON is that it can
tolerate considerable network delays. Note that in step 1, the
predictedutilizationsU D; (k) (instead ofU D;(k)) are pro-
vided by C;’s direct neighbors in the previous sampling pe-
riod. This is becaus¥ D; (k) is not instantaneously available
to C; attimekT; due to network delayd/ D (k) is predicted
based orUD;(k — 1) at time (k — 1)T, as a substitute for
UD,;(k) to be transmitted over the network during interval
[(k — 1)Ts, kTs). Each element/ (k) € UDj(k) is calcu-
lated using the following reference trajectory from measured
utilizationw;(k — 1) to its set pointB; over the followingP
sampling periods.



T

refj(k—1)+1k—1) = B;— e‘ﬁl(Bj —u;(k—1)) discussed in Section 5.3, this approximation allows DEU-
(1<i<P) ) CON to tolerate network delays. Second, because the
-~ real system gaings; in system model (4) are unknown

whereT,.; is the time constant that specifies the speed ofiN unpredicted environments, our controlier assuiBgs=

system responseP is called theprediction horizon The diag[1 e 1]_, i.e., the controller assumes that_ the esumated
notationz((k—1)+1|k—1) means that the value of variable executlpn times are accurate. Althpugh this approximate
attime((k—1)-1)T, depends on the conditions at tirtie— model is not an exact characterization of the re_al sy_ster_n,
1)T,. The value ofe f; (k|k — 1) is assigned ta/, (k). Since the c_I_osed-Ioop system undgr our <_:(_)ntr_oller can s_tlll maintain
UD!(k) can take the whole last sampling period to transmit, stability anq g_uarantee. desired utilization sgt pomt_s as ang
DEUCON can tolerate much longer communication deIaysaSGi are within a certain range (see analysis and simulation

than EUCON which assumes the delays to be negligible. results in Sections 5.5 and 6.2). This is due to the coordi-
nation scheme and online feedbacks used in our distributed

5.4 Controller Design model predictive control algorithm.
The controller computes the input trajectory

DEUCON employs a local controller on eastasterpro-  Anr;(k), Anri(k + 1k),... Anrj(k + M — 1|k) that
cessor. Non-master processors do not need controllers beninimizes the cost function subject to the rate constraints.
cause they cannot change the rate of any task. For the exarThis constrained optimization problem can be transformed
ple shown in Figure 2, processaPs, P; and P, each have a  to a standard constrained least square problem. Controller
controller, while, and Ps do not have controllers because C; can then use a standard least-square solver to solve
they are not master processors for any tasks. This featurthis problem on-line. The detailed transformation is not
reduces the overhead of DEUCON. shown due to space limitations. The worst-case computation

We design a model predictive control algorithm [6] complexity of the solver is polynomial in the numbers
for controller C;. We choose model predictive con- of tasks and processors in the localized model (7). More
trol because it can deal with coupled MIMO con- specifically, our constrained least-square optimization is
trol problems with constraints on the actuators. At a convex nonlinear optimization, for which interior point
every sampling point, the controller computes an in- methods requiré)(n) Newton iterations [32], where n is
put trajectory in the following M sampling periods, the number of optimization variables. Since each Newton
e.g., Anri(k), Anr;(k+1lk),... Anrj(k+M —1]k), iteration requiresO(n?) algebraic operations, the worst-
that minimizes the following cost function under the rate con-case computation complexity of the solver is cubic in the

straints. number of tasks and processors in the localized model.
P ) Once the input trajectory is computed, only the first el-
Vi(k) =322 [nui(k + 1/k) — refi(k + 1[k)|| ementAnr; (k) is applied as the control input and sent to

+Zf\181 |Anr;(k +1k) — Anri(k +1—1[k)[|2 (6) the rate modulators. At next sampling point, the prediction
horizon slides one sampling period and the control input is
whereP is theprediction horizonand}M is thecontrol hori-  computed again as a solution to the constrained optimization
zon The first term in the cost function represents titaek- problem based on the utilization feedbacks from its direct
ing error, i.e., the difference between the utilization vector neighbors and itself.
nu; (k + 1/k), which is predicted based on (7), and the refer- N _
ence trajectoryef; (k + 1|k) defined in (5). The controller 5.5 Stability Analysis
is designed to track the exponential reference trajectory that . . .
converges to the set points so that the closed-loop system be- A fundamental benefit of the gqntrgl—theoretlc approach IS
haves like a desired linear system. By minimizing the traCk_that it enables us to prove the .ut|.I|zaF|on guarantees prc_)wded
ing error, the closed-loop system will also converge to the uti-by DEUCON despite uncer_talntlt'as n ta§!< e>§ecutlon times.
lization set points. The second term in the cost function rep-We say thata D.RE systenjstablelf.th(.a utilizationsu con-
resents theontrol penalty The control penalty term causes Verge tothe des_|red set poirls that 'S.'l.lmk—)“ u.(k) =B
the controller to minimize the changes in the control input. In this subsect!on we present stability analysis that allows
The controller predicts the cost based on the follovapg users to analyycally assess the rob.us.tness of DEUCON for
proximatemodel: thelr_ syst.em with a range of uncertainties in term of task_ex—
ecution times. To ensure that the system can be stabilized,
nu;(k + 1) = nuj(k) + F;Anr; (k) (7) the constrained optimization problem must be feasible, i.e.,
there exists a set of task rates within their acceptable ranges
The above model has two differences from #Hwual sys-  that can make the utilization on every processor equal to its
tem model (4). First, the utilizations of direct neighbors are set point. If the problem is infeasible, no controller can guar-
approximated by their predicted utilizatiomsi{(k), where  antee the set point through rate adaptation. In this case, the
nu; (k) is a vector comprised of all elementsNU/ (k). As  system may switch to a different control adaptation mecha-



nism (e.g., admission control or task reallocation). Hence- _ P2 Py P, Pe Ps

forth, our stability analysis assumes that the rate constraints T5b or e PG 78 @l Thazg olian
are not activated. ol @ T, o7,

In DEUCON, each controller solves a finite horizon opti- 7, ® ®7 1,08 5 . 2% Tsz’.‘r
mal tracking problem. Based on optimal control theory [14], 2 o g
the local control decision is a linear function of the current ¢ : & ¢ ™
value and the set points of the utilization of the local CPU, 7., | 5| Pl Tk Thad Tuh Tl Tows [ Toa g o
the utilizations of its direct neighbors and the previous deci- | ®® | i @l oo 0
sions for its manipulated tasks and concerned tasks. We now| @ @} 00 0@ o0 @ @

. . .y T Tl H T16,1 T18.2 T16,3 T16,2- T. T
outline the process for analyzing the stability of the system | ** Tau fo2 i Mo e Tt
controlled by DEUCON.

Pl PQ PS PlO P4

1. Compute the feedback and feed-forward matrices for
each local controllet by solving its local control input
Anr; based on the local system model (4) and referencéExample  We now apply the stability analysis approach to
trajectory (5). The solution is in the following form: the example system described in Figure 3. The system has

21 tasks and 10 processors. We set the prediction horizon
Anr; (k) = Kinu; (k) + HiAnr; (k — 1) + E;B; P = 2 and the control horizod/ = 1. The time constant of
) i (8) the reference trajectory iB..;/Ts = 4. The weights on all
whereK;, H; andE; are matrices used to define the (orms are 1. The parameters in the model for the controller

Figure 3. A medium size workload

linear feedback law. on ProcessoP; are
2. Construct the feedback and feed-forward matrices for K i k iy 17
the whole system (2) based on those for local system™ (K) = [_ul( ) uz (k) s (k) ]
models derived in Step 1. g 0 0
Gi = 0 g2 O
Ar (k) =Ku(k)+ HAr (k—1)+EB (9) 0 0 gs
This is a dynamic controller. The stability analysis [ c11 co1 ez a2 O 0O 0 0O
needs to consider the composite system consisting of F, = 0 0 320 ca1 c51 cg2 O 0
the dynamics of the original system and the controller. | 0 c22 ¢33 0 0 61 C71 Cs3
3. Derive the closed-loop model of the composite systemAT1 (k) = [Ar(k) Ary(k) Arz(k) Ary(k)
by substituting the control inputs derived in Step 2 into Ars (k) Arg (k) Arp (k) Arg(k) |7
theactual sy;tem model' dgscrlbed by (2). The closed- B, — [ B, By, Bs ]T
loop composite system is in the form
{ u(k+1) } B The solution for the controller o, is of the form
Ar (k) Ko ke ks
{ I+ GFK GFH ] [ u (k) } Anrl(k)=| : nuy (k)+
K H Ar(k—-1 ’ ] ]
o (e=1) By kb R
+ { E ] B (10) hiy -+ hig el1 ely el
P Anry (k—1)| : : D | Bl
wherel is the identity matrix. Note that the closed-loop 1 1 1 1 1
hgy -+ hgg €81 €82 €83

system model is a function &&.

The superscriptt denotes that the solution is for the con-
troller on P;.

Following Step 2, we construct the feedback and feed-
Iforvvard matrices for (9) and then derive the composite sys-
tem (10). The poles are functions of the system gain&in
The closed-loop system has 31 poles. Our MATLAB pro-
gram allows us to analyze the system stability under@ny
For example, Figure 4 shows the root locus of the closed-

The details of the above steps are not shown due to spadeop system by DEUCON for the case that all non-zero el-
limitations. We have developed a MATLAB program to per- ements ofG have the same value, denoted gy Root lo-
form the above stability analysis procedure automatically. cus is the trajectory of the poles of the closed-loop system

4. Derive the stability condition of the closed-loop system
(10) given arange d& values. According to the control
theory, if all poles locate inside the unit circle in the
complex space and the DC gain matrix from the contro
to the state is the identity matrix, the state of the system
i.e., the processor utilizations, will converge to the set
point.



closed-loop system by DEUCON for <2 least square solverin MATLAB. The simulator opens a MAT-

! T ErT— LAB process and initializes all the controllers at start time.
In the end of each sampling period, the simulator collects the
local utilization, the predicted neighborhood utilizations and
the concerned task rates for each controller, and then calls the
controller in MATLAB. The controllers compute the control
input, Ar(k), and return it to the simulator. The simulator
then calls the rate modulators on each processor to adjust the
rates of its mastered tasks.

Each task’s end-to-end deadlidg = n;/r;(k), wheren;

: : : . is the number of subtasks in ta8k Each end-to-end dead-
=05 line is evenly divided into subdeadlines for its subtasks. The

: : : resultant subdeadline of each subtdsk equals its period,

imaginary part of the poles
o

, , 1/r;(k). The schedulable utilization bound of RMS [16],
-1 ; TR . B; = m;(21/™ — 1) is used as the utilization set point on
-1 -0 1 each processor, where; is the number of subtasks af.
All (sub)tasks meet their (sub)deadlines if the utilization set
Figure 4. The root locus of the closed-loop system point on every processor is enforéed

A medium size workload (as shown in Figure 3) is used
in our experiments. It includes 21 tasks (with a total of 40
subtasks) executing on 10 processors. There are 14 end-to-

0 < g < 2. Therefore, the system is stable. Our analysisend tasks running on multiple processors and 7 local tasks.
proves that DEUCON can provide robust utilization guaran-The controller parameters used for this workload include the

tees to the example system even when actual execution tim&recthc':lon hyzo_n f;ogt.and th(_et coan':rotI. horizon tas 1. The
deviate significantly from the estimation. For instance, oyrcoNtrol periods,s = Ime units. The time constaftt.. ;

results indicate that DEUCON can converge to the desireoused in (5) is set as 4. Specific parameters of tasks are not

utilizations on all processors even if the execution time Ofshown due to space limitations. )
every task is 90% lower (g = 0.1) or 90% higher (g = 1.9) To evaluate the robustness of DEUCON when execution

than the estimation as long as the range of task rates are ngfnes deviate from the estimation, the execution time of each
violated. We validate this analysis through simulations pre-SUPtasKli; can be changed by tuning a parameter called the
sented in Section 6. execution-time factoret f;; (k) = a,;(k)/ci;, wherea,; is

the actual execution time df;;. The execution-time factor
represents how much the actual execution time of a subtask
deviates from the estimated one. The execution-time factor
) ) ] ) ) ) ) (and hence the actual execution times) may be kept constant
In this section, we first describe the simulation settings. ., changed dynamically in a run. When all subtasks share a

We then compare the performance and overhead of DEUgame constaretf, it equals to the system gain on every pro-

CON and EUCON. We choose EUCON as the baseline forCessor in the model, i.eetf = g(1 < i < m). Inthe
performance as it is the only available utilization control al- following we use thér’wersed etf(iéttf) because we are more
gorithm for DRE systems with end-to-end tasks. Previous réyarested in the situation when execution times are overesti-
sults showed that EUCON significantly outperformed a com- ., -1o4 (Leetf < 1), Specifically,ieft;; (k) = 1/etf;; (k).

mon open-loop approach that assigned fixed task rates based
on estimated execution times [20]. 6.2 System Performance

5 0] 0.5
real part of the poles

asg varies. The dotted circle is the unit circle. It shows
that all poles are within the unit circle for < g < 2. The
DC gain of the closed-loop system is the identity matrix for

6 Simulation Results

6.1 Simulation Setup In this subsection we present two sets of simulation exper-
iments. The first one evaluates DEUCON's system perfor-

Our simulation environment is composed of an event-mance when task execution times deviate from the estima-
driven simulator implemented in C++ and a set of controllerstion. The second experiment tests DEUCON'’s ability to pro-

implemented in MATLAB (R12). The simulator implements vide robust utilization guarantees when task execution times
the utilization monitors, the rate modulators and the dis-vary dynamically at run-time.
tributed real-time system with an interface to the controllers.
The subtasks on each processor are scheduled by the Rate?Other utilization bounds [13] can be used by DEUCON when the sub-
Monotonic Scheduling (RMS) algorithm [16]. The prece- 9eadlines of subtasks are not equal to their periods .

. In general, as discussed in [20], algorithms based on model predictive
dence constraints among subtasks are enforced by the releaggrol and distributed model predictive control cause oscillation when the

guard protocol [29]. The controllers are based onl#ugin execution times are underestimated (egf > 1).
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In this experiment, all subtasks share a fixed execution-time Processor

factor etf) in each run. Since it is commonly difficult to | BDEUCON mEUCON gSet point |
precisely estimate the execution times of real-time tasks in
DRE system, we stress-test DEUCON'’s performance when

real execution time significantly deviate from their estima- L , . I
tions. Figures 5(a) and (b) show the utilizations of proces__ecutlon times are severely overestimated. This capability is

sorsP; to P5; when execution times of tasks avae-eighth in sharp contrgst to ope_n-loop approaches Wh?Ch are based
of their estimations. In this case, we can observe a notice®" schedulability analysis. Open-loop underutilizes the pro-

able difference in the transient state between DEUCON and©SSOrS in such cases. o
EUCON. While the utilizations of EUCON follow the same 10 further investigate the CPU utilizations on other pro-
trajectory, utilizations of DEUCON diverge in the middle of cessors, Figure 7 plots the average utilizations of all proces-

the run and then converge to their set points in the end. Th&°'S wherietf is 5. The deviations of all utilizations are less
reason for this divergence is that each controller in DEU-than 0.008. We observe that ¢4 to P, the difference be-

CON only utilizes local information and makes local deci- Ween the utilizations and the set points for DEUCON are
sion. Despite this slight difference in the transient state, allSightly larger than that of EUCON. However, all the differ-
utilizations converge to their set points within similar settling €Nc€S are within the-0.009 range. In practice, such small

times. Both DEUCON and EUCON achieve desired utiliza- Steady-state errors can be handled by setting the set points to
tion guarantees in steady states. slightly lower than the schedulable utilization bounds.

To examine DEUCON'’s performance under different ex- In summary, the simulation results demonstrate that DEU-
ecution time factors, we plot the mean and standard deviaON can achieve aimost the same performance as EUCON,
tion of utilization onP; during each run in Figure 6. Every for a wide range ofetf ([0.5,10] in our experiments). We
data point is based on the measured utilizatigh) from @S0 note thatthe range @ftf corresponds to a system gain
time 2007, to 3007, to exclude the transient response in N @ rang€0.1, 2]. Therefore_,.our S|mul_at|on results yalldatg
the beginning of each run. Both EUCON and DEUCON the correctness of our stability analysis presented in Section

achieve desired utilizations for all tested execution-time fac-2-2:

tors within theiet f range[0.5, 10]. In this range, the aver-

age utilizations under EUCON and DEUCON remain within g 5 » Varying Execution Times

+0.012 to the utilization set points and the standard devia-

tions remain below 0.025. We also observe that both EU-In this experiment, execution times vadynamicallyat run-
CON and DEUCON suffer a standard deviationde.025 time. Figure 8 shows a typical run when the average execu-
whenietf = 0.5. However, as a key benefit, both EUCON tion times on all processors change simultaneously. iétiie
and DEUCON can achieve desired utilizations even when exis initially 1.0. At time 1007, it is decreased to 0.56, which

Figure 7. Average CPU utilization (ietf=5)
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° bo P10 AVG EUCON solver which dominates the computation cost on a 2GHz

Pentium IV PC with 256MB RAM. In order to minimize the

effect of the time delay caused by the IPC communication
between the simulator and the MATLAB process, we use a
S:ngle MATLAB command to run this least square solver for
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Figure 9. Entire system size vs. neighborhood size

o . o
corresponds to an 79% increase in the execution times of all 50" " 'C i Cutine. The data shown in Figure 10 is

SDué)LtJ%S(k)SNSrZZh ngts ?(l)l tﬁfiﬁ:&f dalt)re ;ggrizrsﬂiﬁ 0}[/:;:(0 ?;tgs'e average of those 1000 runs. The average execution time
P y 9 3f all controllers in DEUCON is only 62% of EUCON'’s cen-

which causes the utilizations on all processors to re-Converge .- od controller. We note that the speedup in execution
to their set points within 20,. At time 2007, theietf is )

times is not strictly polynomial in the numbers of neighbors

: . 0 . r
mcreqsed to 1.67 qqrre;pondmg to a 66% decrease in EXECULd concerned tasks as one would expect from the theoreti-
tion times. The utilizations on all processors drop sharply,

causing DEUCON to dramatically increase task rates until?;le%%rgﬂzﬁ)é;; l':/lr;?e 2{322;2@;} ozh;?n:sé z(a)t:r&?x};a:j Atlgg it
the utilizations re-converge to their set p‘?ﬁ“tSThe SYS” |sqlin solver and thevorst-casecomputational complexity.
tem maintains stability ar_ld avoids any S|g!‘1|f|cant O§CI||§IIOI’1 In addition, the initialization cost in the optimization calcu-
throughout the run, despite the varlat|o_ns n execut.lon tlmesIations is not negligible for relatively small scale problems in
The performance results of DEUCON in this experiment are - workload

very close to EUCON's performance reported n [2.0]' Re- We now investigate DEUCON’s communication overhead.
sults when only one processor has varying execution t|me%

. . . s mentioned in Section 5, a controller'’s communication
can be found in an extended version of this paper [30]. . .
overhead is a function of the number of processors com-

6.3 Overhead municating with if. To estimate communication overhead
due to utilizations exchange, we count the number of pro-

As discussed in Section 4, a major limitation of a central- cessors from which a controller receives predicted utiliza-
ized controller is that the run-time overhead is related to thetions. This is equal to the number of direct neighbors of the
size of the entire system. In contrast, the overhead of eacgontroller. To estimate communication overhead due to task
local controller in DEUCON is just a function of its neigh- rates exchange, we count the processors from which a con-
borhood size. Figure 9 compares the size of the entire syster§oller receives the actual rate changes for one or more of
with the neighborhood size of each processor for the mediunits concerned tasks. The set of processors communicating
size workload. The centralized EUCON controller needs towith a controller is the union of these two processor sets.
model all the 10 processors and the 21 tasks in the systenf;rom Figure 11 we can see that DEUCON's average esti-
In contrast, the average for DEUCON controllers is only 2.6 mated per-controller communication overhead is 33% of the
processors and 7.1 tasks, corresponding to a reduction bffUCON controller's communication overhead. The neigh-
74% and 66%, respectively. borhood sizes and communication overhead of DEUCON for

To estimate thaveragecomputation overhead of the con- large-scale systems with random task allocation can be found
trollers, we measure the execution time of the least squaréh an extended version of this paper [30].

4Only the results ofPs to P are included in Figure 8 for clarity. Per- SMultiple data values (utilizations and/or rates) from a same processor
formance ofP; to Ps are similar. can be easily combined to a single message in a real system implementation.



7 Conclusions

We have presented the DEUCON algorithm for dynami-

cally controlling the utilization of DRE systems. DEUCON [13]

features a novel decentralized control structure to handl
the coupling among multiple processors due to end-to-en

tasks. Both stability analysis and simulation results demon-[15]

strate that DEUCON achieves robust utilization guarantees
even when task execution times deviate significantly from

the estimations or change dynamically at run-time. Further-[16]

more, DEUCON can significantly improve the system scal-

ability by distributing the computation and communication
cost from a central processor to local controllers distributed

in the whole system and tolerating network delays.
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