
Supervisory Control of Hybrid Systems

XENOFON D. KOUTSOUKOS, PANOS J. ANTSAKLIS, FELLOW, IEEE, JAMES A. STIVER,AND

MICHAEL D. LEMMON , MEMBER, IEEE

Invited Paper

In this paper, the supervisory control of hybrid systems is in-
troduced and discussed at length. Such control systems typically
arise in the computer control of continuous processes, for example,
in manufacturing and chemical processes, in transportation sys-
tems, and in communication networks. A functional architecture
of hybrid control systems consisting of a continuous plant, a dis-
crete-event controller, and an interface is used to introduce and
describe analysis and synthesis concepts and approaches. Our ap-
proach highlights the interaction between the continuous and dis-
crete dynamics, which is the cornerstone of any hybrid system study.
Discrete abstractions are used to approximate the continuous plant.
Properties of the discrete abstractions to be appropriate representa-
tions of the continuous plant are presented, and important concepts
such as determinism and controllability are discussed. Supervisory
control design methodologies are presented to satisfy control speci-
fications described by formal languages. Several examples are used
throughout the paper to illustrate our approach.

Keywords—Controllability, hybrid systems, language theoretic
framework, natural invariants, nondeterministic finite automata,
supervisory control, transition stability.

I. INTRODUCTION

Hybrid dynamical systems are characterized by inter-
acting continuous and discrete dynamics (see, e.g., [11] and
[10] and the guest editor’s introduction in this special issue).
Hybrid control systems typically arise from computer-aided
control of continuous processes, e.g., in manufacturing and
chemical processes, in transportation systems, and in com-
munication networks. The study of hybrid control systems is
essential in designing supervisory controllers for continuous

Manuscript received October 29, 1999; revised March 28, 2000. This
work was supported in part by the National Science Foundation under
Grant ECS95–31485 and by the Army Research Office under Grant
DAAG55–98–1–0199.

X. D. Koutsoukos, P. J. Antsaklis, and M. D. Lemmon are with the
Department of Electrical Engineering, University of Notre Dame, Notre
Dame, IN 46556 USA (e-mail: xkoutsou@nd.edu; antsaklis.1@nd.edu;
lemmon@maddog.ee.nd.edu).

J. A. Stiver is with Harris Corporation, Melbourne, FL 32902 USA
(e-mail: jstiver@harris.com).

Publisher Item Identifier S 0018-9219(00)06463-X.

systems, and it is central in designing intelligent control
systems with a high degree of autonomy (see, e.g., [14], [12],
[13], [3], and [4]). Hybrid system analysis and controller
synthesis techniques may provide efficient approaches for
the design and verification of complex engineering systems.

In this paper, the supervisory control of hybrid systems is
introduced and discussed at length. The simplest example of
a supervisory controller is perhaps the thermostat that regu-
lates the temperature in our homes. The controller is really a
switching mechanism that interacts with the continuous dy-
namics of the furnace to counteract the heat losses, so as to
keep the temperature within a desirable range. The thermo-
stat is further discussed in Section II-B. The type of super-
visory control problems that is of interest here arises when-
ever a continuous system is to be controlled by a discrete
process such as a switching mechanism or a digital com-
puter program. Controllers of this type are being used to con-
trol many physical processes. Examples include the opera-
tion of chemical plants—start-up and shutdown procedures,
fail-safe mechanisms, and control during regular operation
by switching to different operating modes. They are also used
to coordinate multiple interacting robots, to control manu-
facturing processes, and to coordinate the operation of au-
tonomous vehicles.

A convenient way to represent such hybrid control
systems is shown in Fig. 1. The continuous process to
be controlled, together with any continuous controllers,
is identified as the “Plant” and is typically described by
differential/difference equations. The “Controller” includes
a discrete decision process that is typically a discrete-event
system described, e.g., by a finite automaton. The “In-
terface” makes it possible for these different processes to
communicate with each other. This control framework is
quite flexible and can describe modern engineering systems
where a computer process is used to control and coordinate
several physical processes over a computer network. It can
also describe a switching control system where a continuous
plant is controlled by different continuous controllers over
a number of operating regions. It should be noted that the

0018–9219/00$10.00 © 2000 IEEE

1026 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

representation of Fig. 1 is a functional one that is convenient
for the mathematical study of such hybrid systems. In certain
systems, Fig. 1 represents the actual control architecture,
and the controller, interface, and plant can be identified in a
natural way. In other systems, however, such separation is
not so clear, and in that case, this representation is used pri-
marily to study the system and identify its properties rather
than to implement any control strategies. There are hybrid
systems for which it may not be possible to separate the
continuous from the discrete part in a natural way. However,
a description as in Fig. 1 may be useful in analysis, and it
may lead to a better understanding of important properties
related to the interface of continuous and discrete dynamics.

Using the supervisory control framework as illustrated
in Fig. 1, it has been possible to design discrete-event
controllers for hybrid systems. These controllers are based
on discrete abstractions of the continuous dynamics. Ap-
plications have been primarily in the chemical process
industry and include control of distillation columns and
batch processes. The appeal of this approach is that it gen-
eralizes well-known concepts from digital control design.
Note that this connection to digital control is described
in Section IV-C. One of the main characteristics of the
supervisory control approach has been the emphasis and
explicit identification of the interface issues between the
continuous and discrete dynamics. These interface issues are
the cornerstone of any hybrid system study. The decision of
how detailed a discrete abstraction should be is related to the
fundamental question of how much information is needed
by the controller to attain particular control goals. Note
that the discrete-event plant models derived via discrete
abstractions are typically nondeterministic, and this leads
to significant difficulties in controlling hybrid systems.
Those issues that were originally identified in a supervisory
control framework have affected many different approaches
to hybrid control systems that are discussed in this issue.

The types of problems that have been addressed by ex-
isting methods in supervisory control of hybrid systems are
those with control specifications that can be described by
formal languages accepted by finite automata, which approx-
imate the continuous plant. Examples include safety prob-
lems, where the controller guarantees that the plant will not
enter an unsafe operating region, e.g., guaranteeing that two
interacting robots will not collide. Another example is reach-
ability problems, where the controller drives the plant from
an initial operating region or state to a desired one; this is the
case, e.g., in the start-up procedure in a chemical plant. Note
that this supervisory control framework is based on a logical
approach for hybrid systems and does not directly address
time issues. The emphasis is on the logical ordering of se-
quences of events, e.g., in a start-up procedure rather than on
time constraints for an event to take place within a particular
time window. However, certain time issues can be addressed
using this approach by including a clock to be part of the
continuous dynamics of the plant. This is done to describe
digital control in a hybrid system framework, and details can
be found in Section IV-C.

Fig. 1. Hybrid control system.

It should be noted that the supervisory control approach
does not intend to address problems that involve continuous
controls, as it has been assumed that any continuous con-
trol action has already been considered and is included in
the plant of Fig. 1. It should also be noted that this approach
does not address jumps in the continuous state that may occur
when certain state variables are discontinuously reset. How-
ever, it includes switches where, typically, there are no jumps
in the state value. There is, however, a large class of important
engineering problems that can be solved using the supervi-
sory control approach described in this paper.

In general, a great amount of research work has already
been done in the hybrid systems area during the past decade
(see, e.g., [6], [2], [7], [5], [11], [10]), and in the many pa-
pers that have appeared in major decision and control confer-
ence proceedings, as well as the papers in this special issue.
Several different mathematical paradigms have been used for
modeling hybrid systems. In broad terms, the models differ
with respect to the emphasis on or the complexity of the con-
tinuous and discrete dynamics. On one end of the spectrum
there are equational models that include discontinuities such
as switchings and jumps. Typically, these models are used in
order to extend ideas from continuous systems and study tra-
ditional control problems such as stability, robustness, and
optimal control. Some examples of such systems are dis-
cussed in [45], [42], [70], and in this special issue. Switched
systems consisting of a family of continuous subsystems and
a rule that orchestrates the switching between them is an im-
portant class of hybrid dynamical systems in this category
(see [38] for a survey of recent developments regarding the
stability and design of switched systems). On the other end
of the spectrum, there are computer science models that are
mainly used to describe the behavior of real-time embedded
systems. Models of this type are collectively known as hybrid
automata [1], [41], [24]. Based on the type of the continuous
dynamics they can represent, there are several variations of
hybrid automata such as timed, rectangular, linear, and non-
linear hybrid automata. Hybrid system models that are based
on Petri nets instead of finite automata have also been pro-
posed [23], [31], [21]. There are additional models spanning
the rest of the spectrum that combine concepts from contin-
uous control and discrete event systems. A survey of different

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1027

models and methodologies can be found in [9]. Finally, a uni-
fied hybrid system model and a formal comparison between
models has been discussed in [17].

The work described in this paper is based on and represents
extensions of developments reported in [60], [15], [63], [62],
[64], and [65]. Similar approaches based on approximations
of the continuous plant model by a discrete event system have
also been proposed in [47], [56], [20], and [40]. Some impor-
tant characteristics of these approaches are briefly discussed
in Section II-D. A related area is hierarchical control of hy-
brid systems where a hierarchical structure is imposed on the
system architecture to reduce complexity [18], [52]. The de-
sign is based on the notion of hierarchical consistency, which
ensures that the control objectives are satisfied by the pre-
cise models at the lower levels, although the design has been
carried out at the higher levels of the hierarchy using coarse
models. Discrete abstractions of continuous systems in finite
quotient spaces have also been used to study formal verifica-
tion and decidability of hybrid systems in [33] and [34].

This paper is organized as follows. Modeling of hybrid
systems in the proposed supervisory control framework is
described in Section II. The properties of the discrete ab-
stractions of the continuous plant are discussed in Section III.
Methodologies for the design of the interface are presented
in Section IV. More specifically, a methodology to design the
partition of the continuous state space based on the natural
invariants of the plant is presented in Section IV-A. Stability
of transitions in the discrete event system (DES) plant with
respect to variations in the initial state of the continuous plant
is discussed in Section IV-B. The relation of the supervisory
control framework of hybrid systems with digital control de-
sign is also described in Section IV. A language theoretic
framework is used to describe performance specifications for
hybrid systems and the problem of supervisory control de-
sign for hybrid systems is formulated in Section V-A. The
notion of controllability for the languages generated by the
abstracting DES plant model is defined and a methodology
for supervisory control design is presented in Section V-B.
The design methodology is illustrated using several exam-
ples, including a distillation column and a robotic manu-
facturing system. Finally, some concluding remarks are in-
cluded in Section VI.

II. M ODELING HYBRID SYSTEMS

The hybrid control systems of interest here consist of a
continuous (state, variable) system to be controlled, also
called the plant, and a discrete event controller connected to
the plant via an interface in a feedback configuration. It is
generally assumed that the dynamic behavior of the plant is
governed by a set of known nonlinear ordinary differential
equations. In the model shown in Fig. 1, the plant contains
all continuous components of the hybrid control system,
such as any conventional continuous controller that may
have been developed, a clock if time and synchronous
operations are to be modeled, and so on. The controller
is an event-driven, asynchronous DES, described here by
a finite-state automaton. The hybrid control system also

Fig. 2. Partition of the continuous state space.

contains an interface that provides the means for communi-
cation between the continuous plant and the DES controller.

The interface plays a key role in determining the dynamic
behavior of the hybrid control system. Here, the interface has
been chosen to be simply a partitioning of the state space (see
Fig. 2), and this is done without loss of generality. If memory
is necessary to derive an effective control law, it is included in
the DES controller and not in the interface. Also, the piece-
wise continuous command signal issued by the interface is
simply a staircase signal as shown in Fig. 3, not unlike the
output of a zero-order hold in a digital control system. Note
that signals such as ramps, sinusoids, etc., can be generated if
desired by including an appropriate continuous system at (the
input of) the plant. The simple interface used in the model
allows the analysis of properties such as controllability, sta-
bility, and determinism. More important, it enables the devel-
opment of controller design methodologies. The simplicity
of the interface with the resulting benefits in identifying cen-
tral issues and concepts in hybrid control systems is perhaps
the main characteristic of the approach.

A. Hybrid System Model

In this section, we present our mathematical model for su-
pervisory hybrid control systems shown in Fig. 1. The de-
scription of the interface is done very carefully in order to
take into consideration important phenomena such as chat-
tering, delays in switching, etc., so Sections II-A and II-B
are rather technical by necessity. The modeling approach is
illustrated via two simple examples in this section. A distil-
lation column and a robotic manufacturing example may be
found in Section V.

1) Continuous Plant:The plant is in general a nonlinear,
time-invariant system represented by a set of ordinary differ-
ential equations

(1)

where and are the state and input vec-
tors, respectively, and , , with
some time interval. For each fixed , the function

is continuous in and meets the con-
ditions for existence and uniqueness of solutions for initial
states . Note that the plant input and state are con-
tinuous-time vector-valued signals. Boldface letters are used
here to denote vectors and vector-valued signals.

The representation of the plant is quite general and can
be used to describe a large class of systems that includes

1028 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 3. Command signal issued by the interface.

time-invariant nonlinear systems and switching systems. For
example, a linear switching system consisting ofsubsys-
tems can be described by

where , , , and
, where implies that the system is

actuated at time .
2) Controller: The controller (or supervisor) is a dis-

crete event system that is modeled as a deterministic
finite automaton [26]. This automaton is specified by

, where is the set of states, is
the set ofplant symbols, is the set ofcontroller symbols,

is the state transition function, and
is the output function. The symbols in setare called con-
troller symbols because they are generated by the controller.
Likewise, the symbols in set are called plant symbols and
are generated based on events in the plant. The action of the
controller is described by the equations

(2)

(3)

where , , and . The index is
analogous to a time index in that it specifies the order of the
symbols in the sequence. The input and output signals asso-
ciated with the controller are sequences of symbols. Tildes
are used to indicate a symbol-valued set or sequence. For
example, is the set of plant symbols, also called theal-
phabet, and is the th symbol of a sequence of plant
symbols. Subscripts are also used, e.g.,, which denotes the
th member of the symbol alphabet.

3) Interface: The controller and plant cannot communi-
cate directly in a hybrid control system because each utilizes
different types of signals. Thus, an interface is required
that can convert continuous-time signals to sequences of
symbols and vice versa. The way that this conversion is
accomplished determines, to a great extent, the nature of
the overall hybrid control system. The interface consists of
two simple subsystems: the generator and the actuator. The
generator issues symbols to the controller and plays the role
of a sampler together with a quantizer of the signals analo-
gous to an analog-to-digital converter (sampler) in a digital
control system. The actuator injects the appropriate control
signal into the plant and is analogous to a digital-to-analog

converter (typically a zero-order hold) in a digital control
system. The generator and the actuator perform, however,
more general functions than their counterparts in a typical
digital control system.

The generator is the subsystem of the interface that
converts the continuous-time output (state) of the plant to an
asynchronous, symbolic input for the controller. To perform
this task, two processes must be in place. First, a triggering
mechanism is required, which will determine when a plant
symbol should be generated. Second, a process to deter-
mine which particular plant symbol should be generated
is required. In the generator, the triggering mechanism is
based on the idea ofplant events. A plant event is simply
an occurrence in the plant, an idea borrowed from the field
of discrete event systems. In the case of hybrid control,
a plant event is defined by specifying a hypersurface that
separates the plant’s state space into two disjoint sets. The
plant event occurs whenever the plant state trajectory crosses
this hypersurface. The basis for this definition of a plant
event is that an event is considered to be the realization of a
specified condition. This condition can be given as an open
region of the state space, separated from the remainder of
the state space by a hypersurface. If the state crosses the
hypersurface into the given open region, the event has oc-
curred. Mathematically, the set of plant events recognized by
the generator is determined by a set of smooth functionals,

, defined on the state space of the
plant. Each functional must satisfy the condition

(4)

which ensures that the null space of the functional,
, forms an -dimensional smooth

hypersurface separating the state space.
Let the sequence of plant events be denoted by, where

means the th plant event was triggered by
crossing the hypersurface defined by. Let the sequence
of plant event instants be given by, where is the
time of the th plant event and . A simple way
of expressing the conditions for the generation of plant
events is by , . In this case,
an assumption is made that the derivative is nonzero, i.e.,

at the crossing. Note, however, that
these conditions do not take into account the case where the
crossing occurs exactly at a point where .
In this case, one must use the following conditions:

s.t. ,

s.t. ,
,

(5)

and

(6)

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1029

The first group, (5), contains three conditions: 1) at the time
of the plant event the plant state lies on the triggering hy-
persurface; 2) immediately after the event the plant state lies
on the negative (positive) side of the triggering hypersurface;
and 3) prior to reaching the triggering hypersurface, the plant
state lies on the positive (negative) side. The fourth condition,
(6), concerns the ordering of the sequences. It requires that
plant events be ordered chronologically and simultaneous
plant events be ordered according to their number, i.e., the
value of . The generation of plant events is illustrated in
Fig. 4.

A plant event will only cause a plant symbol to be gen-
erated if the hypersurface is crossed in a defined direction.
The reason for this is that in many applications sensors only
detect when a threshold is crossed in one direction, e.g., a
thermostat. When the hypersurface is crossed in the opposite
direction, the event is silent. For convenience, assume that
a null symbol is generated. At each time in the sequence

, a plant symbol is generated according to the function
. The sequence of plant symbols can now be

defined as
nonsilent event
silent event

(7)

where identifies the hypersurface that was crossed. Alterna-
tively, one could select the interface to generate information
bearing symbols when crossed in either direction.

The actuator converts the sequence of controller symbols
to a plant input signal, using the function , as
follows:

(8)

where is a characteristic function taking on the
value of unity over the time interval and zero else-
where. is the time of the th control symbol, which is
based on the sequence of plant symbol instants, defined in
(5), according to

(9)

where is the total delay associated with the interface and
controller. Following the occurrence of a plant event, it takes
time for a new control policy to be used by the plant. It
will be assumed that . The plant
input can only take on certain constant values, where
each value is associated with a particular controller symbol.
Thus, the plant input is a piecewise constant signal, which
may change only when a controller symbol occurs.

In the interface, a delay was introduced. The presence
of the delay is necessary for two reasons. First, from a prac-
tical point of view, the generator will not be able to detect an
event until after the state has actually crossed the hypersur-
face. Second, if a nonzero delay is not used, it is possible that
the differential equation (1) will exhibit solutions that switch
between different control policies infinitely many times in a
finite time interval. Such behavior does not occur in physical
systems. Systems capable of exhibiting such behavior are re-
ferred to asZenosystems. In supervisory hybrid control sys-
tems, we want the systems to be non-Zeno. It is, of course,

Fig. 4. Generation of plant events.

possible for two plant events to occur within the period of a
single delay. In such a case, each event will be acted upon,
in turn, units of time after it occurs. In this way, the delay
can pose a problem for the controller, but it is unavoidable as
real systems cannot react instantaneously.

B. DES Plant Model

In a hybrid control system, the plant taken together with
the actuator and generator behaves like a discrete event
system; it accepts symbolic inputs via the actuator and
produces symbolic outputs via the generator (see Fig. 5).
This situation is somewhat analogous to the way a con-
tinuous-time plant, equipped with a zero-order hold and
a sampler, “looks” like a discrete-time plant. In a hybrid
control system, the DES that models the plant, actuator,
and generator is called theDES plant model. From the DES
controller’s point of view, it is the DES plant model that is
controlled. In the following, we present a simple example of
a thermostat/furnace in order to illustrate the approximation
of a continuous plant by a DES plant model. A methodology
for the extraction of the DES plant is described after the
thermostat/furnace example and is illustrated with additional
examples.

1) Example—Thermostat/Furnace System:The hybrid
system in this example consists of a typical thermostat and
furnace. Assuming the thermostat is set at 70F, the system
behaves as follows. If the room temperature falls below 70,
the furnace starts and remains on until the room temperature
reaches 75. At 75 , the furnace shuts off. For simplicity,
we will assume that when the furnace is on it produces a
constant amount of heat per unit time.

The plant in the thermostat/furnace hybrid control system
is made up of the furnace and room. It can be modeled with
the following differential equation:

(10)

where the plant state is the temperature of the room in de-
grees Fahrenheit, the inputis the voltage on the furnace
control circuit, and is the outside temperature. The units
for time are minutes. The constants used in this example cor-
respond to particular given data. This model of the furnace is
certainly a simplification, but it is adequate for this example.

The thermostat partitions the state space of the plant with
two hypersurfaces as follows:

(11)

1030 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 5. DES plant model.

(12)

The first hypersurface detects when the state exceeds 75, and
the second detects when the state falls below 70. The associ-
ated functions and are very simple in this case:

(13)

So there are two plant symbols: and .
The DES controller is shown in Fig. 6. The output function

of the controller is defined as

off (14)

on (15)

and the actuator operates as

(16)

(17)

The thermostat/heater example has a simple DES plant
model, which is useful to illustrate how these models work.
Fig. 7 shows the DES plant model for the heater/thermostat.
The convention for labeling the arcs is to list the controller
symbols, which enable the transition followed by a “/” and
then the plant symbols, which can be generated by the tran-
sition. Note that two of the transitions are labeled with null
symbols . This reflects the fact that nothing actually hap-
pens in the system at these transitions. When the controller
receives a null symbol, it remains in the same state and reis-
sues the current controller symbol. This is equivalent to the
controller’s doing nothing, but it serves to keep all the sym-
bolic sequences,, , etc., in phase with each other.

C. Extraction of the DES Plant Model

The DES plant model is a nondeterministic finite
automaton, which is represented mathematically by

. is the set of states, is the
set of plant symbols, and is the set of control symbols.

is the state transition function. For a given
DES plant state and a given control symbol, it specifies a
set of possible new DES plant states. The output function,

, maps the previous and current states to a
set of plant symbols. Note that the DES plant modelis a
nondeterministic automaton and the state transition function

Fig. 6. Controller for the thermostat/furnace system.

Fig. 7. DES plant for the thermostat/furnace system.

is defined as a mapping from to the power set
of , since for a given state and input symbol the next
state is not uniquely defined. The output function is defined
similarly.

The set of DES plant model states is based upon the
set of hypersurfaces realized in the generator. Each open re-
gion in the state space of the plant, bounded by hypersur-
faces, is associated with a state of the DES plant. Whenever
a plant event occurs, there is a state transition in the DES
plant. Stating this more rigorously, an equivalence relation,

, can be defined on the set as
follows:

iff (18)

Each of the equivalence classes of this relation is associated
with a unique DES plant state. Thus, it is convenient to index
the set of states with a binary vector such that

is the th element of and is associated with the set
. The equivalence relation

is not defined for states that lie on the hypersurfaces. When
the continuous state touches a hypersurface, the DES plant
model remains in its previous state until the hypersurface is
crossed. Formally, the set of DES plant states is defined as a
set of equivalence classes on the state space of the plant.

Theset of DES plant states is defined as follows.

(19)

So, for example, the state is defined as

and (20)

TheDES plant state corresponds to the most recently en-
tered region of the plant state space and is defined as follows:

(21)

where

(22)

The limit must be used here because at exactly , the con-
tinuous state will be on a boundary. Note that no plant symbol
is generated if the state trajectory moves along the bound-
aries. Note that problems associated with the boundaries of
regions that partition the state space and the continuity of

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1031

the analog-to-digital maps defined from these partitions have
been studied at length in [47] and [16].

The state of the DES plant model represents how much can
be known about the system by observing the plant symbols
without actually calculating the trajectories. So after a plant
symbol is generated, nothing can be ascertained beyond the
resulting region. Now we are in a position to determine the
state transition function and the output function.

Note that two DES plant states, areadjacentat
if for all

where and are the binary vectors associated withand
, respectively, and represents the closure of. When

two DES plant states are adjacent at , it means that the
regions corresponding to these states are separated by the hy-
persurface , and the point lies on this hypersurface
on the boundary of both regions. Thus,identifies a possible
transition point between the regions. The following proposi-
tion states that for a given DES plant stateand control
symbol , a possible successor state isif the stated con-
ditions are met. Assume that for the hypersurfaces defined
by , we have that [see comments fol-
lowing (5)].

Proposition 1: Given a hybrid control system, described
by (1)–(9), with and continuously differentiable, then

iff and exist such that
following conditions are satisfied:

• and are adjacent at ;
• ;
• .

Further, if , we also have that .
The usefulness of this proposition is that it allows the ex-

traction of a DES automaton model of the continuous plant
and interface as illustrated in Fig. 8. Note that in certain
cases, this is a rather straightforward task. For instance, it
is known that if a particular region boundary is only crossed
in one direction under a given command, then the conditions
of the proposition need only be tested at a single point on
the boundary. This condition is true for the double integrator
example that follows. In general, this may not be the case,
but one can restrict the area of interest to an operating re-
gion of the plant state space, thus reducing the computations
required.

As stated above, the DES plant model is an approxima-
tion of the actual hybrid system. Specifically, the state of the
DES plant model is an approximation of the state of the con-
tinuous plant. As a result, the future behavior cannot be de-
termined uniquely, in general, from knowledge of the DES
plant state. The approach taken here is to incorporate all the
possible future behaviors into the DES plant model. From a
control point of view, this means that if undesirable behaviors
can be eliminated from the DES plant (through appropriate
control policies), then these behaviors can likewise be elimi-
nated from the actual system. On the other hand, just because

Fig. 8. Extraction of the DES plant model.

a control policy permits a given behavior in the DES plant,
there is no guarantee that the behavior will occur in the ac-
tual system. This phenomenon is due to the nondeterminism
in the DES plant model and is further discussed in Section III.

1) Example—Double Integrator:The system consists of
a double integrator plant, which is controlled by a discrete
event system. A double integrator plant may used as a simple
example for satellite control, modeling the relation between
the angular position and velocity and the reaction jets. The
plant is given by the differential equation

(23)

The generator recognizes four plant events:

(24)

(25)

These four plant events are generated when the plant state
crosses either the or axis, in a positive or negative di-
rection. Symbols are attached to the plant events as follows:

(26)

(27)

Note that the same symbol can be used to label more than
one plant event and that does not necessarily have to de-
pend on the state . In this example, the plant symbol only
identifies the axis that was crossed, as illustrated in Fig. 9.

We assume that there are two controller symbols,
, so the actuator provides two possible inputs to the

plant

if
if .

(28)

Using Proposition 1, we extract the DES plant for this
system, which is shown in Fig. 10. To illustrate how the DES
plant was extracted, start with the DES plant state(i.e.,

) and consider whether . and
satisfy the conditions of the proposition, showing

that indeed . Proceeding in this way, we ex-
tract the DES plant model. Proposition 1 is also used to find
the plant symbols generated by the transitions. In the sample
instance, , there are two possible symbols: and
. By convention, the nonsilent symbol takes precedence, so

. A controller that drives the state of the
double integrator in clockwise circles is designed in Sec-
tion V-B.

D. Related Models

There are supervisory approaches to hybrid control in the
literature that are related to the approach described above.

1032 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 9. Generator for the double integrator example.

Fig. 10. DES plant for the double integrator.

One is the Nerode–Kohn approach to hybrid control systems
that is based on automata theory. The model and related work
can be found in [47] and [48]. This approach is similar to the
one described here. The main differences are in the way plant
events are generated and the explicit introduction of time as
a parameter of the control signals. The plant and controller
are represented by interacting nondeterministic sequential
automata. Thecontrol automatonis a nondeterministic se-
quential automaton, which has as an infinite input alphabet
consisting of sensor measurements and an infinite output al-
phabet consisting of control laws. The plant is modeled as
a nondeterministic sequential automaton, which represents a
system given by time-variant ordinary differential equations.
The input alphabet of the plant is the infinite alphabet of con-
trol laws and the output alphabet of the plant is the infinite
alphabet of sensor measurements. The automata interact at
times , where the interval between successive times,

, can vary. To facilitate analysis, several special-
izations of the above model are imposed. First, the time be-
tween successive plant–controller interactions is required to
be constant, i.e., . Second, the plant is assumed to be
time-invariant. Third, the control automaton is decomposed
into a finite automaton equipped with an interface. The model
is shown in Fig. 11. Here, the control automaton has been
separated into three parts: an analog-to-digital converter, an
internal control automaton, and a digital-to-analog converter.
The internal control automaton is a finite automaton. That
means the analog-to-digital converter converts real-number
sensor measurements to one of a finite number of input sym-
bols. The digital-to-analog converter maps output symbols to
a control law and a duration for which the control law should
remain in effect.

The plant automaton represents an underlying system
defined by ordinary differential equations. The plant evolves

Fig. 11. Hybrid system model.

over the intervals of time between successive plant–con-
troller interactions according to the following equation for
the interval :

(29)

where , and and are the control function
and disturbance function, each with domain . A hybrid
system is formed by connecting the plant automaton to the
control automaton as follows. The output of the controller
consists of pairs specifying a duration and a control
law for that duration. This makes up the corresponding input
to the plant automaton. The output of the plant automaton is
connected to the input of the controller automaton.

The next two approaches are motivated by chemical
process control applications and are directly related to our
work. Qualitative modeling of linear systems with quantized
state measurements has also been considered by Lunze [39].
The main characteristic of the model is that the partition
is predetermined by sensor quantizations. Discrete-time
systems of the form

(30)

are considered. It is assumed that only quantized state mea-
surements , which represent the qualitative states, are
available. The state variablesare quantized independently
from each other with resolution , according to the equa-
tion

(31)

where satisfies the relation

(32)

Graphically, the state space is partitioned into the rect-
angular blocks whose edges have the direction of the axes
and length as illustrated in Fig. 12. A nondeterministic
automaton is used to describe the qualitative behavior simi-
larly to the hybrid control system model presented earlier in
the section. The system is also approximated by a stochastic
automaton with the assumption that the initial stateis uni-
formly distributed over the corresponding rectangular region
of the state space. More recently, Lunze has considered more

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1033

general grids in order to derive deterministic discrete-event
representations for linear continuous systems [40].

A similar model where the plant state evolves in and
the control input and measurement signals are symbolic is
considered by Raisch [55], [56]. In addition, the state is af-
fected by real-valued unknown but bounded disturbances.
More specifically, the plant is modeled as a nonlinear dis-
crete-time system with state transition function

(33)

(34)

where is the state at time and
is the disturbance. The control and measurement symbols
are and , respectively, and is the measure-
ment map that converts the state to the corresponding mea-
surement symbol. A requirement imposed onis that it can
be solved with respect to the first argument, i.e.,

. A contribution of this modeling
framework is the formulation of a hierarchy of discrete ab-
stractions with respect to the approximation accuracy. The
approximation accuracy of the DES plant model can be im-
proved by including past measurements and control signals.
The state of the DES plant model (approximating automaton)
is defined by

if

if .
(35)

The approximation accuracy depends on the lengthof the
measurement and control signals and can be adjusted to the
specification requirements. An important characteristic of
the approach is that the time needed for a transition, which
is , is retained in the discrete approximation. The
approach has been applied to examples from process control
in [54].

III. PROPERTIES OF THEDES PLANT MODEL

In this section, we discuss properties for the DES plant
model to be a useful representation of the continuous system.

A. DES Plant Model as an Approximation

The DES plant model is an approximation of the actual
system and its behavior is an abstraction of the system’s be-
havior. Specifically, the state of the DES plant model is an ap-
proximation of the state of the continuous plant. As a result,
the future behavior of the actual continuous system cannot
be determined uniquely, in general, from knowledge of the
DES plant state. The approach taken here is to incorporate
all the possible future behaviors into the DES plant model.
Thus, we construct a conservative approximation of the be-
havior of the continuous plant that includes the behavior of
the plant, and can be realized by a finite-state machine. Note
that different continuous processes may be represented by a
DES model. From a control point of view, this means if un-

Fig. 12. Partition of the two-dimensional state space into
rectangular blocks.

desirable behaviors can be eliminated from the DES plant
(through appropriate control policies), then these behaviors
will be eliminated from the actual system. On the other hand,
just because a control policy permits a given behavior in the
DES plant, there is no guarantee that the behavior will occur
in the actual system.

Raisch and coworkers [55], [56] have used a behavioral ap-
proach for the representation of dynamical systems in order
to formalize the issues related to the approximation accuracy
of the discrete abstractions and the effects of the supervisor.
We briefly discuss this approach to illustrate the issues re-
lated to the approximation of the plant by a DES plant model.

A dynamical system can be described as a triple
with the time axis, the signal space,

and (the set of all functions) the
behavior[67]. In our modeling formalism, the behavior of
the DES plant model consists of all the
pairs of plant and control symbols that the nondeterministic
automaton can generate. The time axis

represents here the occurrences of events as defined in
Section II. A necessary condition for the DES plant model
to be a valid approximation of the continuous plant is that
the behavior of the continuous plant model is contained
in the behavior of the DES plant model, i.e., .

Since the controller is represented by the automaton
, its behavior can also be described as

. The main objective of the controller is
to restrict the behavior of the DES plant model in order to
specify the control specifications. The specifications can be
described by a behavior . Supervisory
control of hybrid systems is based on the fact that if undesir-
able behaviors can be eliminated from the DES plant, then
these behaviors can likewise be eliminated from the actual
system. This is described formally by the relation

(36)

and is depicted in Fig. 13. The challenge is to find a discrete
abstraction with behavior , which is an approximation of
the behavior of the continuous system and for which is
possible to design a supervisor in order to guarantee that the
behavior of the closed-loop system satisfies the specifica-
tions .

A more accurate approximation of the plant’s behavior can
be obtained by considering a finer partitioning of the state

1034 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 13. DES plant model as an approximation.

space for the extraction of the DES plant. A totally ordered
set of discrete abstractions for a given system has been pre-
sented in [55].

B. Determinism

An interesting aspect of the DES plant’s behavior is that
it is distinctly nondeterministic. This fact is illustrated in
Fig. 14. The figure shows two different trajectories generated
by the same control symbol. Both trajectories originate in the
same DES plant state . Fig. 14 shows that for a given con-
trol symbol, there are at least two possible DES plant states
that can be reached from . Nondeterminism in the DES
plant therefore arises due to uncertainty in the DES states
reached under a controlled transition. Transitions within a
DES plant will usually be nondeterministic unless the bound-
aries of the partition sets are invariant manifolds with respect
to the vector fields that describe the continuous plant. More
details about such partitions are presented in Section IV. The
problem of obtaining deterministic discrete-event represen-
tations for specific classes of hybrid systems has been con-
sidered in [22] and [40].

There is an advantage to having a hybrid control system
in which the DES plant model is deterministic. It allows
the controller to drive the plant state through any desired
sequence of regions provided, of course, that the corre-
sponding state transitions exist in the DES plant model. If
the DES plant model is not deterministic, this will not always
be possible. This is because even if the desired sequence of
state transitions exists, the sequence of inputs that achieves
it may also permit other sequences of state transitions.
Unfortunately, given a continuous-time plant, it may be
difficult or even impossible to design an interface that leads
to a DES plant model that is deterministic. Fortunately,
it is not generally necessary to have a deterministic DES
plant model in order to control it. The supervisory control
problem for hybrid systems can be formulated and solved
when the DES plant model is nondeterministic.

IV. I NTERFACE

The interface plays a key role in determining the dynamic
behavior of the hybrid control system. Many times, the par-
tition of the state space (generator in the interface) is deter-
mined by physical constraints and it is fixed and given. Here,
we assume that we can select the partition and we focus on
specific problems for the interface design. First, we present
a methodology to design the partition of the continuous state
space based on the natural invariants of the plant. Next, we

Fig. 14. Nondeterminism of the DES plant model.

study stability of transitions in the DES plant with respect to
variations in the initial state of the continuous plant. Finally,
we present an alternative to the usual quantization technique
of digital control based on the interface of hybrid control sys-
tems.

A. Generator Design

A methodology is presented [63], [64] to design the inter-
face for a plant described by

(37)

where certain smoothness assumptions apply. The approach
is based on the natural invariants of (37). We assume that the
plant is given, the set of available control policies is given,
and the control goals are specified as follows. Each control
goal for the system is given as a starting set and a target set,
each of which is an open subset of the plant state space. To
realize the goal, the controller must be able to drive the plant
state from anywhere in the starting set to somewhere in the
target set using the available control policies. Generally, a
system will have multiple control goals.

We propose the following solution to this interface design
problem. For a given target region, identify the states that
can be driven to that region by the application of a single
control policy. If the starting region is contained within this
set of states, the control goal is achievable via a single control
policy. If not, then this new set of states can be used as a target
region and the process can be repeated. When the regions
have been identified, the generator is designed to tell the con-
troller, via plant symbols, which region the plant state is cur-
rently in. Note that similar methods based on backward anal-
ysis of the dynamics have been discussed in [53] and [66].
Computational algorithms for the use of the phase-space geo-
metric description of dynamics have been developed in [71].

To describe the regions mentioned above, we use the con-
cept of the flow [49]. Let the flow for the plant (1) be given
by , where

(38)

The flow represents the state of the plant after an elapsed time
of , with an initial state of , and with a constant input
of . Since the plant is time invariant, there is no loss
of generality when the initial state is defined at . The
flow is defined over both positive and negative values of time.
The flow can be extended over time using the forward flow
function, , and the backward flow function,

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1035

, [denotes the power set of], which
are defined as follows:

(39)

(40)

The backward and forward flow functions can be defined on
an arbitrary set of states in the following natural way:

(41)

(42)

where . For a target region, , is the set of
initial states from which the plant can be driven towith
the input . In addition, is the set of states that
can be reached with input and an initial state in . Note
that the backward and forward flow functions applied on the
set of states correspond to the precondition and postcondition
operators used in verification algorithms of hybrid systems
[1].

Now, a generator design procedure can be described using
the backward flow function. For a given starting region

and target region , use the following algorithm.

1. If , stop.
2. Identify the regions, , .
3. Let .
4. Go to 1).

There are two problems associated with this algorithm
as stated. First, it will not stop if there is no sequence of
available control policies that will achieve the control goal,
and second, actually identifying the regions given by the
flow functions is quite involved. The first issue is related to
the adequacy of the available control policies and will not be
dealt with here. The second problem will be addressed. The
difficulty in identifying a region given by a flow function is
integrating over all the points in the target region. Here, we
will focus on identifying subsets of , which we call
common flow regions. Common flow regions are bounded
by invariant manifolds and an exit boundary. The invariant
manifolds are used because the state trajectory can neither
enter nor leave the common flow region through an invariant
manifold. The exit boundary is chosen as the only boundary
through which state trajectories leave the common flow
region.

To design the generator, it is necessary to select the set
of hypersurfaces, and the associated
functions, , described in Sec-
tion II. These hypersurfaces make up the invariant manifolds
and exit boundaries mentioned above, as well as form the
boundary for the target region(s). A target regionis spec-
ified as

(43)

where is the index set indicating which hypersurfaces
bound the target region. A common flow regionis speci-
fied as

(44)

where is an index set indicating which hypersurfaces form
the invariant manifolds bounding and defines the exit
boundary for . The goal, of course, is that should include
only states whose trajectories lead to the target region. Fig. 15
shows an example of this where and .
The target region is surrounded by , and the common
flow region lies between and above the exit boundary

.
Consider the hypersurfaces defined by .

These hypersurfaces must first be invariant under the vector
field of the given control policy . This can be achieved by
choosing them to be integral manifolds of an -dimen-
sional distribution, which is invariant under. An -di-
mensional distribution is invariant under if it satisfies

(45)

where the indicates the Lie bracket. Of the in-
variant distributions, those that have integral manifolds as
we require are exactly those that are involutive (according
to Frobenius). This means

(46)

Therefore, by identifying the involutive distributions that are
invariant under the vector field, we have identified a set
of candidate hypersurfaces. For details of these relationships
between vector fields and invariant distributions, see [27].
Since an -dimensional involutive distribution can be
defined as the span of vector fields, over each of which
it will then be invariant, and the control policy only gives one
vector field , there will be more than one family of hyper-
surfaces that are all invariant under. The set of all invariant
hypersurfaces can be found in terms of functionally in-
dependent mappings that form the basis for the desired set of
functionals . This basis is obtained by solving
the characteristic equation

(47)

where is the th element of .
In the following, the approach for the generator design

based on natural invariants is illustrated using the double in-
tegrator example. More details can be found in [63] and [64],
and the application of the method to a simplified model of
an autonomous underwater vehicle can be found in [62]. A
methodology based on natural invariants has also been used
in a Petri net framework for modeling and control of hybrid
systems in [31] and [30].

1) Example—Double Integrator:Consider the double in-
tegrator example. Suppose we are given the plant

(48)

three available control policies

(49)

1036 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 15. Target region and invariants.

and the following control goal: drive the plant state to the
interior of the unit circle from any initial point. So the starting
set consists of the entire state space, and the target set is

(50)

The target set is bounded by the hypersurface given by

(51)

The first step is to calculate the invariants that can be used to
obtain hypersurfaces. There are three families of invariants,
one for each of the three control policies, which can be found
by solving the characteristic equation (47) for the double in-
tegrator

(52)

(53)

(54)

The first hypersurface, , is used to identify the target re-
gion.

(55)

A common flow region entering under the first control
policy, , is bounded by

(56)

(57)

and

(58)

Identify this common flow region as :

(59)

Likewise, a common flow region enteringunder the third
control policy is bounded by

(60)

(61)

and

(62)

Identify this common flow region as

(63)

Fig. 16(a) illustrates what we have so far. Now the target can
be extended to include or and more common flow
regions can be obtained. Let the new target be given by

. A common flow region entering under the second
control policy is bounded by choosing

(64)

and . A common flow region entering
under the third control policy is bounded by choosing

(65)

and . Fig. 16(b) gives a final picture of the hypersur-
faces and regions involved in this example.

Given the hypersurfaces and the regions of the partition,
a controller can be easily designed. Note that our synthesis
methodology is described in Section V. Here, we present an
intuitive way for the design of the controller. There is only
one control goal for this example, and therefore, the entire
controller will consist of a single subautomaton. Start by cre-
ating a controller state , which is associated with the target
region. Two common flow regions, labeled and , were
identified that lead to the target region. Then, create two more
controller states, and . consists of the trajectories that
reach the target region under control policyand therefore,

; likewise . Connect to with
a transition labeled , which is generated when the plant
state crosses to enter the target region. Do the same for

. Next, create to go with , and add a transition to
labeled . When all the common flow regions have their
associated states and transitions, the controller is shown in
Fig. 16(c).

B. Transition Stability

In this section, logical invariance of the DES plant tran-
sitions to variations in the initial continuous state is defined
and conditions for inferring “stable” DES plant transitions
are presented. For more details, the reader is referred to [36].
Ideally, the transitions in the DES plant should be unchanged
by small perturbations in the state of the continuous plant.
The important property is referred to here as transition sta-
bility, and it is related to the notion of “structural stability.”
This section presents a set of sufficient conditions ensuring
the stability of transitions in the DES plant with respect to
variations in the initial state of the continuous plant. These
conditions are based on the Lyapunov stability theory, and
hence, the notion of logical stable transitions is clearly re-
lated to conventional stability of continuous systems.

Assume that the partition of the state space is given. Let
denote the finite collection of disjoint sets that partition

the state space of the continuous plant, and denote theth el-
ement as , . The desired behavior of the con-
tinuous plant can be described as a desired language for the
DES plant model as described in Section V. This is a formal
specification on how the plant should transition between ele-
ments of . The problem considered here is concerned with
conditions that ensure that such transitions occur in a stable
manner. DES plant validity can be viewed in terms of the in-
variance of plant and control event sequences to small pertur-
bations in the state of the continuous plant. An arc of the DES
plant represents a transition of the continuous plant’s state
between two subsets from. The labeling of that by a plant

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1037

Fig. 16. (a) Target region and invariants. (b) Final regions for double integrator. (c) Controller.

symbol arc represents the symbolic behavior of that transi-
tion. A valid DES plant would preserve that labeling under
small perturbations of the initial continuous state. This view-
point is formalized in the following definition of -stability.

Let be a DES plant model for a
hybrid dynamical system. Let and be two vertices in
corresponding to the sets and , respectively. Consider
the arc labeled with the control symbol and plant
symbol . Let be the control vector associated with
control symbol through the interface actuator mapping,
and denote by the transition operator generated
by the differential equation .

The arc is transition-stable(or -stable) iff for all
, there exists an open neighborhood centered

at and a finite time such that the set

(66)

is an open subset of and the plant symbol issued during
the transition is identical for all transitions starting in
and ending in .

We consider a special case of nonlinear continuous plant,
which is described by the following set ofdifferential equa-
tions:

(67)

where , is the state vector for theth differ-
ential equation, and , are the components
of the control vector for the th equation. In this case, the
collection of mappings for
represents a set of control policies. The control poli-
cies of the th differential equation are linearly mixed by the
components of the control vector. Such a nonlinear system
is often referred to as being “affine” in its control vectors.
Under suitable assumptions, it includes the class of nonlinear
systems that can be linearized through appropriate feedback.

Consider a DES plant model of a hybrid system whose
continuous plant is affine in its control policies. Consider an
arc of the DES plant with control symbol label,
and let be its corresponding con-
trol vector. Note that a sufficient condition for the transition

to be -stable is that all trajectories starting in are at-
tracted to and are repelled by any other elements of.
This condition is satisfied provided contains a global at-
tractor for the controlled system and all other, are
repellors. These conditions can easily be established by con-
structing a Lyapunov functional over the state space such
that the system is globally stable to . To ensure that all
other sets are repelling, it is sufficient to guarantee that there
exists Lyapunov functional , for each of these gen-
erator sets, which always forces the state trajectory out of the
set.

In order to formulate these sufficient conditions, we use
the Lie directional derivative of a functional. Let
be a continuous differentiable functional and let
be a smooth vector field. Let denote the gradient vector
of . The Lie (directional) derivative of ,

is defined as the inner product of the gradient ofwith
the vector field , . The LaSalle invariance
principle [35] can be used to establish the following sufficient
conditions.

This arc is -stable if there exists a set of continuously
differentiable positive definite functionals ,

, which are zero on a closed proper subset of
, , such that for all and

...
(68)

and for all , for and

...
(69)

The above conditions are clearly not necessary for-sta-
bility. For many situations, they may only have to hold in a
local sense. Nevertheless, these conditions are very valuable.
Dynamical systems are always influenced by unpredicted ex-
ternal disturbances, which may force the plant state off the
controlled trajectory. When such disturbances occur, it is de-
sirable that the transition remain “stable.” One way to ensure

1038 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

that is to require that the sets of the partition are global at-
tractors and repellors. Therefore, while the above conditions
are restrictive, they provide a test that is useful in the face of
unmodeled disturbances.

The sufficient conditions pertain to a single transition arc
of the DES plant for a given control symbol. These condi-
tions form a system of linear inequality constraints in the con-
trol space of the continuous plant. Feasible points satisfying
the inequality system are therefore constant control vectors

, which guarantee that the single arc is-stable. By
finding the feasible points for each arc in the DES plant, a set
of control vectors , associated with the con-
trol symbols is obtained. The systematic application of this
approach to every arc in a given DES plant can then be used
to determine an actuator mapping, which -stabilizes the
entire DES plant.

Deciding the -stability of the entire DES plant can only
be done if there exists a numerically efficient method for
finding feasible points. One class of algorithms for doing this
is themethod of centersalgorithms [46]. Method of center
algorithms compute a sequence of convex bodies and their
centers in such a way that the computed centers converge
to a feasible point. Depending on the analytic form of the
convex bodies and the centers, different types of algorithms
are obtained. A particularly well-known example is the el-
lipsoid method [46]. In this algorithm, the convex bodies are
ellipsoidal sets containing the set of feasible vectors, and the
centers are the geometric centers of these ellipsoids. In [36],
the ellipsoid method is used as an inductive learning algo-
rithm for inferring -stable interfaces.

C. Digital Control in a Hybrid Framework

In a digital control system, a continuous-time plant is con-
trolled by a digital computer. The plant output is sampled and
quantized to provide the input to the controller, and the con-
trol signal is passed through a zero-order hold to provide the
plant input. Here, we show that such a digital control system
is a special case of a hybrid control system. The more gen-
eral framework of hybrid control systems is used to discuss
problems encountered in digital control such as chattering
and limit cycles and to illustrate the connection between hy-
brid and digital systems. More details can be found in [61].
Section IV-A presented a method for designing the interface
of a hybrid control system using the natural invariants of the
system. Here, this method is used as an alternative to the
usual quantization technique of digital control. An example
illustrates the application of this method to a digital control
problem; it also shows the application of a DES controller
design approach to digital control.

A digital control system can be viewed as a special case of
a hybrid control system in which the plant, interface, and con-
troller obey certain constraints. In a digital control system,
the events are triggered at regular (or, if desired, irregular)
intervals of time. This gives rise to sampling in time and re-
quires that there must be a clock present in the system. In
digital control, this clock is normally not modeled explicitly,
but in our hybrid control framework it will appear as part of

the plant. A convenient way to do this is to use a two-state
oscillator, such as

(70)

where is the clock frequency. If required,can be made a
function of the plant input and then the clock frequency
can be changed by the controller. To implement the sampling,
hypersurfaces of the type

(71)

are used, where and are real constants. A single hyper-
surface with and would model the typical case
where the sampling rate is given by . In this case, the
partition of the state space looks like a grid. By adding more
hypersurfaces, each with its own measurement function,
multirate sampling can be modeled.

When modeling digital control, the measurement func-
tion(s) is a quantizer. The value of each state at the sam-
pling instant is truncated or rounded and restricted to the
range of values acceptable to the digital controller. For ex-
ample, a controller implemented on an 8-bit computer might
only have the capability to measure a state to 256 possible
values. In that case, we might have a set of plant symbols
given by

(72)

and a measurement function given by

trunc modulo (73)

Quantization of this type will form a grid-like partition of the
state space into regions, each associated with the same plant
symbol.

On the other side of the interface, the actuator models a
zero-order hold. Controller symbols, representing quantized
plant input values, are converted to piecewise constant plant
inputs. In an example akin to the one given above, the set of
controller symbols is given by

(74)

and is given by

(75)

Finally, the controller is an automaton that implements the
desired control strategy for the digital controller.

The designer is free to choose the sampling rate(s) and the
quantization level(s) for each state. These choices determine
the dimensions of the -dimensional boxes that fill up the
state space. What the designer cannot do is change the basic
shape of the boxes that form the partition; in digital control
with sampling in time they will always be rectangular. On the
other hand, most hybrid control design possibilities cannot be
realized in digital control because of the need for a grid-like
partition.

In digital control, the problem of choosing the appropriate
control policy is many times handled by approximating an
existing continuous control law. Since state-space trajec-
tories are not generally straight lines, they will not flow
“neatly” through the grid-like partition of the digital control

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1039

system. Trajectories in a given region of the partition will
inevitably leave that region through more than one of the
region’s boundaries. This gives rise to nondeterministic
behavior in the DES plant. The problem cannot be solved
by changing the size of the region because it will still have
the same grid-like shape. In hybrid control, the strategy is
to shape the regions according to the system trajectories
so as to control which boundaries the trajectories can pass
through. This is not possible with a digital control system.
Fig. 17 shows an example of the added flexibility afforded
by hybrid control over standard digital control.

Since the problems encountered in digital control are
largely a result of the quantization, it is reasonable to try to
solve them by changing the way the quantization is done.
The usual quantization forms a grid-like partition of the
state space, forming an array of-dimensional boxes—each
with its own symbol. The problem is that these quantization
levels may have no relationship to the state trajectories that
flow through them. To reduce this problem, the grid-like
partition can be replaced with a partition based on the natural
invariants of the system. The following illustrating example
explores the use of invariants for quantization.

1) Example—Double Integrator:In this example, we
have a double integrator that we wish to stabilize. The
interface is designed to quantize based on system invariants
and the controller is again designed with methods from
hybrid control. We start with a double integrator plant

(76)

The natural invariants of the system are to be used in the
quantization. Three possible inputs are used to control the
double integrator , and they are used to compute
three invariant functions for the system. The invariant func-
tion associated with the input2 is computed as follows. The
control policy is

(77)

(78)

This gives the characteristic equation

(79)

with a solution

(80)

The remaining two invariant functions can be computed sim-
ilarly:

(81)

(82)

The values of these invariant functions are quantized to form
the plant symbols

round (83)

Now, the quantization yields the partition shown in
Fig. 18(a).

Fig. 17. Nongrid-like partition.

The controller for this case is

if
if
otherwise.

(84)

Fig. 18(b) shows a state trajectory for this system. Note
that chattering has been avoided and the controller easily fol-
lows from the interface design by identifying the hypersur-
faces that will drive the state to the origin.

V. SUPERVISORYCONTROL DESIGN

In conventional control, theoretic measures of system per-
formance are frequently taken to be norms (“size”) of some
important signals within the control system. Unfortunately,
norm-based performance measures may be inappropriate for
supervised systems, since many times the space of interest is
not metric and such measures do not exist. A different way to
express performance of a system is needed that, for example,
may be used to supervise the start-up procedure of a process
plant. In the following, we use a language theoretic frame-
work to describe performance specifications for hybrid sys-
tems, and we formulate the supervisory control problems for
hybrid systems. We also use the language generated by the
DES plant to examine the controllability of the hybrid con-
trol system, we present a methodology for controller design,
and we illustrate the framework using several examples.

Once the DES plant model of a hybrid system has been
extracted, a supervisor can be designed using controller syn-
thesis techniques based on discrete-event systems. Our work
builds upon the framework of supervisory control theory ini-
tiated by Ramadge and Wonham [57], [58], [68]. Here, we
adapt several of those results and apply them to the DES
plant model obtained from a hybrid control system. The main
differences between the Ramadge–Wonham framework and
the DES plant models of the hybrid control framework are
the nondeterminism of the plant and the inability to disable
plant events individually. These differences and an extension
of the supervisor synthesis algorithm in [57] to the design
of hybrid control systems are discussed in Section V-B. The
logical DES approach to the design of hybrid control systems
has been described in [65]. Note that more details for supervi-
sory control of nondeterministic discrete-event systems can
be found, e.g., in [25], [32], and [50].

1040 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 18. (a) Quantization. (b) State trajectory.

A. The Supervisory Control Problem for Hybrid Systems

The objective is to develop methodologies that, given the
system description and performance specifications, extract
discrete-event controllers that supervise the plant to guar-
antee that these specifications are satisfied. The symbolic
behavior of the plant is explicitly seen from the DES con-
troller’s perspective. From the controller’s perspective, it is
the DES plant model that is controlled. The state symbol se-
quence represents the symbolic evolution of the contin-
uous plant over the event partition. In order to represent the
evolution of the DES plant model, we introduce some no-
tions from the theory of discrete event systems (see, e.g., [58]
and [19]) that are necessary for the presentation of the design
approach.

Consider the set of all plant symbols, which is also
called the alphabet. This set consists of all the plant sym-
bols that can possibly be generated by the DES plant model.
Denote by the set of all finite strings formed by concate-
nation of symbols from the alphabet, including the empty
string ; the operation is called the Kleene closure. Alan-
guageis formally defined as a subset of . The usual set
operations, such as union, intersection, difference, and com-
plement (with respect to), are applicable to languages. In
addition, theprefix-closureof , denoted by , is defined as
the set of all prefixes of strings in. The language is said
to beprefix-closedif all the prefixes of the language are also
in , or equivalently, if .

In our approach, the DES plant is represented as a nonde-
terministic finite automaton. The behavior of the DES plant

is represented by the language . This is the set of
all finite sequences of symbols the DES plant can generate.
Since the language is generated by a finite automaton, it is
known to be prefix-closed andregular [26].

The plant symbols , which are in the language of a given
DES plant model, are defined as follows. Given a finite se-
quence of plant symbols defined over the set

, then if there exists and
such that the following conditions hold:

(85)

(86)

Since each specification can be described by a language con-
sisting of symbols generated by the DES plant model, the
formal description of the performance specifications depends
directly on the selected extraction of the DES plant.

In the supervisory control paradigm, the objective of the
controller is to restrict the behavior of a given uncontrolled
DES in order to satisfy prescribed specifications on the lan-
guages generated by the system. Performance specifications
can be viewed as requiring that certain undesirable sequences
of events are not permitted to occur, while at the same time,
certain other desirable sequences are permitted. The uncon-
trolled DES plant model is assumed to generate “illegal be-
havior” that should be avoided by appropriate control action.
Each specification can be described by a language consisting
of symbols generated by the DES plant model. The “legal be-
havior” is characterized as a subset of the DES language after
accounting for all the performance specifications that are im-
posed on the system.

The plant symbols in the DES plant are divided into two
sets, those that arecontrollableand those that areuncontrol-
lable: . A plant symbol’s being controllable
means that the supervisor can prevent it from being issued by
the DES plant model. When the supervisor prevents a con-
trollable plant symbol from being issued, the plant symbol is
said to bedisabled. We assume that the state transition func-
tion of the DES plant is controlled by an external agent in the
sense that the controllable events can be disabled by a super-
visor.

Before we present the extension of the logical DES
framework [58] to hybrid control systems, the important
differences must be discussed. The Ramadge–Wonham
(RW) model consists of two interacting DESs, thegenerator
and thesupervisor. The RW generator is analogous to our
DES plant, and the RW supervisor corresponds to our DES
controller. In the RW framework, the plant symbols can be
individually disabled, at any time and in any combination,
by a command from the supervisor, while the plant symbols
in can never be disabled. This is in contrast to our DES
plant, where each command (controller symbol) from the
DES controller disables a particularsubsetof determined
by the complement of the set given by the transition function

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1041

. The particular subset of that is disabled by a given
controller symbol depends on the state transition function
and output function of the DES plant model. In addition,
there is no guarantee that any arbitrary subset ofcan
be disabled while the other plant symbols remain enabled.
The inability to disable plant symbols individually is what
differentiates the DES plant model from the automata of
earlier frameworks.

The DES plant model is connected in the feedback loop
to a supervisor . For each possible string of plant symbols
generated by the DES plant model, the supervisor specifies
the control symbol to be applied. Each control symbol, in
turn, disables a particular set of plant symbols in order to
prevent undesirable sequences of events. Therefore, the su-
pervisor (or controller) can be described as a function

(87)

specifying the control action to be taken for each possible
string. Note that the control always contains the set, since
the supervisor never disables an uncontrollable event. The
language generated by the closed-loop system is de-
fined recursively as follows:

1) ;
2) iff and and

.
Given the DES plant model and de-
sired language , the objective in the supervisory control
problem for hybrid systems is to build a supervisorsuch
that . In addition, it is required that the su-
pervisor is maximally permissive, meaning that the language

is as large as possible.
In this paper, we are interested in the case when the lan-

guages and are regular. In this case, the super-
visor can be realized as a deterministic finite automaton

in a straightforward manner, as shown in
the examples of Section V-B. Note that this case is of spe-
cial interest, since the supervisor has an implementable finite
representation. For more details on the realization of super-
visors, see, e.g., [19].

B. Controllability and Supervisor Design

The basic problem in supervisory control design of hybrid
systems is to modify the behavior of the DES plant model
so that it satisfies the specifications described by a desired
language . Therefore, the main question is if the language

can be achieved by supervision of the DES plant model.
This question is directly related to thecontrollability of the
language . More generally, the concept of controllability
of a language is used to identify all the possible closed-loop
behaviors that can be achieved by control given a
DES with language . Next, we discuss controllability for
DES systems [58], and then we present a definition of con-
trollable languages for DES plant models extracted from hy-
brid dynamical systems.

Given a discrete-event system described by a finite au-
tomaton, it is possible to determine whether a desired lan-
guage can be achieved by supervision; i.e., whether it is pos-

sible to design a controller such that the system will be re-
stricted to some target language. Such a controller can
be designed if is prefix closed and satisfies the following
condition:

(88)

When (88) is true, the desired languageis said to becon-
trollable, and provided is prefix-closed, a controller can
be designed that will restrict the system to the language.
This condition is very intuitive. It requires that if an uncon-
trollable symbol occurs after the generator has produced a
prefix of , the resulting string must still be a prefix of
because the uncontrollable symbol cannot be prevented. It is
clear that if an uncontrollable eventoccurs along a string
in , then the extended string must remain in .

If the desired language is not attainable for a given
DES, it may be possible to find a more restricted language
that is. Since we want the least restricted behavior, it is de-
sirable to find the supremal element of the family of con-
trollable sublanguages of under the partial order of set
inclusion. An algorithm for finding this behavior, which is
referred to as thesupremal controllable sublanguage of
the desired language, is described in [68]. The supremal con-
trollable sublanguage is the largest subset ofthat can be
attained by a controller and can be found via the following
iterative procedure:

(89)

(90)

(91)

The basis of the algorithm is a fixed point iteration of a cer-
tain operator on languages. The largest fixed point of the
iteration is computed by iterative applications of the oper-
ator. Each iteration of (91) corresponds to the application of
the operator. For finite automata and regular languages, this
fixed-point iteration converges in finite steps [58]. It can be
shown that is also a regular language, and therefore, it can
be realized by a supervisor described by a finite automaton.

Since the DES plant model belongs to a slightly different
class of automata than the Ramadge–Wonham framework,
we present another definition for controllable language that
applies to the DES plant. We assume in this section that all
languages are prefix-closed, is the initial state, and is a
finite sequence of plant symbols, , defined over
the set .

In a hybrid control system, the controller must provide
a controller symbol, following the generation of each plant
symbol. Furthermore, the effect of the controller symbol on
the behavior of the system is revealed, at least partially, by
the current state of the DES plant. For this reason, it is de-
sirable to determine the state of the DES plant model from a
finite sequence of plant (output) symbols. In order to satisfy
this objective, we assume that the current state can be de-
termined uniquely from the previous state and plant symbol.
This assumption should not be confused with the nondeter-
minism of the DES plant model. Note that the DES plant is
said to be deterministic if for a given state and control (input)

1042 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

event, there is only one possible subsequent state. As we have
shown, the DES plant model is described, in general, by a
nondeterministic finite automaton. Here, our assumption is
made with respect to the plant (output) symbols and is sim-
ilar to the concept of observability [51].

This is a realistic assumption for practical applications of
hybrid systems. The plant symbols represent the measure-
ments from the continuous plant. Each plant symbol cor-
responds to a hypersurface and to a direction of crossing
that hypersurface, and it is issued when the continuous state
crosses this hypersurface. If the current state is known and
a plant symbol is detected, then we can determine the suc-
cessor state uniquely. Note that this assumption is not incon-
sistent with nondeterminism in the DES plant model, since
in a nondeterministic DES plant model, the successor state
cannot be determined uniquely by the current state and the
control symbol applied by the controller.

Since the current state can be determined uniquely from
the previous state and plant symbol, for any initial state
and sequence of plant symbolsproduced by the DES, there
exists a unique sequence of DES plant statescapable of
producing the sequence. This assumption implies the exis-
tence of a mapping, , which takes an ini-
tial state together with a sequence of plant symbols and maps
them to the corresponding sequence of states. Theth state in
the sequence can also be written as , where

was the initial state. The mapping is needed
for the following definition for controllable languages, which
applies to the DES plant.

A language is controllablewith respect to a given DES
plant if , there exists such that

(92)

where .
This definition requires that for every prefix of the desired

language , there exists a control, which will enable only
symbols that will cause the string to remain in. This defi-
nition implies the next technical result shown in [65].

Proposition 2: If the language is controllable, then a
controller can be designed that will restrict the given DES
plant to the language .

Since the concept of controllability for the language gen-
erated by the DES plant model can be seen as an extension
of the Ramadge–Wonham framework to the hybrid system
case, the conditions in (92) reduce to those of (88) under
appropriate restrictions. These restrictions basically are that
the plant symbols fall into a controllable/uncontrollable di-
chotomy and a control policy exists to disable any combina-
tion of controllable plant symbols.

For hybrid control systems, the supremal controllable sub-
language of the DES plant can be found by a similar iterative
scheme:

(93)

such that (94)

(95)

For regular languages, it can be shown that the above it-
eration also converges in finite steps and thatis regular.
From (94), it follows that for any , there exists a con-
trol symbol such that ; there-
fore, the language is controllable. This result yields the
following proposition.

Proposition 3: For a DES plant and language, is
controllable and contains all controllable sublanguages of.

The supremal controllable sublanguage is regular and can
be realized with a supervisor described by a finite automaton
as illustrated by the following examples. Related work on
the supremal controllable sublanguage in the discrete-event
model of nondeterministic hybrid control systems can be
found in [69].

1) Example—Double Integrator:The system consists of
a double integrator plant, which is controlled by a discrete
event system. Consider the double integrator example with
the DES plant shown in Fig. 10. Let the initial state be

. Then the language generated by this automaton is
. If we want to drive the plant in clockwise

circles, then the desired language is . In this
example, it can be shown that the languageis controllable
because it satisfies (92). This can also be seen by observing
Fig. 10. If the current state is either or , then the system
can evolve in a clockwise direction. If the current state is,
then the plant symbol can be disabled by selecting the
control symbol . Similarly, for , can be disabled by
selecting . Therefore, according to Proposition 2, a con-
troller can be designed to achieve the stated control goal. The
controller for this example is shown in Fig. 19, and its output
function is as follows:

(96)

(97)

2) Example—More Complex DES Plant Model:This ex-
ample has a richer behavior and will illustrate the genera-
tion of a supremal controllable sublanguage as well as the
design of a controller. We start immediately with the DES
plant model shown in Fig. 20.

The language generated by this DES is , where

(98)

A problem that appears very often in hybrid system is to
supervise the system so that it will not enter an unsafe re-
gion. Suppose we want to control the DES so that it never
enters state . We simply remove the transitions to and
then compute the resulting language. This desired language
is therefore

(99)

In this example, the language is not controllable. This can
be seen by considering the string , for which
there exists no that will prevent the DES plant from de-
viating from by generating and entering state . Since

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1043

Fig. 19. Controller for the double integrator.

Fig. 20. DES plant model.

is not controllable, we find the supremal controllable sub-
language of as defined in (95). The supremal controllable
sublanguage is

(100)

Obtaining a DES controller once the supremal controllable
sublanguage has been found is straightforward. The con-
troller is a DES whose language is given by . Since the
language is regular, the supervisor is implemented by
a finite automaton that generates the language. Details
regarding the equivalence between finite automata and
regular languages can be found in [26]. The output of the
controller in each state is the controller symbol, which
enables only transitions that are found in the controller. The
existence of such a controller symbol is guaranteed by the
fact that is controllable. For this example, the controller
is shown in Fig. 21 and its output functionis as follows:

(101)

(102)

3) Example—Distillation Column:This example uses
the model of a two-product distillation column with a single
feed. A complete description of the nonlinear model can
be found in [44]. Here, a condensed description is given to
show the source of the DES plant model and provide insight
into the physical meaning of the states and events.

Fig. 22 shows the distillation column. represents the
feed flow into the column, is the flow of bottom product
out of the column, is the mole fraction of the light com-
pound in the bottom product, is the flow of distillate out of
the column, and is the mole fraction of light compound in

Fig. 21. DES controller.

the distillate. The boilup flow is denoted byand the reflux
flow by . All units are in kmol’s and minutes. The column
can be controlled by setting the feed, boilup, and reflux. In
general, the goal is to have a high level of light compound in
the distillate and a low level of light compound in
the bottom product .

There are 40 trays stacked vertically in the column. The
state consists of the mole fractions of light compound in the
liquid of each tray. The states evolve according to the fol-
lowing equations:

where and . Trays 21 and 22 are
special because they are below and above the feed location.
Tray 41 is actually the condenser. The quantitiesare the
mole fractions of light compound in the vapor, given by

where is relative volatility. Other quantities of in-
terest are

and the outputs are

To obtain a hybrid control system, appropriate control
policies and plant symbols must be chosen. Their selection
is based on our knowledge of the control goals and the
design constraints, and it will determine the interface. Let
the control policies be

These input values correspond to, , , and . Next,
plant symbols are defined based on events as follows:

1044 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 22. Distillation column.

Fig. 23. DES plant for the distillation column.

falls below 2;
exceeds 2;

falls below 0.13;
exceeds 0.13;
falls below 0.12;
exceeds 0.12;
falls below 0.08;
exceeds 0.08;
falls below 0.84;
exceeds 0.84;
falls below 0.85;
exceeds 0.85;
falls below 0.95;
exceeds 0.95.

We would like to keep below 0.13, above 0.95,
and the feed at 2. These conditions correspond to increased
production of high-purity products. Simulations reveal that
given the available controls and events, this is not possible;
that is, even if the initial state is in this region, no available
control policy will cause it to remain there. It is possible to
drive the system close to this point, however. Specifically, our

control goal shall be twofold: first, to drive the system near
the ideal point, and second, to avoid having a high feed rate
(2 kmol/min) when the system is not near the ideal point.

The distillation column is an example of a rather com-
plex hybrid system. The generator was designed to recog-
nize 14 different plant events. This leads to 32 distinct re-
gions in the state space, and therefore, there are 32 DES plant
states. Fig. 23 shows the DES plant model. The two states la-
beled “ ” correspond to the desired operating regions of the
system. This DES plant model was extracted by automating
the testing process and implementing it on a computer.

A controller was obtained by automating the procedure
for finding the supremal controllable sublanguage. The con-
troller is shown in Fig. 24. This controller drives the plant
from the initial state to a loop containing the two good states.
Note that in this figure, the states of the controller have been
labeled with the controller symbol that is generated by that
state.

4) Example—Robotic Manufacturing System:An ex-
ample of a free floating robotic vehicle with two articulated
arms is presented. The robotic arms shown in Fig. 25 are
required to obtain components from aparts binand move
these components towork areaswhere assembly operations
are to be performed. The tasks of fetching the workpiece,
transporting it to the work area, and then returning to
the parts bin to fetch another workpiece are performed
repeatedly. The introduction of a shared resource generates
a mutual exclusionconstraint on the system. This example
is particularly interesting because of the free-floating base,
which makes the dynamics quite challenging. Similar prob-
lems arise in control and coordination of modern complex
engineering applications such as autonomous vehicles and
multibatch chemical processes. The robotic manufacturing
example described here has been used in [37] to illustrate
various concepts in hybrid system theory. A simplified
version of the system without the free rotating table has
been used in [29] and [28] to illustrate regulatory control of
hybrid systems based on discrete abstractions.

The motions of the arms are described by the following
ordinary differential equations:

(103)

(104)

where and are the angular positions of arm 1 and arm 2
with respect to the body axis of the robot. For this example,
the control law is a proportional feedback law with gainand
with reference inputs and . These reference inputs rep-
resent commands that direct the arm to move to the parts bin
or work area. The movement of the arms will induce a body
rotation so that the total angular momentum of the system is
conserved. Let and denote the
inertial angles of the robot arms 1 and 2, respectively. The
body angle with respect to the inertial frame must satisfy

(105)

where and are the moments of inertia for the body and
arms, respectively.

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1045

Fig. 24. Sample controller for distillation column.

Fig. 25. Robotic manufacturing system on a free rotating platform.

The available control policies for theth robotic arm are
defined as follows:

drive arm to parts bin;
drive arm to work area;
stop arm .

Note that continuous controllers that guarantee that each
command signal is executed in a suitable manner may be
necessary. As discussed in Section II, it is assumed that
these continuous controllers are included in the description
of the plant. Next, plant symbols are defined based on events
as follows:

Arm 1 approaches the parts bin;
Arm 1 enters the parts bin;

Arm 1 exits the parts bin;
Arm 1 leaves the parts bin;
Arm 2 approaches the parts bin;
Arm 2 enters the parts bin;
Arm 2 exits the parts bin;
Arm 2 leaves the parts bin.

The generator was designed to recognize eight different
plant events. This leads to nine different regions in the state
space, and therefore, the DES plant model has nine states as
shown in Fig. 26.

We want to control the robotic manufacturing system so
that it never enters the critical section. Therefore, the control
requirement for the DES plant is that it never enters state.

1046 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 26. DES plant model for the free-floating robotic system.

Fig. 27. DES controller for the free-floating robotic system.

The controller shown in Fig. 27 was obtained based on the
supremal controllable sublanguage and does not allow the
robotic arms to enter the critical section at the same time.

VI. CONCLUSIONS

In this paper, the supervisory control of hybrid systems
has been introduced and discussed at length. Discrete ab-
stractions that are represented by a DES plant model have
been used to approximate the continuous plant. In general,
the abstracting DES models are nondeterministic. Proper-
ties of the DES plant model to be a valid representation of
the continuous plant have been presented. The emphasis has
been put on the design of the interface between the contin-
uous plant and the discrete event controller. A methodology
to design the partition of the continuous state space based
on the natural invariants of the plant has been briefly out-
lined. The robustness problem of the discrete transitions sub-

ject to small variations of the continuous system has also
been addressed. Note that robustness to parameter variation
is still an open issue in supervisory control of hybrid sys-
tems. An alternative methodology to the usual quantization
technique of digital control based on the interface of hybrid
control systems has been presented. The types of problems
that have been addressed are those with control specifica-
tions that can be described by formal languages accepted by
the DES plant model. The supervisory control problem for
hybrid systems has been formulated, and algorithms for su-
pervisory design based on the controllability of the specifi-
cation language have been presented. Although the approach
in this paper was based on a continuous-time model of the
plant, similar results have been obtained using discrete-time
systems [65], [59]. It should be noted that our coverage is
primarily of a tutorial nature, and so many technical details
have been just briefly outlined or simply omitted; the reader
should consult the references for further details.

In this paper, we focused on the case when finite automata
are used to describe both the plant and the controller. Hy-
brid control approaches based on Petri nets have been re-
ported in the literature (see, e.g., the survey paper [8]). A
similar approach to the one described in this paper using Petri
nets, which may be computationally more efficient for large
concurrent systems, has been reported in [23] and [31]. This
approach addresses a particular class of supervisory control
problems described by convex constraints on the marking of
the Petri nets [43].

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X.
Nicollin, A. Oliveiro, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,”Theoret. Comput. Sci., vol. 138, pp.
3–34, 1995.

[2] R. Alur, T. Henzinger, and E. Sontag, Eds.,Hybrid Systems III, Veri-
fication and Control. Berlin, Germany: Springer-Verlag, 1996, vol.
1066, Lecture Notes in Computer Science.

[3] P. Antsaklis, “Defining intelligent control,”IEEE Contr. Syst., pp.
4–5, 58–66, June 1994.

[4] , “Intelligent control,” inEncyclopedia of Electrical and Elec-
tronics Engineering. New York: Wiley, 1997.

[5] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, Eds.,
Hybrid Systems V. Berlin, Germany: Springer-Verlag, 1999, vol.
1567, Lecture Notes in Computer Science.

[6] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds.,Hybrid Sys-
tems II. Berlin, Germany: Springer-Verlag, 1995, vol. 999, Lecture
Notes in Computer Science.

[7] , Hybrid Systems IV. Berlin, Germany: Springer-Verlag,
1997, vol. 1273, Lecture Notes in Computer Science.

[8] P. Antsaklis and X. Koutsoukos, “On hybrid control of complex sys-
tems: A survey,” in3rd Int. Conf. ADMP’98, Automation of Mixed
Processes: Dynamic Hybrid Systems, Reims, France, Mar. 1998, pp.
1–8.

[9] P. Antsaklis, X. Koutsoukos, and J. Zaytoon, “On hybrid control of
complex systems: A survey,”Eur. J. Automat., vol. 32, no. 9–10, pp.
1023–1045, 1998.

[10] P. Antsaklis and M. Lemmon, “Introduction to the special issue on
hybrid systems,”J. Discrete Event Dyn. Syst., vol. 8, p. 10, June
1998. (Special Issue on Hybrid Control Systems).

[11] P. Antsaklis and A. Nerode, “Hybrid control systems: An introduc-
tory discussion to the special issue,”IEEE Trans. Automat. Contr.,
vol. 43, pp. 457–460, Apr. 1998. (Special Issue on Hybrid Control
Systems).

[12] P. Antsaklis and K. Passino, Eds.,An Introduction to Intelligent and
Autonomous Control. Norwell, MA: Kluwer, 1993.

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1047

[13] P. Antsaklis and K. Passino, “Introduction to intelligent control
systems with high degrees of autonomy,” inAn Introduction to
Intelligent and Autonomous Control, P. Antsaklis and K. Passino,
Eds. Norwell, MA: Kluwer, 1993, pp. 1–26.

[14] P. Antsaklis, K. Passino, and S. Wang, “Toward intelligent au-
tonomous control systems: Architecture and fundamental issues,”
J. Intell. Robot. Syst., vol. 1, pp. 315–3423, 1989.

[15] P. Antsaklis, J. Stiver, and M. Lemmon, “Hybrid system modeling
and autonomous control systems,” inHybrid Systems, R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds. Berlin,
Germany: Springer-Verlag, 1993, vol. 736, Lecture Notes in
Computer Science, pp. 366–392.

[16] M. Branicky, “ Studies in hybrid systems: Modeling, analysis, and
control,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, 1995.

[17] M. Branicky, V. Borkar, and S. Mitter, “A unified framework for
hybrid control: Model and optimal control theory,”IEEE Trans. Au-
tomat. Contr., vol. 43, no. 1, pp. 31–45, 1998.

[18] P. Caines and Y.-J. Wei, “Hierarchical hybrid control systems: A lat-
tice formulation,”IEEE Trans. Automat. Contr., vol. 43, no. 4, pp.
501–508, 1998.

[19] C. Cassandras, S. Lafortune, and G. Olsder, “Introduction to the
modeling, control and optimization of discrete event systems,” in
Trends in Control. A European Perspective, A. Isidori, Ed. Berlin,
Germany: Springer-Verlag, 1995, pp. 217–291.

[20] J. Cury, B. Krogh, and T. Niinomi, “Synthesis of supervisory con-
trollers for hybrid systems based on approximating automata,”IEEE
Trans. Automat. Contr., vol. 43, no. 4, pp. 564–568, 1998.

[21] I. Demongodin and N. Koussoulas, “Differential Petri nets: Repre-
senting continuous systems in a discrete-event world,”IEEE Trans.
Automat. Contr., vol. 43, no. 4, pp. 573–579, 1998.

[22] S. DiGennaro, C. Horn, S. Kulkarni, and P. Ramadge, “Reduction
of timed hybrid systems,”Discrete Event Dynamic Systems: Theory
and Applications, vol. 8, no. 4, pp. 343–351, 1998.

[23] K. He and M. Lemmon, “Modeling hybrid control systems using
programmable timed Petri nets,”Eur. J. Automat., vol. 32, no. 9–10,
pp. 1187–1208, 1998.

[24] T. Henzinger, “The theory of hybrid automata,” inProc. 11th Annu.
Symp. Logic in Computer Science, 1996, pp. 278–292.

[25] M. Heymann and F. Lin, “Discrete-event control of nondetermin-
istic systems,”IEEE Trans. Automat. Contr., vol. 43, no. 1, pp. 3–17,
1998.

[26] J. E. Hopcroft and J. Ullman,Introduction to Automata Theory, Lan-
guages and Computation. Reading, MA: Addison-Wesley, 1979.

[27] A. Isidori, Nonlinear Control Systems, 2nd ed. Berlin, Germany:
Springer-Verlag, 1996.

[28] X. Koutsoukos and P. Antsaklis, “Design of hybrid system regula-
tors,” in Proc. 38th IEEE Conf. Decision and Control, Phoenix, AZ,
Dec. 1999, pp. 3990–3995.

[29] , “Hybrid control of a robotic manufacturing system,” inProc.
7th IEEE Mediterranean Conf. Control and Automation, Haifa, Is-
rael, June 1999, pp. 144–159.

[30] X. Koutsoukos, P. Antsaklis, K. He, and M. Lemmon, “Pro-
grammable timed Petri nets in the analysis and design of hybrid
control systems,” inProc. 37th IEEE Conf. Decision and Control,
Tampa, FL, Dec. 1998, pp. 1617–1622.

[31] X. Koutsoukos, K. He, M. Lemmon, and P. Antsaklis, “Timed Petri
nets in hybrid systems: Stability and supervisory control,”J. Discrete
Event Dyn. Syst., vol. 8, no. 2, pp. 137–173, 1998.

[32] R. Kumar and M. Shayman, “Non-blocking supervisory control of
nondeterministic systems under partial observation and decentraliza-
tion,” IEEE Trans. Automat. Contr., vol. 41, no. 8, pp. 1160–1175,
1996.

[33] G. Lafferriere, G. Pappas, and S. Sastry, “Reachability analysis of
hybrid systems using bisimulations,” inProc. 37th IEEE Conf. De-
cision and Control, Tampa, FL, 1998, pp. 1623–1628.

[34] , “Hybrid systems with finite bisimulations,” inHybrid Systems
V, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,
Eds. Berlin, Germany: Springer-Verlag, 1999, vol. 1567, Lecture
Notes in Computer Science, pp. 186–203.

[35] J. LaSalle and S. Lefschetz,Stability by Lyapunov’s Direct
Method. New York: Academic, 1961.

[36] M. Lemmon and P. Antsaklis, “Inductively inferring valid logical
models of continuous-state dynamical systems,”Theoret. Comput.
Sci., vol. 138, pp. 201–210, 1995.

[37] M. Lemmon, K. He, and I. Markovsky, “Supervisory hybrid sys-
tems,”IEEE Contr. Syst. Mag., vol. 19, pp. 42–55, Aug. 1999.

[38] D. Liberzon and A. Morse, “Basic problems in stability and design
of switched systems,”IEEE Contr. Syst. Mag., vol. 19, no. 5, pp.
59–70, Oct. 1999.

[39] J. Lunze, “Qualitative modeling of linear dynamical systems with
quantised state measurements,”Automatica, vol. 30, no. 3, pp.
417–431, 1994.

[40] J. Lunze, B. Nixdorf, and J. Schroder, “Deterministic discrete-event
representations of linear continuous-variable systems,”Automatica,
vol. 35, no. 3, pp. 396–406, 1999.

[41] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg, “Hybrid
I/O automata,” inHybrid Systems III, Verification and Control, R.
Alur, T. A. Henzinger, and E. D. Sontag, Eds. Berlin, Germany:
Springer-Verlag, 1996, vol. 1066, pp. 496–510.

[42] N. McClamroch, C. Rui, I. Kolmanovsky, and M. Reyhanoglu, “Hy-
brid closed loop systems: A nonlinear control perspective,” inProc.
36th IEEE Conf. Decision and Control, 1997, pp. 114–119.

[43] J. Moody and P. Antsaklis,Supervisory Control of Discrete Event
Systems using Petri Nets. Norwell, MA: Kluwer Academic, 1998.

[44] M. Morari and E. Zafiriou,Robust Process Control. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[45] A. Morse, “Supervisory control of families of linear set-point con-
trollers—Part 1: Exact matching,”IEEE Trans. Automat. Contr., vol.
41, pp. 1271–1281, 1996.

[46] A. Nemirovsky and D. Yudin,Problem Complexity and Method Ef-
ficiency in Optimization. New York: Wiley, 1983.

[47] A. Nerode and W. Kohn, “Models for hybrid systems: Automata,
topologies, controllability, observability,” inHybrid Systems, R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds. Berlin,
Germany: Springer-Verlag, 1993, vol. 736, Lecture Notes in Com-
puter Science, pp. 317–356.

[48] , “Multiple agent hybrid control architecture,” inHybrid
Systems, R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
Eds. Berlin, Germany: Springer-Verlag, 1993, vol. 736, Lecture
Notes in Computer Science, pp. 297–316.

[49] H. Nijmeijer and A. van der Schaft,Nonlinear Dynamical Control
Systems. Berlin, Germany: Springer-Verlag, 1990.

[50] A. Overkamp, “Supervisory control using failure semantics and par-
tial observations,”IEEE Trans. Automat. Contr., vol. 42, no. 4, pp.
498–510, 1997.

[51] C. Özveren and A. Willsky, “Observability of discrete event dynamic
systems,”IEEE Trans. Automat. Contr., vol. 35, no. 7, pp. 797–806,
1990.

[52] G. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically consistent
control systems,” inProc. 37th IEEE Conf. Decision and Control,
Tampa, FL, 1998, pp. 4336–4341.

[53] A. Puri, V. Borkar, and P. Varaiya, “�-approximation of differen-
tial inclusions,” inHybrid Systems III, Verification and Control, R.
Alur, T. A. Henzinger, and E. D. Sontag, Eds. Berlin, Germany:
Springer-Verlag, 1996, vol. 1066, Lecture Notes in Computer Sci-
ence, pp. 362–376.

[54] J. Raisch, E. Klein, S. O’Young, C. Meder, and A. Itigin, “Approxi-
mating automata and discrete control for continuous systems—Two
examples from process control,” inHybrid Systems V, P. Antsaklis,
W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, Eds. Berlin, Ger-
many: Springer-Verlag, 1999, vol. 1567, Lecture Notes in Computer
Science, pp. 279–303.

[55] J. Raisch and S. O’Young, “A totally ordered set of discrete
abstractions for a given hybrid system,” inHybrid Systems IV,
P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds. Berlin,
Germany: Springer-Verlag, 1997, vol. 1273, Lecture Notes in
Computer Science, pp. 342–360.

[56] J. Raisch and S. O’Young, “Discrete approximation and supervisory
control of continuous systems,”IEEE Trans. Automat. Contr., vol.
43, no. 4, pp. 568–573, 1998.

[57] P. Ramadge and W. Wonham, “Supervisory control of a class of dis-
crete event processes,”SIAM J. Contr. Optim., vol. 25, no. 1, pp.
206–230, Jan. 1987.

[58] , “The control of discrete event systems,”Proc. IEEE, vol. 77,
pp. 81–89, Jan. 1989.

[59] J. Stiver, “Analysis and design of hybrid control systems,” Ph.D.
dissertation, Dept. Elect. Eng., Univ. Notre Dame, Notre Dame, IN,
1995.

[60] J. Stiver and P. Antsaklis, “A novel discrete event system approach
to modeling and analysis of hybrid control systems,” inProc. 29th
Annu. Allerton Conf. Communication, Control and Computing, Oct.
2–4, 1991.

1048 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

[61] J. Stiver, P. Antsaklis, and M. Lemmon, “Digital control from a hy-
brid perspective,” inProc. 33rd IEEE Conf. Decision and Control,
Lake Buena Vista, FL, Dec. 1994, pp. 4241–4246.

[62] , “Hybrid control system design based on natural invariants,”
in Proc. 34th IEEE Conf. Decision and Control, New Orleans, LA,
Dec. 1995, pp. 1455–1460.

[63] , “Interface and controller design for hybrid control systems,” in
Hybrid Systems II, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
Eds. Berlin, Germany: Springer-Verlag, 1995, vol. 999, Lecture
Notes in Computer Science, pp. 462–492.

[64] , “An invariant based approach to the design of hybrid control
systems,” inIFAC 13th Triennial World Congr., vol. J, San Francisco,
CA, 1996, pp. 467–472.

[65] , “A logical DES approach to the design of hybrid control sys-
tems,”Math. Comput. Modeling, vol. 23, no. 11/12, pp. 55–76, 1996.

[66] M. Tittus and B. Egardt, “Control design for integrator hybrid
system,”IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 491–500,
1998.

[67] J. Willems, “Paradigms and puzzles in the theory of dynamical sys-
tems,” IEEE Trans. Automat. Contr., vol. 36, no. 3, pp. 259–294,
1991.

[68] W. Wonham and P. Ramadge, “On the supremal controllable sub-
language of a given language,”SIAM J. Contr. Optim., vol. 25, pp.
637–659, May 1987.

[69] X. Yang, M. Lemmon, and P. Antsaklis, “On the supremal control-
lable sublanguage in the discrete-event model of nondeterministic
hybrid control systems,”IEEE Trans. Automat. Contr., vol. 40, no.
12, pp. 2098–2103, 1995.

[70] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical
systems,”IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 461–474,
1998.

[71] F. Zhao, “Extracting and representing qualitative behaviors of com-
plex systems in phase spaces,”Artif. Intell., vol. 369, no. 1–2, pp.
51–92, 1994.

Xenofon D. Koutsoukoswas born in Athens,
Greece, in 1969. He received the Dipl. degree
in electrical and computer engineering from
the National Technical University of Athens in
1993. He received the M.S. degrees in electrical
engineering and applied mathematics in 1998,
and the Ph.D degree in electrical engineering,
all from the University of Notre Dame, Notre
Dame, IN.

From 1993 to 1995, he was with the National
Center for Space Applications, Hellenic Ministry

of National Defense, Athens, as a Computer Engineer in the areas of image
processing and remote sensing. He was a graduate student fellow of the
Center of Applied Mathematics, University of Notre Dame, for the academic
year 1997–98. His research interests include hybrid systems, discrete event
systems, and intelligent control systems.

Panos J. Antsaklis (Fellow, IEEE) received
the undergraduate degree from the National
Technical University of Athens (NTUA), Greece,
and the M.S. and Ph.D. degrees from Brown
University, Providence, RI.

He is Professor of electrical engineering and
Director of the Center for Applied Mathematics
at the University of Notre Dame, Notre Dame,
IN. He has held faculty positions at Brown Uni-
versity, Rice University, and Imperial College
of the University of London. During sabbatical

leaves, he has lectured and conducted research at the Massachusetts
Institute of Technology, Imperial College, NTUA, and the Technical
University of Crete, Greece. His research interests are in the area of systems
and control, with emphasis on hybrid and discrete event systems, and on
autonomous, intelligent, and learning control systems. He has authored a
number of publications in journals, conference proceedings, and books,
and he has edited four books on intelligent autonomous control and on
hybrid systems. He co-authored, with J. Moody, the research monograph
Supervisory Control of Discrete Event Systems Using Petri Nets(Norwell,
MA: Kluwer, 1998) and, with A. N. Michel, the graduate textbookLinear
Systems(New York: McGraw-Hill, 1997). He serves on the editorial boards
of several journals, and has been the Guest Editor ofJournal of Discrete
Event Dynamic Systems(1998). He has served as Program Chair and
General Chair of major systems and control conferences, and was the 1997
President of the IEEE Control Systems Society (CSS).

Dr. Antsaklis is an IEEE Third Millennium Medal recipient. He has
been Guest Editor of special issues on Neural Networks (IEEE Control
Systems Magazine; 1990 and 1992), on Intelligence and Learning (IEEE
Control Systems Magazine; 1995), and on Hybrid Control Systems (IEEE
TRANSACTIONS ONAUTOMATIC CONTROL; 1998).

James A. Stiverreceived the B.S and Ph.D. de-
grees in electrical engineering from the Univer-
sity of Notre Dame, Notre Dame, IN.

He is currently employed with Harris Corpo-
ration, Melbourne, FL, where he is involved in
the analysis and design of satellite communica-
tions systems and serves as the Leader of the Con-
trols Analysis Group. His research interests are in
the area of mixed discrete and continuous control
systems.

Michael D. Lemmon (Member, IEEE) received
the B.S. degree in electrical engineering from
Stanford University, Stanford, CA, in 1979, and
the M.S. and Ph.D. degrees in electrical and
computer engineering from Carnegie Mellon
University, Pittsburgh, PA, in 1987 and 1990,
respectively.

Since 1990, he has been affiliated with the Uni-
versity of Notre Dame, Notre Dame, IN, where he
is currently Associate Professor of electrical en-
gineering. His research has promoted the use of

hybrid dynamical systems theory as a foundation for the study of intelligent
control systems. He chaired the IEEE Working Group on Hybrid Dynamical
Systems from 1996 to 2000. He was program chair for the 5th International
Workshop on Hybrid Systems (1997) and the 1999 International Sympo-
sium on Intelligent Control.

Dr. Lemmon is a former Associate Editor for the IEEE TRANSACTIONS

ON NEURAL NETWORKS and is currently an Associate Editor for the IEEE
TRANSACTIONS ONCONTROL SYSTEMS TECHNOLOGY.

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1049

