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Abstract
Detection of deception attacks is pivotal to ensure the safe and reliable operation of cyber-physical systems (CPS). Detection
of such attacks needs to consider time-series sequences and is very challenging especially for autonomous vehicles that rely on
high-dimensional observations from camera sensors. The paper presents an approach to detect deception attacks in real-time
utilizing sensor observations, with a special focus on high-dimensional observations. The approach is based on inductive
conformal anomaly detection (ICAD) and utilizes a novel generative model which consists of a variational autoencoder
(VAE) and a recurrent neural network (RNN) that is used to learn both spatial and temporal features of the normal dynamic
behavior of the system. The model can be used to predict the observations for multiple time steps, and the predictions are
then compared with actual observations to efficiently quantify the nonconformity of a sequence under attack relative to the
expected normal behavior, thereby enabling real-time detection of attacks using high-dimensional sequential data.We evaluate
the approach empirically using two simulation case studies of an advanced emergency braking system and an autonomous
car racing example, as well as a real-world secure water treatment dataset. The experiments show that the proposed method
outperforms other detection methods, and in most experiments, both false positive and false negative rates are less than 10%.
Furthermore, execution times measured on both powerful cloud machines and embedded devices are relatively short, thereby
enabling real-time detection.
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1 Introduction

Cyber-physical systems (CPS) involve the integration of sen-
sors, actuators, and computation into physical systems using
networking, and they are increasingly deployed in a wide
range of domains such as aerospace, automotive, healthcare,
manufacturing, and transportation [26]. Networking inter-
connections between components expose attack surfaces to
adversaries who can launch various cyber attacks. Attacks to
networked CPS can be deployed on either the sensor network
that sends the sensor measurements to the controller or the
actuator network that sends the control signals to physical
system. In general, attacks can be categorized into two pos-
sible classes in [8]: (1) denial of service (DoS) attacks, where
the adversary prevents the information from being transmit-
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ted or exhausts the resources of the system so that information
cannot be processed in a timely manner, and (2) deception
attacks, where the adversary sends false information to the
controller or actuator. Replay attacks are a special kind of
deception attacks, where the adversary records the informa-
tion in the network at first, and then replaces the actual data
with the recorded data to corrupt the integrity of the data.

Recent work demonstrates that successful attacks can lead
the system to abnormal behavior,1 which may significantly
undermine the safety of the system [14,20]. Therefore, detec-
tion of attacks is paramount to the safe and reliable operation
of CPS. Deception attack is one of two categories of attacks
on networks of CPSs, and the detection of such an attack has
unsurprisingly received considerable attention in the litera-
ture [16,21,35,43]. In this paper, we focus on the deception
attacks on the sensor and actuator networks of the CPSs.
We consider the CPS domain of autonomous driving, and

1 In this paper, “normal” refers to the intended behavior of the system
without any attack and “abnormal” refers specifically to the abnormal
behavior due to attacks.
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we present an approach for efficiently and robustly detecting
such attacks in real time.

The detection method relies only on sensor observations
in contrast to approaches that use additional input signals and
need to change the architecture of the system [21,35]. Detec-
tion of deception attacks needs to consider time-series obser-
vation sequences because point-wise detection methods can
only detect very simple deception attacks and can be easily
bypassed by more nuanced attacks [5,6]. Although consider-
able efforts are made for detecting anomalies and attacks
in time-series data [20,42], typical approaches focus on
low-dimensional data. The problem is challenging for high-
dimensional data, for example, from camera and LIDAR
sensor measurements in autonomous vehicles. Further, the
detection must be performed in real time as observations
become available during the system operation.

The first contribution of the paper is a generative model
used for detecting anomalies of high-dimensional time-series
data. The model is inspired by the world model [19] for
learning the long-term behavior of dynamic systems. By
training this model with normal data, we can capture the
spatial and temporal characteristics of the normal dynamic
system behavior. The model has the capacity of predict-
ing future observations by (1) first utilizing the encoder of
a variational autoencoder (VAE) [27] to compress a high-
dimensional observation into a latent representation, (2) then
using a recurrent neural network (RNN) [38] to predict the
future encoding based on the compressed latent encoding
and historical information, and (3) finally converting the pre-
dicted encoding to a predicted observation using the decoder
of the VAE. It should be noted that the encoder and decoder
are omitted if the dimension of input is of low dimension-
ality. The expected observation predicted by the model is
compared with the actual observation to quantify the non-
conformity of actual behavior relative to normal behavior
learned during training.

The second contribution is an approach for real-time
detection of deception attacks in CPS. It is well-known that
RNNs typically lack the ability to capture the long-term
dependencies [2]. We propose to recursively use the RNN
to predict the observations for multiple time steps in the
future. During testing, the expected current observations pre-
dicted from multiple steps in the past are compared with the
current actual observation, resulting in a series of nonconfor-
mity scores. These nonconformity scores are then combined
using inductive conformal anomaly detection (ICAD) [30]
allowing detection of abnormal behavior in a long sequence.
Benefiting from the deep learning generative model, the
approach is computationally efficient, thereby enabling real-
time detection.

The final contribution of the paper is the comprehensive
evaluation for the approach using two simulation case stud-
ies, which are (1) an advanced emergency braking system

(AEBS) implemented in CARLA simulator [10] and (2) an
autonomous car racing example implemented in OpenAI
Gym [4], as well as a real-world dataset, which is (3) a secure
water treatment (SWaT) dataset [15]. For theAEBS,we focus
on a special kind of deception attack, replay attack, which
affects the perception component that consumes the high-
dimensional image input to estimate the distance to a front
obstacle. The adversary has access to the sensor observa-
tions during the system operation and uses prerecorded data
when the host vehicle is approaching the obstacle in order to
deceive the controller and affect the braking, which in turn
causes the vehicle to collide with the obstacle. Four attack
scenarioswith different sensor replay attacks are used to eval-
uate the proposed approach. The simulation results show that
the method can detect three out of four sensor replay attacks
with a relatively small number of false positives and nega-
tives, and a short detection delay. For autonomous car racing,
a controller is trained to perform the autonomous driving task
using the world model [19]. We consider an deception attack
to this controller where the adversary modifies the control
signal with a malicious command to lead the car off the rac-
ing track. The evaluation against such an attack validates the
effectiveness of the proposed approach for detecting con-
troller deception attacks using the high-dimensional sensor
observations. SWaT testbed is a scaled-downwater treatment
testbed for cybersecurity research. By spoofing informa-
tion of sensors and actuators, ten attacks are launched over
four days to compromise the normal behavior. By utiliz-
ing the low-dimensional sensor inputs, our approach can
detect deception attacks in a real-world testbed with a very
small number of false positives and false negatives. A VAE-
based method that considers only individual frames [5] and
an RNN-based method [16] are used for comparison with
the proposed approach. The comparative results show that
false positives and false negatives of the proposed method
are smaller than other methods. Furthermore, we measure
execution times of the proposed approach on a powerful
cloud machine and an embedded computing device, and the
execution times are relatively short, demonstrating that the
proposed approach can be used for real-time detection.

The rest of the paper is organized as follows: Section 2
introduces the related work. Section3 presents the system
and threat model, and then formulates the detection prob-
lem.Section4 introduces thegenerativemodel used for attack
detection, which is a fundamental component in the proposed
approach. Section5 presents the algorithm for detecting
deception attacks. Section6 presents the evaluation results,
and Sect. 7 concludes the paper.
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2 Related work

2.1 Security of CPS

Attacks on CPS can be summarized as attacks on the actu-
ators, physical plant, and communication networks [8]. The
attacks on the networks can be divided into two subcate-
gories: (1)Denial of Service (DoS) attacks,which prevent the
sensor readings (or control signals) from being received by
the controller (or actuator) or exhaust the system resources so
that the transmitted information cannot be processed timely;
(2) deception attacks, which use malicious information to
modify the original normal information in networks. Decep-
tion attacks on the sensor and control signals are investigated
in [34] and [32].

In [15], it is shown that a water treatment testbed could not
function properly due to deception attacks launched on the
actuator and sensor networks. In [41], DoS attacks demon-
strated the potential to disrupt the stability of the power
grid. To mitigate these threats, a significant amount of work
has been proposed for attack prevention and detection. A
robust control system againstDoS attacks is proposed in [37].
Using an additional authentication control signal, a method
for detecting replay attacks is presented in [21,35]. A Chi-
square detector and fuzzy logic-based classifier are used to
detect and identify distributed DoS attacks in CPS [36]. Neu-
ral networks have been used before to detect attacks on CPS.
In [1,13], neural network-based detectors are for replay and
deception attacks in power systems. These detectionmethods
are limited to low-dimensional data.

2.2 Out-of-distribution detection in CPS

A related research topic is out-of-distribution detection in
learning-enabled CPS since such methods can be used to
detect some classes of attacks.

A feature space partitioning tree (FSPT) is used to split
the input feature space intomultiple partitions and to identify
those partitions where the training samples are insufficient
in [18]. The method can be used for testing whether the
data are out of distribution which is equivalent to checking
whether this input instance comes from these data-lacking
feature space partitions. In [5,7], deep learning-based mod-
els, such as VAE and deep support vector data description
(deep SVDD), are used to efficiently quantify the difference
between the test example and training data set, enabling real-
time detection. The VAE-based method can be significantly
improved by considering the spatiotemporal correlation of
motion in sequences and optimizing the prior distribution in
the latent space [12].

VisionGuard (VG) is proposed to detect adversarial exam-
ples by checking if the output of a target classifier on a given

input image changes significantly after feeding it a trans-
formed version of the image [24].

Although such methods can be used for detecting out-
of-distribution and adversarial data, they cannot be applied
for detecting deception attacks in CPS since they focus on
anomalous examples. In sensor replay attacks, for example,
all the frames can be normal, and it is required to consider
sequences of high-dimensional observations. Deep learning
architectures can also be employed to detect the abnormal
behavior of sequences inCPS, such asRNN[16,22], convolu-
tional neural network (CNN) [28], and generative adversarial
network (GAN) [31]. The general idea of these methods is to
use the network to model the normal behavior of sequences,
and the anomalies can be identified by comparing the expec-
tation with the actual test input.

2.3 Inductive conformal anomaly detection

Inductive conformal anomaly detection (ICAD) is a general
framework for anomaly detectionwith awell-calibrated false
alarm rate [30]. Its key idea is to evaluate if a new test example
conforms to the training data using a nonconformity mea-
sure (NCM) to indicate how different an example is from the
empirical training data. ICAD is split into offline and online
phases. At the offline phase, the training data set is divided
into a proper training data set and a calibration data set. For
each data in the calibration set, the NCM is used to com-
pute the nonconformity score relative to the proper training
set. During the online phase, a p-value can be computed as
the fraction of calibration data with nonconformity scores
greater or equal to the nonconformity score of a test exam-
ple. If this p-value is smaller than a predefined threshold ε,
such a test examplewill be classified as a conformal anomaly.
Many different NCMs have been proposed based on kernel
density estimation and k-nearest neighbor [40] and [29]. For
detection of anomalous trajectories, the Hausdorff distance
and sub-sequence local outlier factor are used for defining
sequence-wise NCMs in [30] and [23]. However, such meth-
ods are not computationally efficient for detecting anomalies
in high-dimensional time-series data.Our previousworks [5–
7] utilize learning models, such as VAE and deep SVDD, to
efficiently compute the nonconformity measure. Besides, by
incorporatingmultiple examples and leveraging amartingale
test [11], the robustness of the detection can be improved.
This work follows the idea but still fundamentally differs
from the previous work; in that this work is for sequence-
wise anomalies, whereas previous works are for point-wise
anomalies. Therefore, the learning model used for comput-
ing the nonconformity measure in this work is different, and
the detection pipeline needs to be adapted for the detection
of anomalies in time series.
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Fig. 1 Architecture of the world model [19]

2.4 Worldmodel

Extensive work in the literature attempts to learn a good
dynamics model of the system to benefit the training of
reinforcement learning policies [9,33,39]. Gaussian process
models and Bayesian neural networks are employed to learn
the system dynamic in [33] and [9], respectively, and then
many trajectories sampled from the models are used to train
an agent for a specific task. However, these methods are
only applicable to low-dimensional observations. An RNN
is leveraged to learn the dynamic model to facilitate the task
of the reinforcement learning controller [39]. RNNs used
to model high-dimensional time series often have millions
of parameters, which bottlenecks the agent’s training [19].
The world model is inspired by the human cognitive sys-
tem that learns an abstract representation of both spatial and
temporal aspects of a complex physical environment and is
proposed in [19]. By using compressed features, a simple
reinforcement learning controller can be trained to perform
the required task. Such a world model has been shown to
effectively learn the dynamic model and facilitate the train-
ing of agents through evaluations in the OpenAI gym [4].

The architecture of the world model is shown in Fig. 1,
and it contains two components,Vision (V) andMemory (M).
The vision model is a VAE, which encodes the current high-
dimensional observation xt into the low-dimensional latent
representation zt . Thememorymodel is anRNN,which takes
the low-dimensional encoding zt and the historical informa-
tion embedded in the hidden states of RNN ht , to predict the
latent encoding z′t→t+1 in the next time step. We should note

that in the proposed generativemodel, such z′t→t+1 is utilized
to reconstruct an input as the prediction of the next time step,
which is different from the world model where z′t→t+1 is not
used.

In [19], a simple single-layer linear controller C is trained
separately from V andM to perform a specific task. It should
be noted that the control signal can be usedwhen thememory
RNN makes the predictions for the future, which allows the
memory M to take into account the influence of the control
signal on the dynamic behavior.

An important property of the world model is that after
training, it can be used to imagine a virtual environment,
called dream environment, by recursively running the RNN
to predict the latent encodings for future steps. This can be
illustrated using Fig. 1where instead of using the compressed
representations zt of the actual observation xt , the prediction
from the last time step z′(t−1)→t can be used as the input to the
RNN to predict z′(t−1)→(t+1) for the next step. In this fashion,
the controller can be trained within this dream environment
by only using a single seed observation instead of an actual
environment.

3 Problem formulation

In order to formulate the problem, let us consider an
autonomous vehicle, whose simplified architecture is illus-
trated in Fig. 2. The sensors which may include inertial
measurement unit (IMU), global positioning system (GPS),
camera, and LIDAR observe the states of the autonomous
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Fig. 2 A typical CPS architecture

vehicle and the environment and feed the information to the
controller through the sensor network. In order to realize a
specific task, the controller interprets the sensor measure-
ments, makes control decisions following predefined control
logic, and sends the control commands, such as gas, brake,
and steer signals, to the actuator through the actuator net-
work. In response to the control commands, the states of the
vehicle change, along with the environment of the vehicle,
and the sensors are used again to close the operation loop of
the system.

Although the systemmay be well-designed and tested, the
sensor and actuator networks can still be vulnerable to cyber
attacks when the system operates in the real world. A suc-
cessful attack may lead to abnormal behavior of the system
and greatly undermine the safety of the system. Therefore,
detecting cyber attacks on CPS is of great significance, for
example, to switch to a backup systemor human intervention.

In this paper, we focus on deception attacks on the sensor
networks and actuator networks and consider the problem
of efficiently and robustly detecting such attacks using only
the sequence of sensor observations. An alternative method
could be used to design detection methods that explore
between sensors that observe the environment and vehicle
sensors such as the IMU and GPS. However, such meth-
ods need to assume that some sensors are not attacked and
require fusion of sensor measurements which may increase
the attack surface. For this reason, the objective in the pro-
posed approach is to detect attacks using only the time-series
sensor observations. We assume that the adversary gains the
access to the sensor network and actuator network and has
capabilities of collecting and tampering with the informa-
tion transmitted in networks.2 For the controller deception
attacks, it is also assumed that the sensor network and the
control network are not attacked at the same time since in
this case, the adversary will be able to completely hide the
effects of the attack.Moreover, the detection approach should
be able to scale to high-dimensional data, e.g., images from
camera and point cloud data from LIDAR sensor, as they

2 It should be noted that the observations (control signals) can be either
from historical data that has been occurred in the network or modified
arbitrarily by an attacker.

are increasingly used in modern CPS, such as autonomous
vehicles.

During system operation, the time-series observations
become available sequentially. At each time step, the objec-
tive of the detection is to quantify how strange the time series
up to the current step is relative to the normal system behav-
ior. Online detection requires the algorithm to use only the
actual observation sequence that is not complete.

4 Generative model for detection

In this section, we propose a sequential generativemodel that
is used for the detection of anomalies in time-series data,
with a special focus on the high-dimensional sequences. The
proposed model is inspired by the world model for learning
the temporal and spatial representations of physical envi-
ronments [19]. The model contains a VAE to encode the
spatial information into a latent space representation and an
RNN to encode the temporal dependencies into the hidden
state. The idea is to compute a representation of the nor-
mal dynamic system behavior by training this generative
model using normal data. We should note that the VAE can
be omitted when the observations are low-dimensional. For
convenience, only the high-dimensional inputs are used in
the introduction below.

Themain advantage of the proposedmodel is that it allows
predicting observations for future steps. Specifically, given
the observation (image) xt−1, the encoder of theVAEencodes
the high-dimensional data point as a Gaussian distribution
over a latent space parameterized bymeanμt−1 and standard
deviationσt−1.Apoint zt−1 is sampled from this distribution,
which is the low-dimensional representation of the original
input. Then, the RNN consumes such a latent representation
zt−1 and the historical information ht−1 to predict the latent
representation z′(t−1)→t in the next step t . This part is similar
to the world model. However, the world model does not uti-
lize the predicted low-dimensional representation z′(t−1)→t
but feeds the hidden state of the RNN ht−1 into the reinforce-
ment learning controller, which is shown in Fig. 1. On the
contrary, our proposed generative model uses this represen-
tation z′(t−1)→t to reconstruct the original image x ′

(t−1)→t .
The expected observation x ′

(t−1)→t can be predicted based
on the previous observation xt−1 as illustrated in the top of
Fig. 3. Similar to the world model, the influence of the con-
trol signals can be considered by feeding the signals to the
RNN to predict the next state.

The proposed generative model predicts the observations
for multiple steps in the future similarly to the dream envi-
ronment in the world model. In Fig. 3, after getting the
z′(t−1)→t in the first inference of the RNN, the RNN con-
tinues to predict the next latent representation z′(t−1)→(t+1)
by using the virtual encoding z′(t−1)→t instead of the actual
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Fig. 3 Illustration of 1-step nonconformity measure using generative model

encoding zt . Recursively, the RNN can be used to computem
latent encodings (z′(t−1)→t , . . . , z

′
(t−1)→(t+m−1)). Using the

decoder, these encodings are converted to a series of pre-
dicted observations (x ′

(t−1)→t , . . . , x
′
(t−1)→(t+m−1)). In this

manner, themodel can generate sequential data by only using
a single seed input.

We should emphasize that it is also possible to include
the control signals to make predictions for multiple steps.
The control signals should be recursively generated by the
controller to feed to the RNN for predicting the next latent
encoding. However, the actual observations are not avail-
able during the prediction process, and therefore, it is not
applicable to use the observation directly in the controller.
To overcome this limitation, the controller can use a low-
dimensional representation encoded by the VAE as the input,
similar to the controller in the world model [19].

The training procedure of the generativemodel consists of
the following steps. After collecting the training data set, the
VAE is trained first by minimizing the reconstruction error
and the Kullback–Leibler (KL) divergence between the prior
and posterior [27]. Next, we compute and store the latent
representations for the training data by feeding them into the
trained VAE model. The last step is to train the RNN using
the sequences of the latent representations of the training
data. The objective is to predict the probability distribution
of the latent representation in the next time step. In order
to model the probability distribution of the latent represen-
tation, a mixture density network (MDD) [3] is connected
after the RNN as the output layer as in the training for the
world model [19]. After training, the model can generate a
sequence of consecutive images from a single input, and the
sequence is very similar to the actual sequence. Further, the
model can predict the sequence of observations for N steps,
and this prediction can be repeated at every time step result-
ing in N predictions corresponding to a specific time step in
the future from N different time steps in the past.

5 Attack detection

The detection method is based upon inductive confor-
mal anomaly detection (ICAD), which requires a suitable
nonconformity measure (NCM) defined to measure the dif-
ference between a test example and the training data set. In
this section, we first introduce a novel NCM that utilizes the
proposed generative model. Then, based on this NCM, we
present an ICAD algorithm for detecting deception attacks.

5.1 Nonconformity measure

Let us consider a set of normal sequences denoted by�train =
{X1, . . . ,Xn}, whereXi : i = 1, . . . , n is a time series of data
points (xi1, . . . , x

i
li
)with variable length li . During runtime, a

sequence of test observations (xn+1
1 , . . . , xn+1

ln+1
) arrive to the

systemonebyone.At time step t , the objective is tofirst quan-
tify how different the time series up to t (xn+1

1 , . . . , xn+1
t ) is

from the set of normal sequences �train used for training, and
then raise an alarm if the test sequence deviates considerably
from the sequences used at design time.

Most of the NCMs used in ICAD, such as k-nearest neigh-
bor (k-NN) NCM [40] and VAE-based NCM [5], however,
focus on point-wise detection. Namely, they aim to check
if a single test instance xt conforms to the training data set
�train. Such methods lack the capacity of capturing the tem-
poral dependencies of time-series data and cannot be used
for detection of deception attacks.

As discussed in Sect. 4, we propose a generative neural
network model which aims to learn compressed spatial and
temporal representations of the physical system and envi-
ronment and can be used to predict future observations. By
training the generative model using the normal sequences
�train, the model captures the distribution of complex high-
dimensional observation sequences. Therefore, if the actual

123



Real-time detection of deception attacks in cyber-physical systems 1105

observations do not conform to the predictions from the gen-
erative model, the sequence of observations can be regarded
as anomalous behavior. Following the description of the gen-
erative model in Sect. 4 and Fig. 3, we compute the squared
error between the current actual observation xt and predicted
current observation from the last time step x ′

(t−1)→t to com-
pute the nonconformity, which is termed as 1-step NCM.

Although an RNN is used in the proposed model to take
into account dependence on information at the previous step,
it is very hard to learn long-term dependencies, especially
for high-dimensional sequences. The 1-step NCM defined
above can be used only across two adjacent time steps, and
it is insensitive to attacks where the time-series sequence
is changed gradually and slowly. In order to overcome this
limitation, the generative model is used to predict the obser-
vations for multiple time steps in the future. The difference
between the actual observation and the expected observation
that is predicted from multiple steps in the past can be used
to monitor long-term dependencies. The detailed description
for predicting observations for multiple steps can be found
in Sect. 4. We denote the generative model asP , and the pro-
cess of predicting observation x ′

(t−k)→t after k-steps based
on the observation xt−k at t − k can be described as

x ′
(t−k)→t = P(xt−k, k),

and the k-step NCM at time t can be naturally defined as

αt,k = ||xt − x ′
(t−k)→t ||2. (1)

It should be noted that the control signal can be incorpo-
rated in the prediction process by feeding the control signal
into the RNN. Therefore, using the same definitions of NCM,
the NCM can capture the anomalies in the sequence of obser-
vations caused by malicious control signals.

5.2 Detection algorithm

After the definition of the NCM based on the proposed
generative model, we introduce the detection algorithm.
The algorithm is divided into offline and online phases as
described below.

5.2.1 Offline phase

During the offline phase, the training set of sequences
�train = {X1, . . . ,Xn} is split into a proper training set
�proper = {X1, . . . ,Xm} and a calibration set �calibration =
{Xm+1, . . . ,Xn}. The proper training set �proper is used to
train the generative model.

The next step is to compute the nonconformity scores for
the sequences in the calibration set. In order to model the
long-term dependencies, the difference between the actual

current observation and the expected current observation pre-
dicted from multiple steps earlier is incorporated into the
computation of the nonconformity. For each observation xit in
the calibration set from the sequenceXi : i ∈ {m+1, . . . , n},
we compare the observation with N expected observations
predicted from 1 to N steps earlier. Therefore, we compute
N different nonconformity scores by using 1-step, 2-step,...,
N -step NCM [Eq. (1)]. It is worth noting that the choice of N
depends on the dynamic evolution of the system. For a slowly
evolving system, a large N should be chosen in order to be
able to capture a significant changewithin N steps,whichwill
be beneficial for detection. Moreover, for each observation
xit in the calibration data set, we predict the observations for
the next N steps {x ′

t→t+1, x
′
t→t+2, . . . , x

′
t→t+N }. Although

these observations are not used at the current time step, they
are available for the calculation of nonconformity scores at
the next N time steps.

Because the prediction accuracy will decrease as the num-
ber of prediction steps k increases, the nonconformity score
computed by comparing with a prediction from a longer past
is very likely to be greater than the one computed by compar-
ing with prediction from a shorter past. The nonconformity
scores of the calibration data are used for comparing with
nonconformity scores of the test data during online phase.
Therefore, for fair comparison, after computing the N non-
conformity scores for eachobservation in the calibrationdata,
the nonconformity scores are clustered into N different sets
based on the number k of steps between the actual and pre-
dicted observations. Therefore, the k-th calibration set Ck
contains all the nonconformity scores using the k-step NCM,
that is, Ck = {αi

t,k : (i, t) = {m + 1, . . . , n} × {1, . . . , li }}.
Each cluster of nonconformity scores is sorted and stored for
use during the online phase. The detailed algorithm for the
offline phase is shown in Algorithm 1.

5.2.2 Online phase

During the online phase, we consider a sequence of observa-
tion {xn+1

1 , . . . , xn+1
ln+1

} arriving at the detector one by one.

At time step t , for the observation xn+1
t , we compute N

nonconformity scores {αn+1
t,1 , . . . , αn+1

t,N } in the same way as
calibration data, i.e., by computing N squared errors between
the actual observation xn+1

t and the expected observations
{x ′n+1

(t−N )→t , . . . , x
′n+1
(t−1)→t } predicted from time steps t − N

to t − 1. Using N nonconformity scores improves detection
by considering long-term dependencies and also improves
robustness.

Next, for each nonconformity score αn+1
t,k : k ∈ {1, . . . ,

N }, we compute its corresponding p-value as the fraction
of nonconformity scores in k-th calibration set Ck that are
greater or equal to αn+1

t,k . This p-value can be expressed as
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Algorithm 1 Offline phase of detecting deception attacks.
Input: a training set of sequences �train = {X1, . . . ,Xn}, number of

calibration sequences n−m; number of observations predicted from
past N ;

Output: N calibration sets of nonconformity scores {Ci }Ni=1
1: Split the training set of sequences �train = {X1, . . . ,Xn} into a

proper training set of sequences �proper = {X1, . . . ,Xm} and a cal-
ibration set of sequences �calibration = {Xm+1, . . . ,Xn}

2: Train the generative model P (a VAE and a RNN) using the proper
training set of sequences �proper

3: for i = m + 1 to n do
4: for t = 1 to li do
5: � Compute the N nonconformity scores
6: for k = 1 to N do
7: αi

t,k = ||xit − x ′i
(t−k)→t ||2

8: end for
9: � Predict the observations for next N time steps
10: for k = 1 to N do
11: x ′i

t→(t+k) = P(xit , k)
12: end for
13: end for
14: end for
15: Construct N calibration sets of nonconformity scores {Ci }Ni=1,

where Ck = {αi
t,k : i = m + 1, . . . , n; t = 1, . . . , li }

pt,k = |{αk ∈ Ck |αk ≥ αn+1
t,k }|

|Ck | .

It is possible that αn+1
t,k1

< αn+1
t,k2

for k1 < k2 since the
observation predicted from t − k2 may not be as accurate as
the one predicted from t − k1. By clustering the nonconfor-
mity scores of the calibration data based on the number of
prediction steps k used in their computation, we do not need
to compare the actual observations with predictions made at
different time steps which may be of different quality. Merg-
ing these nonconformity scores, for example, using average is
not appropriate andwill result in loss of information since the
p-value for αn+1

t,k1
could be larger than the p-value for αn+1

t,k2
.

Since the nonconformity scores for the calibration data are
sorted in the offline phase, the calculation of p-values can be
accelerated by using a binary search algorithm.

The next step is to use a martingale to test if there are
many small p-values in the set of {pt,1, . . . , pt,N } [11]. The
martingale can be defined as

Mt =
∫ 1

0

N∏
k=1

ε pε−1
t,k dε.

If there are many small p-values, Mt will be very large indi-
cating a sequence of observations that are not conformal to
the training data. By incorporating the control signal into
the prediction process, the NCM can measure the anoma-
lies caused by malicious control signals, and our detection
method can thus detect the controller deception attacks.

A stateful detector test defined by a cumulative SUM
(CUSUM) procedure is applied to the sequence of martin-

gale values in order to detect the anomaly robustly similar to
Cai and Koutsoukos [5]. The detailed algorithm of the online
phase can be found in Algorithm 2.

Algorithm 2 Online phase of detecting deception attacks.
Input: a test sequence Xn+1, where each sequence Xi =

(xi1, . . . , x
i
li
), i = 1, . . . , n + 1; N calibration sets of nonconfor-

mity scores {Ci }Ni=1; number of observations predicted from past N ;
threshold τ and parameter δ of CUSUM detector

Output: Boolean variable Anomt
1: for t = 1 to ln+1 do
2: � Compute the N nonconformity scores and p-values
3: for k = 1 to N do
4: αn+1

t,k = ||xn+1
t − x ′n+1

(t−k)→t ||2

5: pt,k = |{αk∈Ck |αk≥αn+1
t,k }|

|Ck |
6: end for
7: � Compute the martingale value
8: Mt = ∫ 1

0

∏N
k=1 ε pε−1

t,k dε

9: � CUSUM procedure
10: if t = 1 then
11: St = 0
12: else
13: St = max(0, St−1 + Mt−1 − δ)

14: end if
15: Anomt ← St > τ

16: � Predict the observations for next N time steps
17: for k = 1 to N do
18: x ′n+1

t→(t+k) = P(xn+1
t , k)

19: end for
20: end for

6 Evaluation

In this section, we evaluate the proposed approach for detect-
ing (1) sensor replay attacks using an advanced emergency
braking system (AEBS) implemented in the CARLA simula-
tor [10], (2) controller deception attacks using an autonomous
car racing example implemented in OpenAI Gym [4], and
(3) deception attacks using a real-world secure water treat-
ment (SWaT) dataset [15]. The experiments are performed
on a Ubuntu Linux virtual machine with a 48-core CPU and
an RTX 6000 GPU, which is provided by Chameleon Cloud
Platform [25] supported by the National Science Foundation.

6.1 Advanced emergency braking system

Advanced emergency braking system (AEBS) is a typical
CPS, whose objective is to detect an approaching obstacle
and safely stop the host vehicle [5]. A perception component
receives the image captured by an onboard camera and uses
a convolutional neural network to estimate the distance to a
front obstacle. The distance, along with the velocity of the
host vehicle, is used by a reinforcement learning controller to
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generate an appropriate brake force to stop the host vehicle
avoiding a potential collision.

6.1.1 Experimental setup

We collect 100 episodes by varying the position of the obsta-
cle, the distance to the obstacle, and the velocity of the host
vehicle, on a fixed road segment with the same obstacle. The
length of each episode is 199 frames, with a total of 19, 000
images in the training dataset. Besides, the regression tar-
get, distance to the obstacle, is nearly uniformly distributed
between 0m and 50m so that the training dataset is almost
balanced. The data are split into two partitions: 80 episodes
are used as the proper training set and 20 as the calibration set.
We collect 100 additional episodes that are used as normal
test sequences.

The detection method utilizes a generative model consist-
ing a VAE and an RNN, which are trained using the proper
training set. We use similar network architectures and train-
ing hyperparameters as in [19]. Since the controller is not
considered in this experiment, the RNN in the generative
model uses only the latent representations from the VAE and
does not include the controller signals in its input. We com-
pare the proposed method against a VAE-based method that
considers only individual frames presented in [5].

6.1.2 Replay attack 1

The sensor replay attack occurs when an adversary (1) col-
lects the sensor observations and (2) replays the collecteddata
at different time instants of an episode. Using a replay attack,
the adversary can spoof the camera images with images
recorded earlier from the same camera. The objective of the
adversary is to cause the predicted distance to the obstacle to
be larger than the actual distance. In this case, the controller
will be deceived to apply a soft brake force even when the
host vehicle is very close to the obstacle, which will eventu-
ally cause the host vehicle to collide with the obstacle.

We use 100 episodes of normal sequences and 100
episodes of sequences under attack to evaluate the detection

method. In the sequences under attack, the video segment that
is recorded between the time period t0 to t0 + 40 is replayed
in a forward order at time step t1. The time instants t0 and t1
are randomly sampled from {5, . . . , 30} and {80, . . . , 100},
respectively.

In order to characterize the detection performance, we
report the false positives, false negatives, and the average
detection delay by considering different values for the pre-
diction horizon N and CUSUM parameters σ and τ that
are shown in Table 1. The results show that the proposed
method can detect such a sensor replay attack with a few
false positives and false negatives, and a very short delay.
This is because a sequential generative model is utilized to
compute the nonconformity measure, where an RNN can
learn the temporal characteristics of the normal dynamic sys-
tem behavior. Such a nonconformity measure can capture
the anomalies in sequence-wise. Once the attack occurs, test
observations do not conform with the expected observations
predicted by the generative model, which will trigger the
alarm of the proposed method. In contrast, the VAE-based
detector [5] utilizes a reconstruction-based nonconformity
measure to capture the point-wise anomalies. Such a non-
conformity measure is defined as the error between the
reconstructed input from VAE model and the original input.
In our evaluation, the observations for individual frames are
in the same distribution of the training dataset and can be
reconstructed by the VAE quite well. Therefore, the test
episode will not trigger the alarm of the VAE-based detector.
The VAE-based method performs considerably worse than
the proposed method exhibiting large number of false nega-
tives and large delay of detection.

We show the simulation results for a specific sequence
under attack in Fig. 4 where we plot the predicted distance
to the obstacle, p-values, and stateful detector S-values for
the VAE-based and proposed method. In the episode shown,
the replay attack starts at time step 96 corresponding to 4.8s
from the beginning of the episode (with a sampling rate of
50ms). The frames used in the attacks are from the same
distribution as the training data set, and therefore, the VAE-
based method that uses individual frames cannot detect the

Table 1 False positives, false
negatives, and detection delay
for detecting sensor replay
attack I in AEBS

Types N , δ, τ False positive False negative Average delay (frames)

VAE-based 10, 1, 147 14/100 82/100 12.44

10, 0, 243 17/100 81/100 14.21

20,−2, 282 26/100 71/100 12.38

20, 3, 260 14/100 83/100 10.82

Proposed 10,−2, 64 16/100 2/100 1.19

10,−2, 72 14/100 2/100 1.67

20,−2, 57 14/100 0/100 0.83

20,−1, 35 12/100 0/100 0.27
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Fig. 4 An episode under the sensor replay attack I in AEBS (detector
parameter: (1) VAE-based: N = 20, δ = 3, τ = 260; (2) proposed:
N = 20, δ = 13, τ = 15)

attack and trigger an alarm. Since the proposedmethod uses a
model that captures the temporal dependencies of the obser-
vation sequences, the p-values become very small once the
attack occurs and can be detected using the approach.

6.1.3 Replay attack II

In the experiment described above, the replay attack results in
abrupt changes in the observation sequences that can be eas-
ily detected by the proposed approach. In this experiment, we
consider a type of replay attack that changes the observations
gradually and slowly. In this scenario, at the time step t1, an
adversary starts to replay the collected from time t0 in reverse,
that is, from the camera point of view, the vehicle starts
moving backward. Suppose the normal sequence is denoted
as (x1, . . . , xt1−1, xt1 , xt1+1, . . . , xl). Using this attack, this
sequence becomes (x1, . . . , xt1−1, xt1 , xt1−1, . . . , x1), where
t1 is randomly selected in {80, . . . , 100}. We collect 100
episodes with this replay attack for evaluation.

Figure 5 illustrates the detection process. It is not surpris-
ing that the VAE-based detector trained on individual frames
cannot detect this type of attack. In the proposed approach,
the p-values start to decrease when the attack is deployed,

Fig. 5 An episode under the sensor replay attack II in AEBS (detector
parameter: (1) VAE-based: N = 20, δ = 27, τ = 296; (2) proposed:
N = 20, δ = 7, τ = 98)

and the detector generates alarms indicating that the sequence
is abnormal. Table 2 reports the false positives, false nega-
tives, and average detection delay for the two methods. Note
that for some combinations of N and detector parameters σ

and τ , the detector is insensitive, and all test episodes will be
identified as negatives. Therefore, the average delay cannot
be computed and labeled as “N/A” in the table. The results
demonstrate that the approach can detect the slowly changing
replay attack with a small number of false positives and false
negatives. However, the number of falses for detecting the
replay attack II is larger than the replay attack I because in
replay attack II, the changes at the observation sequences are
very gradual. The performance of the detector for a large time
horizon (e.g., N = 20) is improving since it takes a longer
time for such an attack to change the observation sequence.

6.1.4 Stuck sensor attack

The sensormay get stuck due to an attack. In this experiment,
we simulate a scenario where the attack results in the camera
sensor getting stuck which can be viewed as a particular type
of replay attack.We assume that the camera sensor is stuck at
time step t1, where t1 is randomly sampled in {80, . . . , 100}
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Table 2 False positives, false
negatives, and detection delay
for detecting sensor replay
attack II in AEBS

Types N , δ, τ False positive False negative Average delay (frames)

VAE-based 10, 1, 148 14/100 78/100 38.68

10, 0, 227 17/100 75/100 38.08

20,−3, 0 100/100 0/100 0.04

20, 27, 296 0/100 100/100 N/A

Proposed 10,−2, 64 16/100 4/100 20.90

10,−2, 72 14/100 4/100 21.17

20,−2, 57 14/100 0/100 17.68

20,−1, 35 12/100 3/100 16.33

and therefore, the observation sequence can be denoted as
(x1, . . . , xt1 , . . . , xt1).

We plot the p-values and the detector S-values for both
two detection approaches in Fig. 6. For the VAE-based
method, the p-values are between 0 and 1, and S-values
are almost 0 through the whole episode implying that it
cannot be used for detection of such a sequence. In con-
trast, the proposed method can detect such sequence with a
very small delay. Once the camera gets stuck, the p-values
start to decrease approaching 0, and the S-value increases
and exceeds the threshold of the CUSUM detector. We also
report the false positives, false negatives, and average detec-
tion delay in Table 3. The number of falses for this scenario
is larger than the two previous attacks because there is no
considerable change in the observations.

6.1.5 Slowdown sensor attack

To have a better understanding of the proposed approach,
we adopt an attacker’s mindset and design an attack try-
ing to reduce the effectiveness of the approach. We con-
sider a slowdown sensor attack that reduces the trans-
mission speed of the sensor network. In this scenario, at
the time step t1, the transmission speed is reduced by
half, that is, the observation sequence can be denoted as
(x1, . . . , xt1 , xt1 , xt2 , xt2 , . . . , xl , xl), where t1 is randomly
sampled in {80, . . . , 100}. From the camera point of view,
the vehicle slows down.

By varying the prediction horizon N and CUSUM param-
eters σ and τ , we report the false positives, false negatives,
and average detection delay for the proposed method in
Table 4. It can be seen from the table that the the number
of false negatives reaches 76 out of 100 test episodes, which
demonstrates that the proposed method becomes ineffective
against such a slowdown sensor attack.

6.2 Autonomous car racing

We evaluate the approach for detecting controller deception
attacks in an autonomous car racing example from OpenAI

Fig. 6 An episode under the stuck sensor attack in AEBS (detector
parameter: (1) VAE-based: N = 20, δ = 0, τ = 28; (2) proposed:
N = 20, δ = −1, τ = 35)

Gym [4]. The task here is to use the pixel inputs from the
top-down camera looking at a racing environment to learn a
controller for the throttle, brake and steer signal so that the
autonomous car follows the track. In [19], a world model is
trained to extract the spatial and temporal representation of
the autonomous car racing environment, and a reinforcement
controller is trained by using the compressed features from
the world model. It should be noted that in this example, the
control signal along with the latent space representation is
used as inputs to the RNN in the generative model to predict
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Table 3 False positives, false
negatives, and detection delay
for detecting stuck sensor attack
in AEBS

Types N , δ, τ False positive False negative Average delay (frames)

VAE-based 10, 12, 210 0/100 100/100 N/A

10, 23, 4 0/100 100/100 N/A

20,−3, 98 64/100 25/100 11.70

20, 0, 28 58/100 30/100 9.73

Proposed 10,−2, 64 16/100 21/100 17.08

10,−2, 72 14/100 23/100 17.89

20,−2, 57 14/100 16/100 16.00

20,−1, 35 12/100 18/100 14.53

Table 4 False positives, false
negatives, and detection delay
for detecting slowdown sensor
attack in AEBS

Types N , δ, τ False positive False negative Average delay (frames)

Proposed 10, 2, 110 12/100 77/100 26.96

10, 1, 173 14/100 76/100 23.50

20, 7, 200 8/100 76/100 26.80

20, 8, 132 8/100 76/100 24.38

the future states and observations. Therefore, we can evaluate
if the approach can detect anomalies caused by the decep-
tion attacks on the control signal using only the observation
sequence from the top-down camera.

We use the same network architecture and training process
as in [19] to train the world model including the controller.
Using the trainedmodel, we collect 900 episodes by random-
izing the starting position of the car. Each episode contains
1000 frames, and a total of 900, 000 images are collected.
Eight hundred of these episodes are used as calibration data,
while 100 episodes are used for testing as normal sequences.
As discussed in Sect. 5, the control signals must be incorpo-
rated in the detection method because they are used in the
RNN to predict the future observations.

6.2.1 Experimental results

In order to generate the observation sequences under attack,
the original control signal is replaced with a full gas, zero
brake, and full opposite steer control signal at a random time
step t ∈ {50, . . . , 79}, whichwill cause the car to drive off the
track. We collect 100 episodes that are used for testing pos-
itive abnormal sequences. We evaluate both the VAE-based
and the proposed method using 100 episodes with normal
sequences and 100 episodes with abnormal sequences. The
attack parameters are selected to evaluate how fast we can
detect an attack with catastrophic consequences.

6.2.2 Experimental setup

We plot the detection results for an abnormal sequence in
Fig. 7 for both approaches. In this episode, the attack starts at
time step 64, and the car then turns sharply to the left off the

Fig. 7 Anepisode under the controller deception attacks in autonomous
car racing example (detector parameter: (1)VAE-based: N = 20, δ = 0,
τ = 9; (2) proposed: N = 20, δ = 0, τ = 6)

track. In Fig. 8, we plot predicted observations and the actual
observations for the following 20 steps forward from time
step 59. The generative model predicts the car will behave
normally and follow the track, but due to the attack, the car
will drive off the track. Such abnormal behavior of the car
deviates significantly from what is expected by the genera-
tive model. Therefore, the deviations between the expected
and actual observations become large and can be captured by
the proposed method, where the proposed method can cap-
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Fig. 8 Comparison between the actual and predicted observations when the control signal is under attack in autonomous car racing example; all
the predicted observations are predicted at time step 59

ture such deviations because the p-values become small, and
the CUSUMdetector generates alarms. Because the observa-
tions for individual frames are in the same distribution of the
training dataset and can be reconstructed by the VAE model
quite well, the test episode will not trigger the alarm of the
VAE-based detector. Therefore, the test episode will not trig-
ger the alarm of the VAE-based detector, and the VAE-based
detector performs much worse than the proposed method.

We also report the number of false positives, false nega-
tives, and average detection delay in Table 5 by considering
different values of the prediction horizon N and CUSUM
parameters σ and τ . From the results, we can see that the
number of falses is decreasing with larger prediction hori-
zon. Not surprisingly, theVAE-basedmethod performsmuch
worse than the proposed method.

6.3 Secure water treatment dataset

Secure water treatment (SWaT) testbed is a scaled-down
water treatment plant primarily developed for research in
the area of cyber security [15]. SWaT consists of a modern
six-stage filtration process capable of producing five gallons
of filtered water per minute. The SWaT dataset is collected
under seven days of continuous normal operation and four
days with attack scenarios. The data contains values from
all 51 sensors and actuators. Forty-one attacks are launched
over four days by spoofing the sensor or actuator information
to compromise the normal behavior of the plant, which can
be regarded as deception attacks on the sensor and actuator
networks.We use the SWaT dataset to demonstrate the effec-
tiveness of our approach for detecting deception attacks in a
real-world CPS.

6.3.1 Experimental setup

Our evaluation follows the settings in [16] to detect the cyber
attacks in Process 1 (P1) of SWaT testbed. The objective of
P1 is to manage the inflow and outflow of the raw water
tank, where two sensor measurements (FIT-101, LIT-101)
and three control signals (MV-101, P-101, and P-102) are
involved. The seven-day continuous sequence with a total of
496, 800 samples are segmented into 4, 968 subsequences
(100 samples in each subsequence), 3974ofwhich are used as
the proper training dataset and 994 as the calibration dataset.

We should note that only the five values (FIT-101, LIT-
101,MV-101, P-101, andP-102) relating to P1 are used in our
experiment, and the VAE is omitted because it is unnecessary
to compress such a low-dimensional input. An LSTM with
three layers and 100 hidden states is used in our experiment,
which is same as the RNN described in [16] for fair com-
parison. More details about the dataset and the experimental
settings can be found in [15] and [16], respectively.

6.3.2 Experimental results

Four consecutive days of data with attack scenarios are uti-
lized as the test data and sequentially fed into the detection
algorithm. Of all 41 attacks during four days, only ten are
involved in the P1 and are used as positive test samples, and
the remaining parts in the dataset are used as negatives.

We illustrate the detection process for one of the ten
attacks and plot the p-values and detector S-values in Fig. 9.
Such an attack occurs at the timestamp “12/28/2015 10:29:14
AM,” whose intent is to overflow the water tank by deceiv-
ing the controller to open the inflow motor valve when it

Table 5 False positives, false
negatives, and detection delay
for detecting controller
deception attacks in autonomous
car racing example

Types N , δ, τ False positive False negative Average delay (frames)

VAE-based 10,−2, 53 62/100 29/100 11.63

10, 0, 9 55/100 39/100 9.68

20,−3, 98 64/100 25/100 11.70

20, 0, 28 58/100 30/100 9.73

Proposed 10,−2, 33 27/100 12/100 8.82

10,−1, 15 22/100 20/100 11.49

20,−3, 73 12/100 13/100 8.75

20, 0, 6 7/100 18/100 7.87
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Fig. 9 Anepisode under the andeception attack inSWaTdataset (detec-
tor parameter: Proposed: N = 20, δ = 30, τ = 50)

Table 6 False positives and false negatives for detecting deception
attacks in SWaT dataset

Types N , δ, τ False positive False negative

Proposed 10, 10, 20 9 in 4 days 0/10

10, 15, 142 5 in 4 days 2/10

20, 30, 50 9 in 4 days 0/10

20, 34, 184 5 in 4 days 2/10

was supposed to be closed. Once the attack is injected, the
p-values approach zero instantly and the large detector S-
values alarms that the P1 is in an abnormal behavior and
may be compromised by an attack.

Table 6 summarizes the results of our approach for iden-
tifying attacks in the test sequence by varying the prediction
horizon N and CUSUM parameters σ and τ . As can be
seen from the table, the proposed approach can detect the
deception attacks in P1 with very low false positives and
false negatives. Given N = 20, σ = 30, and τ = 50, all
10 attacks are detected and only nine false positives occur
within four days. Such a low number of false positives is
acceptable concerning four-day run time. Besides, the detec-
tion result surpasses that reported in [16], where nine out of
the ten attacks are detected, but no specific number of false
positives are reported.

6.4 Computational efficiency

In order to characterize the real-time nature of the proposed
method, we take the AEBS as an example and measure the
execution time of the detection algorithm at each time step of
the entire episode. Although the generative model contain-
ing the VAE and RNN can be trained offline on a powerful
machine, itwill be deployed to a real-worldCPSand executed
on an embedded board during testing. Therefore, wemeasure
execution times not only on a powerful cloud machine, but
also on aNVIDIA Jetson TX2 board. Table 7 reports themin-

Table 7 Execution times (mm) for each detection step in AEBS

Platform N min Q1 Q2 Q3 max

Cloud machine 10 65.30 65.83 66.31 66.87 70.50

20 25.95 26.16 26.27 26.41 30.77

Jetson TX2 10 109.94 127.20 127.98 128.85 131.21

20 25.95 26.16 26.27 26.41 30.77

imum (min), first quartile (Q1), second quartile or median
(Q2), third quartile (Q3), and maximum (max) of the exe-
cution times for different values of N on different platforms
(cloud machine and Jetson TX2 board). It is reasonable to
see that the execution times become longer as N increases,
because the generative model needs to predict a longer future
when N is larger. The execution timesmeasured on both pow-
erful cloud machines and embedded devices are relatively
short, suggesting that our approach can be used for real-time
detection.

7 Conclusions

In this paper, we propose an approach for detecting deception
attacks in CPS. The method is based on ICAD frame-
work and utilizes a novel generative model inspired by the
world model for efficiently measuring the nonconformity
of the high-dimensional observation sequences relative to
the normal system behavior, thereby allowing for real-time
detection. The evaluation is performed using two simulation
case studies of an advanced emergency braking system and
an autonomous car racing example, as well as a real-world
SWaT dataset.

The evaluation demonstrates the effectiveness of the pro-
posed approach, showing a small number of false alarms
in most experiments. We conduct comparative evaluation
against a VAE-based method in two simulation case stud-
ies. TheVAE-basedmethod only considers individual frames
and is normally used to detect the anomalies in point-wise.
Our approach outperforms the VAE-based method since the
proposed approach can capture the temporal dependencies
of time-series data. An RNN-based method is also utilized
for comparison in SWaT dataset and performs worse than the
proposed approach. Furthermore, execution times measured
on both power cloud machines and embedded computing
devices are very short, enabling real-time detection.

Although the proposed approach can detect attacks with
relatively small number of false positives and false negatives,
and the false rate is less than 10% in most experiments, it is
not enough to guarantee the safety of the system operation.
The system should switch to human intervention or enable
a backup system when the test is positive. The high false
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positive rate will indeed cause frequent intervention by the
manual or backup systems, resulting in system instability.
Besides, any false negatives ormissed attacks can have catas-
trophic consequences, such as colliding with the obstacle in
AEBS or overflowing the water tank in the SWaT testbed.
Therefore, reducing the false positives and false negatives of
the detector is one of the challenges remaining in our future
work.

The effectiveness of the proposed approach canbe reduced
by well-crafted attacks. Our evaluation in AEBS validates
that a slowdown sensor attack can reduce the effectiveness
of the proposed detector. In addition, an adversarial example
with small specially human-crafted perturbations can cause
false predictionof neural network [17], and spoofing the input
data with such an adversarial example can be regarded as an
deception attack. Although not confirmed, it is very likely
that such an attack can break our detection method since a
small perturbation added to the input cannot lead to a large
nonconformity score. Making the detector effective against
a wider range of attacks is also one of the challenges.

The proposed approach can capture the abnormal inputs
that deviate significantly from the expected inputs. Therefore,
the approach can be extended to detect abnormal behaviors
that are not limited to attacks, such as unintended sys-
tem behavior caused by component failures. Evaluation on
broader scenarios can be the future work, especially on real-
istic applications with high-dimensional inputs.
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