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Abstract. Stochastic hybrid system models can be used to analyze and
design complex embedded systems that operate in the presence of un-
certainty and variability. Verification of reachability properties for such
systems is a critical problem. Developing algorithms for reachability anal-
ysis is challenging because of the interaction between the discrete and
continuous stochastic dynamics. In this paper, we propose a probabilistic
method for reachability analysis based on discrete approximations. The
contribution of the paper is twofold. First, we show that reachability can
be characterized as a viscosity solution of a system of coupled Hamilton-
Jacobi-Bellman equations. Second, we present a numerical method for
computing the solution based on discrete approximations and we show
that this solution converges to the one for the original system as the
discretization becomes finer. Finally, we illustrate the approach with a
navigation benchmark that has been proposed for hybrid system verifi-
cation.

1 Introduction

Stochastic hybrid system models can be used to analyze and design complex
embedded systems that operate in the presence of uncertainty and variability
because they incorporate complex dynamics, uncertainty, multiple modes of op-
erations, and they can support high-level control specifications that are required
for design of autonomous or semi-autonomous applications. Reachability analy-
sis for such systems is a critical problem because of the interaction between the
discrete and continuous stochastic dynamics. Reachability properties are usually
expressed as formulas in appropriate logics. Given a specification formula encod-
ing a property, the task is to determine whether the formal model of the system
satisfies the property or generate a counterexample that violates the formula.
In this paper, we proposed a probabilistic method for reachability analysis. In-
stead of encoding the reachability property with a logical formula that can be
evaluated to be true or false, we consider a representation using measurable
functions taking values in [0, 1] that characterize the probability that the system
will satisfy the property.



In this paper, we show that reachability for stochastic hybrid systems can be
represented by a measurable function that is the viscosity solution of a system of
coupled Hamilton-Jacobi-Bellman (HJB) equations. This function is similar to
the value function for the exit problem of a standard stochastic diffusion but the
running and terminal costs depend on the function itself. Using a non-degeneracy
assumption for the diffusion term of the stochastic dynamics, we show that the
viscosity solution is continuous and bounded which allows us to extend standard
results for Markov diffusions to stochastic hybrid systems.

One of the advantages of characterizing reachability properties using viscosity
solutions is that for computational purposes we can employ numerical methods
based on discrete approximations. We use an approximation method based on
finite differences and we present an iterative algorithm based on dynamic pro-
gramming for computing the solution. We show that the algorithm converges for
appropriate initial conditions. Further, we show that the solution based on the
discrete approximations converges to the one for the original stochastic hybrid
system as the discretization becomes finer. Finally, we illustrate the approach
with a navigation benchmark which has been proposed for hybrid system verifi-
cation.

In this paper, we adopt the model presented in [3] which can be viewed as an
extension of the stochastic hybrid systems described in [12]. An important char-
acteristic of this model used in our analysis is that it satisfies the strong Markov
property [3]. Related models have been presented in [11] with the emphasis on
modeling and analysis of communication networks and in [1] for simulation of
concurrent systems. Stochastic hybrid systems can be viewed as an extension
of piecewise-deterministic processes [6] that incorporate stochastic continuous
dynamics. Reachability of such systems has been studied in [4]. Communicating
piecewise Markov processes have been presented in [20] with an emphasis on
concurrency. Viscosity solution techniques in optimal control of piecewise deter-
ministic processes have been studied in [7]. Our approach extends the results
of [7] for reachability analysis of stochastic hybrid systems.

Reachability properties for continuous and hybrid systems have been charac-
terized as viscosity solutions of variants of HJB equations in [16, 17]. Extensions
of this approach to stochastic hybrid systems and a toolbox based on level set
methods have been presented in [18]. Level set methods are also based on a
discretization of the state space but they may offer computational advantages
since the computation is limited to a boundary of the reachable set. The dy-
namic programming approach described in this paper is simpler to implement
and capture the dependency of the value function between discrete modes. The
approach allows us to show the convergence of solution obtained using the nu-
merical solutions to the solution of the stochastic hybrid system.

Discrete approximation methods based on finite differences have been studied
extensively in [15] and the references therein. Based on discrete approximations,
the reachability problem can be solved using algorithms for discrete processes [19,
5, 8]. The approach has been applied for optimal control of stochastic hybrid
systems given a discounted cost criterion in [14]. For reachability analysis, the



discount term cannot be used and convergence of the value function can be
ensured only for appropriate initial conditions. A grid-based method for safety
analysis of stochastic systems with applications to air traffic management has
been presented in [13]. Our approach is similar but using viscosity solutions we
show the convergence of the discrete approximation methods.

The paper is organized as follows. Section 2 describes the stochastic hybrid
system model. Section 3 formulates the reachability problem and characterizes
its solution. Section 4 presents and analyzes the numerical methods based on
discrete approximations. Section 5 illustrates the approach using a navigation
benchmark and Section 6 concludes the paper.

2 Stochastic Hybrid Systems

We adopt the General Stochastic Hybrid System (GSHS) model presented in [3].
We briefly describe the model to establish the notation.

Let Q be a set of discrete states. For each q ∈ Q, we consider the Euclidean
space R

d(q) with dimension d(q) and we define an invariant as an open set Xq ⊆

R
d(q). The hybrid state space is denoted as S =

⋃

q∈Q{q} × Xq. Let S̄ = S ∪
∂S and ∂S =

⋃

q∈Q{q} × ∂Xq denote the completion and the boundary of S
respectively. The Borel σ-field in S is denoted as B(S).

Definition 1. A GSHS is defined as H = ((Q, d,X ), b, σ, Init, λ,R) where

– Q is a set of discrete states,
– d : Q → N is a map that defines the continuous state space dimension for

each q ∈ Q,
– X : Q → R

d(·) is a map that describes the invariant for each q ∈ Q as an
open set Xq ⊆ R

d(q),
– b : Q×Xq → R

d(q) and σ : Q×Xq → R
d(q)×p are drift vectors and dispersion

matrices respectively,
– Init : B(S) → [0, 1] is an initial probability measure on S,
– λ : S̄ → R+ is a nonnegative transition rate function, and
– R : S̄ × B(S̄) → [0, 1] is a transition measure.

To define the execution of the system, denote (Ω,F , P ) the underlying prob-
ability space and consider an R

p-valued Wiener process w(t) and a sequence of
stopping times {t0 = 0, t1, t2, . . .} that represent the times when the continuous
and discrete dynamics interact. Let the state at time ti be s(ti) = (q(ti), x(ti))
1 with x(ti) ∈ Xq(ti). While the continuous state stays in Xq(ti), x(t) evolves
according to the stochastic differential equation (SDE)

dx = b(q, x)dt+ σ(q, x)dw (1)

1 When there is no confusion, we will use interchangeably the notation (q, x) and s

for the hybrid state to simplify complex formulas and often we will use the notation
sti

= (qti
, xti

) for brevity.



where the discrete state q(t) = q(ti) remains constant and the solution of (1) is
understood using the Itô stochastic integral.

Let t∗i+1 = inf{t ≥ ti, x(t) ∈ ∂Xq(ti)}. The next stopping time ti+1 is defined
as the minimum between t∗i+1 and a stopping time τi+1 with survivor function

exp
(

−
∫ t

ti

λ(q(ti), xz(ω)dz,
)

, ω ∈ Ω. Thus, the survivor function of ti+1 can be

written as

F (t, ω) = I(t<t∗
i+1

) exp

(

−

∫ t

ti

λ(q(ti), xz(ω))dz

)

where I denotes the indicator function. If ti+1 = ∞, the system continues to
evolve according to (1) with q(t) = q(ti). If ti+1 <∞, the system jumps at ti+1

to a new state s(ti+1) = (q(ti+1), x(ti+1)) according to the transition measure
R(s(t−i+1), A) with A ∈ B(S). The evolution of the system is then governed by
(1) with q(t) = q(ti+1) until the next stopping time.

The following assumptions are imposed on the model. The functions b(q, x)
and σ(q, x) are bounded and Lipschitz continuous in x for every q, and thus the
SDE (1) has a unique solution. The transition rate function λ is a bounded and
measurable function which is assumed to be integrable for every xt(ω). For the
transition measure, it is assumed that R(·, A) is measurable for all A ∈ B(S),
R(s, ·) is a probability measure for all s ∈ S̄, and R((q, x), dz) is a stochastic
continuous kernel.

Let Nt =
∑

i It≥ti
denote the number of jumps in the interval [0, t]. It is

assumed that Es[Nt] < ∞ for every initial state s ∈ S. Sufficient conditions for
ensuring finitely many jumps can be formulated by imposing restrictions on the
transition measure R(s, A) [1].

Additionally, in this paper we consider the two following assumptions:

Assumption 1: Non-degeneracy The boundaries ∂Xq are assumed to be
sufficiently smooth and the trajectories of the system satisfy a non-tangency
condition with respect to the boundaries. A sufficient condition for the non-
tangency assumption is that the diffusion term is non-degenerate, i.e. a(q, x) =
σ(q, x)σT (q, x) is positive definite. This assumption is used to show the continu-
ity of the viscosity solution close to the boundaries [10]. It should be noted that it
is possible to show the continuity of the viscosity solution close to the boundaries
even with degenerate variance by imposing appropriate conditions [10, 15].

Assumption 2: Boundness It is assumed that the set Q is finite and that Xq is
bounded for every q. This is a reasonable assumption for many systems that have
finitely many modes and saturation constraints on the continuous state. Even if
the state space is unbounded, often it is desirable to approximate it for applying
numerical methods. By defining appropriately the boundary conditions, it can be
shown that the effect of the numerical cutoff is small [10]. This assumption is used
for approximating the hybrid system by a finite Markov chain and employing
numerical methods based on dynamic programming.

We refer to the class of GSHS that satisfies the assumptions above simply as
stochastic hybrid systems (SHS).



3 Probabilistic Reachability

In this section, we show that the probability that a state will reach a set of target
states while avoiding an unsafe set can be characterized as the viscosity solution
of a system of coupled HJB equations.

Let T = ∪q∈QT
{q}×T q and U = ∪q∈QU

{q}×U q be subsets of S representing
the set of target and unsafe states respectively. We assume that T q and U q are
proper subsets of Xq for each q, i.e. ∂T q ∩ ∂Xq = ∂U q ∩ ∂Xq = ∅ and the
boundaries ∂T q and ∂U q are sufficiently smooth. We define Γ q = Xq \ (T q ∪U q)
and Γ = ∪q∈Q{q} × Γ q. The initial state (which, in general, is a probability
distribution) must lie outside the sets T and U . The transition measure R(s, A)
is assumed to be defined so that the system cannot jump directly to U or T .

Consider the stopping time τ = inf{t ≥ 0 : s(τ−) ∈ ∂T ∪ ∂U}. Let s be an
initial state in Γ , then we define the function V : Γ̄ → R+ by

V (s) =







Es[I(s(τ−)∈∂T ], s ∈ Γ
1, s ∈ ∂T
0, s ∈ ∂U

.

The function V (s) can be interpreted as the probability that a trajectory starting
at s will reach the set T while avoiding the set U .

Inspired by [6], we add a new state ∆ and we denote Γ ′ = Γ ∪∆. The system
transitions to ∆ according to the measure

R(s,∆) =

{

1, if s ∈ ∂T ∪ ∂U
0, otherwise

.

The new process is indistinguishable from the original process s(t) for t < τ and
at time τ it jumps to ∆ and stays there forever. The system dies immediately
after transitioning to ∆, i.e. b(∆) = σ(∆) = λ(∆) = 0. Finally, we extend V to
Γ ′ by defining V (∆) = 0 which agrees with the probabilistic interpretation of
V . By abuse of notation, we will denote the new process also by s(t).

Given the assumptions on the sets T and U and their boundaries, we can
construct a bounded function c : S̄ → R+ continuous in x such that

c(q, x) =

{

1, if s = (q, x) ∈ ∂T q

0, if s = (q, x) ∈ ∂U q ∪ ∂Xq .

Then, the value function V can be written as

V (s) = Es

[
∫ ∞

0

c(qt− , xt−)dp∗(t)

]

(2)

where p∗(t) =
∑∞

i=1 I(t≥ti)I((qt
i−

,xt
i−

)∈∂S) is a counting process counting the

number of times the trajectory hits the boundary and jumps.
Consider the set of nonnegative Borel measurable functions B(S)+ and define

the operator G : B(S)+ → B(S)+ by

Gg(q, x) = Es[c(qt−
1

, xt
−

1

)I(t1=t∗
1
) + g(qt1 , xt1)]. (3)



where t1 is the stopping time of the first jump. We will show that V is a fixed
point of G.

Lemma 1. Gng(q, x) = Es

[

∫ tn

0 c(qt− , xt−)dp∗(t) + g(qtn
, xtn

)
]

.

Proof. By the strong Markov property [3] and the construction of the SHS pro-
cess we have 2

Es[c(qt−
2

, xt
−

2

)I(t2=t∗
2
) + g(qt2 , xt2)|F t1 ] = Es[c(qt1 , xt

−

2

)I(t2=t∗
2
) + g(qt2 , xt2)|F t1 ]

= Es[g(qt1 , xt1)].

Therefore,

G2g(q, x) = G(Gg(q, x)) = Es[c(qt−
1

, xt
−

1

)I(t1=t∗
1
) + Gg(qt1 , xt1)]

= Es[c(qt−
1

, xt
−

1

)I(t1=t∗
1
) +Es[c(qt−

2

, xt
−

2

)I(t2=t∗
3
) + g(qt2 , xt2)|F t1 ]]

= Es[c(qt−
1

, xt
−

1

)I(t1=t∗
1
) + c(qt−

2

, xt
−

2

)I(t2=t∗
2
) + g(qt2 , xt2)].

By induction, we get

Gng(q, x) = Es[

n
∑

i=1

c(qt−
i

, xt
−

i

)I(ti=ti∗) + g(qtn
, xtn

)]

= Es[

∫ tn

0

c(qt− , xt−)dp∗(t) + g(qtn
, xtn

)].

Theorem 1. The value function V is a fixed point of the operator G.

Proof. By definition of G, for any ψ1 ≤ ψ2 we have Gψ1 ≤ Gψ2. Let v0(q, x) = 0
for every q and every x and set vn+1(q, x) = Gvn(q, x). Then {vn} increases
monotonically and vn takes values in [0, 1] for every n. Therefore, limn→∞ vn(q, x) =
v(q, x) exists. Note that convergence is not guaranteed for other choices of v0.

Since v ≥ vn, we have Gv ≥ Gvn and thus Gv ≥ vn+1 for all n, therefore
Gv ≥ v. In addition, Gvn = vn+1 ≤ v ≤ Gv and limn→∞ vn = v, therefore
Gv ≤ v ≤ Gv and v = limn→∞ vn is a fixed point of G.

Finally by Lemma 1, v = limn→∞Gnv0 = Es[
∫ ∞

0 c(qt− , xt−)dp∗(t)] therefore
V is a fixed point of G, i.e. V (s) = GV (s).

Next, we show that the value function V can be represented as a discounted
cost criterion with a target set where the running and the terminal cost depend
on V itself.

Theorem 2. Consider the value function V (s) defined by (2) and define LV (q, x) =
λ(q, x)

∫

Γ
V (y)R((q, x), dy) and ψV (q, x) = c(q, x) +

∫

Γ
V (y)R((q, x), dy). Then,

for s ∈ Γ

V (s) = Es

[

∫ t∗1

0

Λ(t)LV (qt− , xt−)dt+ Λ(t∗1)ψ
V (qt∗

1
, xt∗

1
)

]

. (4)

2 F t denotes the filtration of the SHS process.



Proof. The SHS satisfies the strong Markov property [3], and therefore, the
Markov property can be applied not only for constant times but also for random
stopping times. Let t1 be the time of the first jump and t∗1 = inf{t ≥ 0 : x(t) ∈
∂Xq(t0)}, then, using a standard dynamic programming argument, we can write

V (s) = Es

[

I(t1<t∗
1
)

∫

Γ

V (y)R((qt−
1

, xt
−

1

), dy)dt

+ I(t1=t∗
1
)

(

c(qt∗
1
, xt∗

1
) +

∫

Γ

V (y)R((qt∗
1
, xt∗

1
), dy)

)]

. (5)

By construction of the transition rate λ, t1 and xt are not independent (un-
less λ is constant). Denote F∞ the σ-field σ(xt, t ≥ 0) generated by xt. The
conditional distribution of t1 given F∞ is P [t1 > t|F∞] = It<t∗

1
Λ(t), where

Λ(t) = exp
{

−
∫ t

0 λ(q0, xz)dz
}

, and the conditional density is

dP [t1 ≤ t|F∞]

dt
= λ(q0, xt)Λ(t)I(t<t∗

1
) + Λ(t∗1)δ(t− t∗1).

Thus, equation (5) can be written as

V (s) = Es

[

Es

[

I(t1<t∗
1
)

∫

Γ

V (y)R((qt−
1

, xt
−

1

), dy)dt

+ I(t1=t∗
1
)

(

c(qt∗
1
, xt∗

1
) +

∫

Γ

V (y)R((qt∗
1
, xt∗

1
), dy)

)

|F∞

]]

= Es

[

∫ t∗1

0

λ(qt, xt)Λ(t)

∫

Γ

V (y)R((qt− , xt−), dy)dt

+ Λ(t∗1)c(qt∗1 , xt∗
1
) + Λ(t∗1)

∫

Γ

V (y)R((qt1∗, xt1∗), dy)

]

.

Using the definitions of LV (q, x) and ψV (q, x) we have

V (s) = Es

[

∫ t∗1

0

Λ(t)LV (qt− , xt−)dt+ Λ(t∗1)ψ
V (qt∗

1
, xt∗

1
)

]

.

Assuming that the transition measure R(s, A) is a continuous stochastic ker-
nel, the map (q, x) →

∫

Γ
f(y)R((q, x), dy) is bounded uniformly continuous for

every bounded and continuous function f [2]. Then, if V is continuous in X̄q(t0),
equation (4) is very similar to the discounted cost criterion with a target set [15].
The main difference is that the running cost LV (q, x) and the terminal cost
ψV (q, x) depend on the value function. Since the SHS satisfies the strong Markov
property, the same procedure can be repeated every time a jump occurs. Next,
we show that under the non-degeneracy assumption V is continuous.

Theorem 3. V is bounded and continuous in x on Γ̄ .



Proof. The G operator defined by (3) can be written as

Gg(q, x) = Es

[
∫ t1

0

c(qt− , xt−)dp∗(t) + g(qt1 , xt1)

]

.

Since the SHS satisfies the strong Markov property, we can apply the same
transformation as in Theorem 2 to get

Gq(q, x) = Es

[

∫ t∗1

0

Λ(t)Lg(qt− , xt−)dt+ Λ(t∗1)ψ
g(qt∗

1
, xt∗

1
)

]

. (6)

Therefore

vn+1(q, x) = Gvn(q, x)

= Es

[

∫ t∗
n

0

Λ(t)Lvn

(qt− , xt−)dt+ Λ(t∗1)ψ
vn

(qt∗
n
, xt∗

n
)

]

.

Because of the non-degeneracy assumption, the exit times t∗i are continuous at
the sample paths of the process [15]. Therefore, all the functions in the sequence
vn are continuous and further, we have vn ≥ v0 for every n. By applying the
results of [2] (Chapter 7) we can conclude that V = limn→∞ vn is lower semi-
continuous and bounded below.

Next, define a new function Ṽ : Γ̄ → R+ by

V (s) =







Es[I(s(τ−)∈∂U), s ∈ Γ
1, s ∈ ∂U
0, s ∈ ∂T

.

The function Ṽ can be interpreted as the probability that a trajectory starting
at s will reach U before T and it can be written as

Ṽ (s) = Es

[
∫ ∞

0

c̃(qt− , xt−)dp∗(t)

]

where

c̃(q, x) =

{

0, if s = (q, x) ∈ ∂T q ∪ ∂Xq

1, if s = (q, x) ∈ ∂U q .

From the non-degeneracy assumption, we have that Ṽ = 1− V (s). By applying
the argument given in the first part of the proof to Ṽ , it follows that Ṽ is
lower semi-continuous and bounded below and therefore, V = 1+(−Ṽ ) is upper
semi-continuous and bounded above. Thus, V is continuous and bounded in Γ̄ .

Next, we prove the main result of this section that characterizes V as the
viscosity solution of a system of HJB equations. We use the results of [15] to
derive the HJB equations (similar results can be found also in [10]).



Theorem 4. Assume that f and σ are continuously differentiable w.r.t. x in
Γ q for each q and for suitable C1 and C2 satisfy |fx| ≤ C1, |σx| ≤ C1, and
|f(q, 0)| + |σ(q, x)| ≤ C2. Then V is the unique viscosity solution of the system
of equations

HV

(

(q, x), V,DxV,D
2
xV

)

= 0 in Γ q, q ∈ Q (7)

with boundary conditions

V (q, x) = ψV (q, x) on ∂Γ q, q ∈ Q (8)

where

HV

(

(q, x), V,DxV,D
2
xV

)

= f(q, x)DxV +
1

2
tr(a(q, x)D2

xV )+λ(q, x)V +LV (q, x).

Proof. Consider the function

v(q, x) =

{

Gg(q, x) in Γ q

ψg(q, x) on ∂Γ q

where g ∈ B(S)+ is a continuous and bounded function. From (6), it follows
that v(q, x) is the value function of an exit-time problem in Γ q for the diffusion
(1) where Lg : Γ → R+ and ψg : ∂Γ → R+ are bounded continuous functions.
Under the assumptions of f and σ, we can apply the results for standard Markov
diffusions [10] (Thm V.2.1 and Cor. V.3.1) and therefore, v(q, x) a viscosity
solution of

Hg

(

(q, x), V,DxV,D
2
xV

)

= 0 in Γ q (9)

V (q, x) = ψg(q, x) on ∂Γ q. (10)

By Theorem 3, V is bounded and continuous. Therefore,

V̄ (q, x) =

{

GV (q, x) in Γ q

ψV (q, x) on ∂Γ q

is a viscosity solution of

HV

(

(q, x), V̄ , DxV̄ , D
2
xV̄

)

= 0 in Γ q

V̄ (q, x) = ψV (q, x) on ∂Γ q.

where V is considered known and V̄ unknown. But V is a fixed point of G,
and thus V = GV = V̄ in Γ q and ψV = ψV̄ on ∂Γ q, which means V = V̄ is
a viscosity solution of (7 - 8). Further, V is continuous, and therefore, is the
unique viscosity solution which is continuous in Γ̄ .

4 Numerical Methods for Reachability Analysis

4.1 Locally Consistent Markov Chains

In this section, we employ the finite difference method presented in [15] to com-
pute locally consistent Markov chains (MCs) that approximate the SHS while



preserving local mean and variance. We consider a discretization of the state
space denoted by S̄h = ∪q∈Q{q} × S̄h

q where S̄h
q is a set of discrete points ap-

proximating Xq and h > 0 is an approximation parameter characterizing the
distance between neighboring points. By abuse of notation, we denote the sets
of boundary and interior points of S̄h

q by ∂Sh
q and Sh

q respectively. The state of

the approximating MC is denoted by sh
n = (qh

n, ξ
h
n), n = 0, 1, 2, . . ..

Consider the continuous evolution of the SHS between jumps and assume
that the state is (q, x). The local mean and variance given the SDE (1) on the
interval [0, δ] are

E[x(δ) − x] = b(q(t), x(t))δ + o(δ)

E[(x(δ) − x)(x(δ) − x)T ] = a(q(t), x(t))δ + o(δ).

Let {qh
n = q, ξh

n} describe the MC on Sh
q ⊂ Xq with transition probabilities

denoted by ph
D((q, x), (q, y)). A locally consistent MC must satisfy

E[∆ξh
n] = b(q, x)∆th(q, x) + o(∆th(q, x))

E[(∆ξh
n −E[∆ξh

n])(∆ξh
n −E[∆ξh

n ])T ] =

a(q(t), x(t))∆th(q, x) + o(∆th(q, x))

where ∆ξh
n = ξh

n+1 − ξh
n, ξ

h
n = x and ∆th(q, x) are appropriate interpolation

intervals (or the “holding times”) for the MC.
The diffusion transition probabilities ph

D((q, x), (q′, x′)) and the interpolation
intervals can be computed systematically from the parameters of the SDE (de-
tails can be found in [15]). If the diffusion matrix a(q, x) is diagonal and we
consider a uniform grid with ei denoting the unit vector in the ith direction, the
transition probabilities are

ph
D((q, x), (q, x ± hei)) =

aii(q, x)/2 + hb±i (q, x)

Q(q, x)

and the interpolation intervals are∆t(q, x) = h2/Q(q, x) whereQ(q, x) =
∑

i[aii(q, x)+
h|bi(q, x)|] and a+ = max{a, 0} and a− = max{−a, 0} denote the positive and
negative parts of a real number.

Next, consider the jumps with transition rate λ(q, x) and transition measure
R((q, x), A). Suppose that at time t the state has just changed to {qh

n = q, ξh
n =

x}. The probability that a jump will occur on [t, t+ δ) conditioned on the past
data can be approximated by

P [(q, x) jumps on [t, t+ δ)|q(s), x(s), w(s), s ≤ t] = λ(q, x)δ + o(δ).

The ith jump of the approximating process is denoted by ζ((q, x), ρi) where ρi

are independent random variables with distribution R̄ = {ρ : ζ((q, x), ρi) ∈ A} =
R((q, x), A) with compact support Θ. Let ζh be a bounded measurable function
such that |ζh((q, x), ρ) − ζ(q, x), ρ)| → 0 uniformly in x for each ρ and which



satisfies ζh((q, x), ρ) ∈ S̄h. If x ∈ Sh
q , then with probability 1−λ(q, x)∆th(q, x)−

o(∆th(q, x)) the next state is determined by the diffusion probabilities ph
D and

with probability λ(q, x)∆th(q, x)+o(∆th(q, x)) there is a jump and the next state
is (qh

n+1, ξ
h
n+1) = ζ((q, x), ρi). For the points in ∂Sh

q , the next state is determined
by ζ((q, x), ρi) with probability 1. Therefore, the transition probabilities are
defined by

p
h((q, x), (q′

, x
′)) =

8

<

:

(1 − λ(q, x)∆th(q, x) − o(∆th(q, x)))ph
D((q, x), (q′, x′))

+(λ(q, x)∆th(q, x) + o(∆th(q, x)))R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} if x ∈ Sh
q

R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} if x ∈ ∂Sh
q

.(11)

4.2 Iterative Methods for Reachability Analysis

This section describes the approximation of the value function, formulates the
problem for the discrete approximations, and presents the convergence results
for the numerical methods.

Consider the approximating MC {sh
n} = {ξh

n, q
h
n} with transition probabilities

ph((q, x), (q′, x′)) defined in (11). Let T̄ h = S̄h∩T̄ and Ūh = S̄h∩Ū and denote by
ni the jump times and νh the stopping time representing that (qh

n, ξ
h
n} ∈ T̄ h∪Ūh,

then the value function V can be approximated by

V h(s) = Es

[

νh
∑

n=0

c(qh
n, ξ

h
n)I(n=ni)

]

.

The function V h can be computed using a value iteration algorithm. To
show the convergence of the algorithm, we consider a terminal state ∆ similar to
Section 3. The state space of the MC becomes S̃h = S̄h∪{∆} and the transition
probabilities are defined so that p̃h((q, x), ∆) = 1 if x ∈ T̄ h ∪ Ūh, p̃h(∆,∆) = 1,
and p̃h((q, x), (q′, x′)) = ph((q, x), (q′, x′)) otherwise. This means that when the
state reaches T or U , it transitions to ∆ and stays there for ever. Consider the
function c̃ : S̃h → R+ with c̃(∆) = 1 and c̃(q, x) = 0 for every (q, x) and the
value function

Ṽ h(s) = Es[
∞
∑

n=0

c̃(sn)]. (12)

Clearly, this sum is well-defined, bounded, and we have Ṽ h = V h.

Proposition 1. Let Ṽ h
0 (q, x) = 0 for every (q, x), then the iteration

Ṽ h
n+1(q, x) =





∑

q′,x′

p̃h((q, x), (q′, x′))Ṽ h
n (q′, x′)



 (13)

converges pointwise and monotonically to Ṽ h = V h.



Proof. Consider the value function defined by (12) for {sn}. We have that
Ṽ h(q, x) ∈ [0, 1] < ∞ and c̃(s) ≥ 0 for all s ∈ S̃h. Therefore, computing Ṽ
is a special case of the total expected reward criterion for positive models [19]. If
v is a fixed point of the iteration (13), then v+k[1, . . . , 1]T , k > 0 is also a fixed
point. Thus, the iteration may have multiple fixed points but if we pick Ṽ h

0 = 0
it converges to the least fixed point Ṽ [19] (Thm 7.2.12).

4.3 Convergence Results

Finally, we show that the value function V h obtained using the approximating
MC converges to the value function V of the SHS as h → 0. Let g ∈ B(S)+ be
a continuous and bounded function and suppose that V is the unique viscosity
solution of (9-10) that is bounded and continuous in Γ̄ q. Consider Σ̄h

q to be a

discretization of Γ̄ q and denote Σh
q and ∂Σh

q the set of interior and boundary
points respectively. Using the approximation described in Subsection 4.1, the
dynamic programming equation for Σ̄h

q can be written as

V h(q, x) =

{

F h
g [V h(·)](q, x) if x ∈ Σh

q

ψh
g (q, x) if x ∈ ∂Σh

q

where

F h
g [V h(·)](q, x) =

(1 − λ(q, x)∆th(q, x) − o(∆th(q, x))
∑

q′ ,x′

ph
D((q, x), (q′, x′))V h(q′, x′)

+(λ(q, x)∆th(q, x) + o(∆th(q, x))

∫

Θ

g(ζh((q, x), ρ))R̄(dρ)

and

ψh
g (q, x) = c(q, x) +

∫

Θ

g(ζh((q, x), ρ))R̄(dρ).

Lemma 2. limy→x,h→0 V
h(q, y) = V (q, x) uniformly in Γ̄ q.

Proof. V is continuous and bounded viscosity solution of (9-10) and ψg(q, x) is
continuous. Therefore, for each q we have a standard exit problem from Γ q for
the SDE (1) and by applying the results of [10] (Sec. IX.5) we have that V h

converges uniformly to V .

To show convergence of V h for the SHS, we replace g by V and we follow an
argument similar to the proof of Theorem 1.

Theorem 5. Let

V h(q, x) =

{

F h
V [V h(·)](q, x) if x ∈ Σh

q

ψh
V (q, x) if x ∈ ∂Σh

q

then limy→x,h→0 V
h(q, y) = V (q, x).



Proof. Assume that V is given and define

V̄ h(q, x) =

{

F h
V [V̄ h(·)](q, x) if x ∈ Σh

q

ψh
V (q, x) if x ∈ ∂Σh

q

.

By Lemma 2, since V is bounded and continuous we have limy→x,h→0 V̄
h(q, y) =

V̄ (q, x). Assume that for each h, V̄ h is computed by a value iteration algorithm
with v0 = 0. Then, V h is a fixed point of F h

V and therefore, V̄ h = V h for every
h and V̄ = V .

5 Navigation Benchmark

This section illustrates the approach using a stochastic version of the navigation
benchmark presented in [9]. The benchmark describes an object moving within
a bounded 2-dimensional region partitioned into cells Xq, q ∈ {0, 1, . . . , N}
as shown in Figure 1. Let [x1, x2]

T and v = [v1, v2]
T denote the position and

the velocity of the object respectively. The behavior is defined by the ODE
v̇ = A(v − vq

d) where A ∈ R
2×2 and vq

d = [sin(qπ/4), cos(qπ/4)]T . Selecting the
matrix A and adding a diffusion term, the dynamics of the object are described
by the SDE

dx = (Ãx+ B̃uq
d)dt+Σdw

where x = [x1, x2, v1, v2]
T , uq

d = [0, 0, vq
d]

T , w(t) is an R
4-valued Wiener process,

Ã =

[

0 I2
0 A

]

, A =

[

−1.2 0.1
0.1 −1.2

]

, and Σ = 0.1I4.

Consider the target set T and the unsafe set U shown in Figure 1. Given
initial state s0 = (q0, x0), we want to compute the probability that the state will
reach T while avoiding U . Sample trajectories are shown in Figure 1. In order
to apply the approach described in this paper, we under-approximate each cell
Xq by X̃q by considering a smooth boundary ∂X̃q. We also define a transition
measure R((q, x), A) so that the state jumps into an adjacent cell if it hits an
“inner” boundary and jumps into the same cell if it hits on “outer” boundary.
The transition rate is assumed to be zero. We discretize the state space using
a uniform grid with approximation parameter h > 0 and apply the method
described in Section 4 to compute V h(q, x). As h→ 0, V h(q, x) converges to the
solution V (q, x) of the stochastic approximation of the benchmark problem.

Since the continuous state space of the example is 4-dimensional, we select
to plot a projection of V h for initial velocity v0 = [0, 0]T . Figure 1 shows this
projection for h = 0.1 that describes the probability that a trajectory starting
from (q, [x1, x2, 0, 0]T ) will reach T while avoiding U . The computational per-
formance of the algorithm is illustrated in Table 1. All data was collected using
a 3.0 GHz desktop computer with 1 Gb RAM. A more exact characterization
is more involved since the operator F h

V of the value iteration algorithm is not a
contraction mapping and convergence is guaranteed only for V h

0 = 0.
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Fig. 1. The navigation benchmark, sample trajectories, and the value function.

h Time (minutes) Number of States

.5 .5 2500
.25 7 32400
.1 200 1147041
.05 5110 17147881

Table 1. Performance Data

6 Conclusions and Future Work

The paper characterizes reachability of stochastic hybrid systems as a viscosity
solution of a system of coupled Hamilton-Jacobi-Bellman equations and employs
a numerical method based on discrete approximations for reachability analysis.
The main advantage of the approach is that it guarantees the convergence of
the solution based on the discrete approximation to the solution of the original
problem. The approach can be extended to controlled stochastic hybrid sys-
tems by imposing appropriate conditions for admissible controls. Convergence
of the discrete approximation methods can be investigated using relaxed con-
trols. Characterization of error bounds and convergence rates is an important
and challenging problem especially since convergence is not based on contraction
mappings but it is guaranteed only for appropriate initial conditions. Another
fundamental challenge is to develop scalable numerical methods that can be
applied to large systems. Towards this goal, currently we are investigating meth-
ods based on variable resolution grids and parallel algorithms as well as methods
based on value function approximation.
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