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Abstract—Cyber-Physical Systems (CPS) operate in dynamic
and uncertain environments where the use of deep neural net-
works (DNN) for perception can be advantageous. However, DNN
integration in CPS is not straightforward. Perception outputs
must be complemented with assurance metrics that represent
if they can be trusted or not. Further, the inputs to DNNs are
typically sequential capturing time-correlated data that can affect
the accuracy of the predictions since machine learning models
require inputs to be independent and identically distributed.
In this paper, we propose a selective classification approach
that rejects predictions that are not trustworthy. We quantify
the credibility and confidence of each prediction by computing
aggregate p-values from multiple subsequent inputs. We examine
different multiple hypothesis testing approaches for combining
p-values computed using Inductive Conformal Prediction (ICP)
focusing on their ability to produce valid p-values for sequential
data. Empirical evaluation results using the German Traffic Sign
Recognition Benchmark demonstrate that ICP validity can be
recovered when p-values from sequential inputs are combined
and selective classification based on aggregate p-values produces
predictions with less risk.

Index Terms—selective classification, assurance evaluator, in-
ductive conformal predictors, distance metric learning

I. INTRODUCTION

Cyber-Physical Systems (CPS) integrate computing, moni-
toring and control for operation in the physical world. Per-
ception of the environment is a complex process because
of the existence of objects that are difficult to model and
have complex interaction with the controlled system. Deep
Neural Networks (DNN) have the capacity to be trained and
generalize their knowledge to make predictions in dynamic
environments. CPS can benefit from the integration of DNNs
but assurance guarantees are needed that are very challenging
to compute. In CPS applications such as autonomous vehicles
that needs to recognize traffic signs and take the correct
control decisions, the cost of an incorrect classification is
much higher than not making any classification when there
is no clear distinction between the best prediction and the
alternatives. In such a setting, the operation cost over time
can be minimized using selective classifiers that evaluate the
risk in each classification and either accept the classification
or reject it.

Most discriminative machine learning (ML) frameworks
make predictions with some notion of confidence under the

assumption that the input data are independent and identically
distributed (IID) [15]. When there is dependence between the
input data this assumption does not hold and the confidence
metrics are not accurate. This is an important challenge for
CPS to overcome in order to use such frameworks. Sensors in
a CPS perceive processes in the physical world that have some
duration and individual time instances have some, usually
unknown, dependence to previous instances. This leads to mis-
calibration of confidence estimates and error-rate guarantees
are not satisfied [5].

Our approach for improving the confidence of the predic-
tions is based on Inductive Conformal Prediction (ICP) [24].
ICP aims in producing prediction sets that satisfy any error-
rate bound guarantees under the IID assumption. The main
idea is to test if a new input example conforms to the training
data set by utilizing a nonconformity measure which assigns
a numerical score indicating how different the input example
is from the training data set. For any test input, a p-value
is assigned to each possible class to decide if a class should
be part of the prediction set or not in order to satisfy the
chosen error-rate guarantees. This property is valid when the
test inputs are IID.

In this work we improve the calibration of the prediction
sets computed by ICP and the classification accuracy when
the input data are time correlated. We use statistical methods
for computing aggregated p-values resulted from subsequent
inputs in a sliding window. We approach the problem as a
multiple hypothesis testing problem and show how different
combination methods recover ICP validity. Our main contri-
bution is the design of a selective classifier based on ICP
that we call assurance evaluator. This classifier decides if a
classification is possible based on the computed p-values for
each class. When the highest p-value among all the classes is
much higher than the second highest computed p-value we can
trust the classification more than cases where at least two of the
highest p-values are close to each other. Another contribution
of this work is the computation of low-dimensional, appro-
priate, embedding representations of the original inputs in a
space where the Euclidean distance is a measure of similarity
between the original inputs. This is needed in order to find
semantic similarities between data points and handle high-
dimensional inputs in real-time. We evaluate the proposed
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approach on the German Traffic Sign Recognition Benchmark
(GTSRB) which has sequential images of signs as a vehicle
moves towards traffic signs.

II. RELATED WORK

Confidence and uncertainty estimation in neural networks
has received considerable attention especially in the context of
classification tasks. Different frameworks have been developed
that evaluate the confidence of predictions in different ways.

Selective classification Methods based on selective classi-
fication are used for decision-making when errors are costly
and it is beneficial to not make any decision when none of
the possible classes is trustworthy. Different threshold choices
affect the number of errors, or risk and the decision frequency,
or coverage. The trade-offs between the risk and coverage
are studied in [8]. The use of selective classification in the
context of DNNs is considered in [10], [11]. The process
of learning a selective classifier with a chosen desired risk
is shown in [10]. An uncertainty estimation algorithm to be
used with selective classification in DNNs is proposed in [11].
This avoids the over-confident probability estimations that are
common in DNN classifiers.

Output calibration A variety of methods have been devel-
oped for quantifying predictive uncertainty in ML models by
calibrating the output values to represent real probabilities.
The Platt’s scaling method [27] is proposed for the calibration
of Support Vector Machine (SVM) outputs. After the training
of an SVM, the method computes the parameters of a sigmoid
function to map the outputs into probabilities. Piecewise
logistic regression is an extension of Platt scaling and assumes
that the log-odds of calibrated probabilities follow a piecewise
linear function [40]. Another variant of Platt’s scaling is
temperature scaling [12] which can be applied in DNNs with
a softmax output layer. After training of a DNN, a temperature
scaling factor T is computed on a validation set to scale the
softmax outputs to represent true probabilities. However, while
the temperature scaling shows good calibration results when
the input data are IID, there is no calibration guarantee under
distribution shifts [23]. Recent evaluation of Platt’s scaling and
tempereture scaling presented in [17] shows that they are not
as well-calibrated as it is reported and it is difficult to know
how miscalibrated they are.

Conformal prediction Unlike most classification models
that make point predictions for a given input, the conformal
prediction framework [37], [32], [2] computes prediction sets
that bound the error-rate to a chosen value. In [25] the authors
suggest a modified version of the CP framework, they call
Inductive Conformal Prediction (ICP), that has less computa-
tonal overhead and they evaluate the results using DNNs as
undelying model. Deep k-Nearest Neighbors (DkNN) is an
approach based on ICP for classification problems that uses
the activations from all the hidden layers of a neural network
as features to the ICP [26]. Other implementations have been
proposed for decision trees [13], random forests [3], [7] as

well as SVMs [20]. CP and ICP require that the data are IID
and exchangeable.

III. PROBLEM FORMULATION

A perception component in a CPS aims to observe and
interpret the environment in order to provide information for
decision making. In safety-critical systems, predictions on
unseen inputs need to have a well-calibrated and bounded
error-rate according to predefined safety rules. An efficient and
robust approach must ensure a small and well-calibrated error
rate while limiting the number of alarms to enable real-time
monitoring. Finally, it must be computationally efficient for
applications operating on high-dimensional data that require
low latency like, for example, in autonomous vehicles.

During the system operation of a CPS, inputs arrive one by
one. The inputs may be dependent on each other as shown
in Figure 1, for example, in a traffic sign recognition system.
After receiving each input, the objective is to compute a valid
prediction set that satisfies a bound on the error-rate as well
as produce classifications based on their trustworthiness. The
objective is twofold: (1) provide guarantees for the error-rate of
the classification and (2) design an assurance evaluator which
minimizes the number of input examples for which a confident
prediction cannot be made. The assurance evaluator operates
as a selective classifier that generates warnings when no
classification can be made and human intervention is needed.

IV. SELECTIVE CLASSIFICATION

ICP computes p-values for each class to construct prediction
sets with a chosen significance level. However, its applications
are not limited to cases where valid prediction sets are needed.
We use multiple hypothesis testing methods to combine the p-
values computed on multiple time instances. The aggregate
p-values indicate the trustworthiness of each class for partic-
ular inputs, over a time horizon, and can be used for point
predictions. We define the credibility and confidence metrics
based on the two highest aggregate p-values, p(c), p(c−1), of
all possible classes pi, i = 1, . . . , c:

credibility = p(c) (1)

confidence = 1− p(c−1) (2)

For a test input xl+1 and classification ŷ = arg maxi=1,...,c pi,
the credibility shows how credited ŷ is and the confidence
shows how special it is compared to the other possible labels.
These two metrics define the four scenarios shown in Table I.
The preferred situation is when the largest p-value is close to
one and the rest close to zero. We use an assurance evaluator
to decide if a trusted classification can be made and, if not, it
will raise an alarm which may require further investigation. For
this operation we use the concept of selective classification [8],
[39]. A selective classifier (f, g) decides whether to keep the
classification from an underlying model or reject it and is
defined as:

(f, g)(x) ,

{
f(x), if g(x) = 1

reject, if g(x) = 0
(3)
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t = 1 t = 10 t = 20 t = 30

Figure 1: Traffic sign over time (in frames)
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Figure 2: Execution time architecture

Table I: Scenarios that can be observed for different values of
confidence and credibility.

Credibility Confidence Description
High High The prefered situation that usually

leads into accepting a classification. pŷ
is high and much higher than the p-
values of the other classes.

High Low pŷ is high but there are other high p-
values so choosing a single credible
class may not be possible.

Low High None of the p-values are high for a
credible decision.

Low Low Not applicable.

where f is the ICP based classifier, and g : X → {0, 1}
is a selective function that we call assurance evaluator.
Consider a function k that evaluates the classifications of f
and a threshold θ. The selective function g is defined as,
gθ(x|k, f) = 1[k(x, ŷf (x)|f) > θ]. A selective classifier is
evaluated using the coverage and risk metrics. The coverage,
φ(f, g), measures the frequency that the classifications of f are
accepted. The risk, R(f, g), is the error-rate in the accepted
classifications. These measures can be empirically evaluated
using any finite labeled set Sm. The empirical coverage φ̂ and

risk r̂ are computed as:

φ̂(f, g|Sm) ,
1

m

m∑
i=1

g(xi) (4)

r̂(f, g|Sm) ,

1

m

∑m
i=1 l(f(xi), yi)g(xi)

φ̂(f, g|Sm)
(5)

where l(f(xi), yi) = 1 if f(xi) = yi otherwise l(f(xi), yi) =
0.

For a given classifier f we optimize the assurance evaluator
g based on the area under the risk-coverage (RC) curve
(AURC) defined in [11]. Consider a set of n labeled points
Vn and let the set Θ , {k(x, ŷf (x)|f) : (x, y) ∈ Vn} of
threshold values. Using these threshold values to define the
selective function g we can compute n empirical risk and
coverage values and plot a RC curve. When two assurance
evaluators are compared, preferable is the one with lower risk
at the same coverage. So a metric for evaluation of pairs (f, g)
is the AURC:

AURC(k, f |Vn) =
1

n

∑
θ∈Θ

r̂(f, gθ|Vn). (6)

The assurance evaluator is constructed with a choice of
a classification evaluator function k and a threshold θ. A
function k needs to be chosen to minimize AURC, which
intuitively minimizes the average empirical risk. We express
k as a linear combination of the credibility and confidence,
computed by ICP,

k(x, ŷf (x)) = a · credibility(x, ŷf (x))

+ b · confidence(x, ŷf (x))
(7)

We compute the optimal parameters a and b that minimize
the AURC with a grid search in [−1, 1]. Based on the RC curve
and the application requirements regarding the accepted risk
and coverage of the assurance evaluator (r∗, c∗), a threshold
θ is chosen such that (r̂, ĉ) = (r∗, c∗).

V. DISTANCE METRIC LEARNING

We consider a training set {z1, . . . , zl} of examples, where
each zi ∈ Z is a pair (xi, yi) with xi the feature vector and
yi the label of that example. This set is split into the proper
training set (z1, . . . , zm) of size m < l and the calibration set
(zm+1, . . . , zl) of size l −m. ICP tests the trustworthiness of
a candidate class, ŷl+1, with respect to a given input, xl+1,
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by computing how similar the test pair (xl+1, ŷl+1) is to the
pairs (xi, yi), i = 1, . . . ,m in the proper training set. When
the input data are high-dimensional, for example images,
computing the Euclidean distance between two inputs is not a
proper way to estimate their similarity. The Euclidean distance
does not take into consideration the spatial relationships of
pixels so small translations or rotations between similar images
may lead to a large distance.

Net(x) Net(x)

Contrastive
Loss

x1 x2

Weights

θ

r1 r2

Figure 3: Siamese network training

We use a siamese network to transform the original inputs
into lower dimensional embedding representations in a space
where the Euclidean distance is a measure of how semantically
similar the original inputs are. The advantage of siamese
networks over classical analytical distance metric learning
methods is that it can scale to larger dimensions like the data
of our test cases. A siamese network is composed using two
copies of the same neural network with shared parameters [16]
as shown in Figure 3. During training, each identical copy of
the siamese network is fed with different training samples x1

and x2 belonging to classes y1 and y2. The embedding repre-
sentations produced by each network copy are r1 = Netθ(x1)
and r2 = Netθ(x2). The learning goal is to compute the Net
parameters θ∗ that minimize the Euclidean distance between
the embedding representations of inputs belonging to the same
class and maximize it for inputs belonging to different classes:{

min d(r1, r2), if y1 = y2

max d(r1, r2), otherwise
(8)

This optimization problem can be solved using the contrastive
loss function [21]:

L(r1, r2, y) = y · d(r1, r2) + (1− y) max[0,m− d(r1, r2)]

where y is a binary flag equal to 0 if y1 = y2 and to
1 if y1 6= y2 and m is a margin parameter. In particular,
when y1 6= y2, L = 0 when d(r1, r2) ≥ m, otherwise the
parameters of the network are updated to produce more distant
representations for those two elements. The reason behind the
use of the margin is that when the distance between pairs
of different classes are large enough and at most m, there

is no reason to update the network to put the representations
even further away from each other and instead train on harder
examples.

We denote f : X → V the mapping from the input space
X to the embedding space V by a single copy of the DNN
pair in the siamese network. Using the trained network, the
embeddings vi = f(xi) are computed and stored for all the
training data xi. The same transformation takes place online
as new test input data arrive to the system.

VI. MULTIPLE TESTING OF SINGLE HYPOTHESIS

ICP forms prediction sets with theoretical guarantees on the
error-rate based on computations of p-values for each class.
When the inputs to be classified are composed of sequential
data arriving one after the other, it is natural to utilize statistical
methods for combining individual p-values to improve the
accuracy and efficiency over the individual classifications. We,
first, briefly present how ICP computes p-values and prediction
sets and in then second part of this section we present different
ways of computing aggregate p-values.

A. Inductive Conformal Prediction

Given a test input xl+1, ICP computes a prediction set
Γε of labels with enough evidence to be the true label. We
consider the more fundamental question: given a test input
xl+1 belonging in class yl+1 ∈ Y , is label ŷl+1 : ŷl+1 ∈ Y
the true label? Hypothesis testing is a statistical method used
to make decisions on whether a hypothesis is true based
on a finite number of data. The question to be answered is
translated into two competing and non-overlapping hypothesis.
(1) The null hypothesis, H0, is the argument believed to be
true and (2) the alternative hypothesis, H1, is the argument
to be proven true based on the collected data. We determine
whether to accept or reject the alternative hypothesis based on
the likelihood of the null hypothesis being true. Considering
again a test input xl+1, the question whether ŷl+1 is the true
class, is written using the above notation. We are certain that
exactly one of the labels in Y is true so ŷl+1 = yl+1 is the null
hypothesis. This hypothesis needs to be rejected for the c− 1
incorrect labels so ŷl+1 6= yl+1 is the alternative hypothesis.

The p-value is a measure of how likely it is that the
pair (xl+1, ŷl+1) has occurred under the null hypothesis,
ŷl+1 = yl+1. It is the probability for this data point to occur or
something that is as, or more, extreme. On the assumptions that
the null hypothesis is true and that the sampling distribution is
given by a probability density function (PDF), the distribution
of p-values is uniform in the interval [0, 1].

The null distribution is usually unknown in practice and
ICP approaches it using a labeled calibration set. First we
consider a training set {z1, . . . , zl} of examples, where each
zi ∈ Z is a pair (xi, yi) with xi the feature vector and yi
the label of that example. This set is split into the proper
training set (z1, . . . , zm) of size m < l and the calibration set
(zm+1, . . . , zl) of size l−m. Central to the framework is the
use of nonconformity measures (NCM), a metric that indicates
how different an example zl+1 is from the examples of the
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Figure 4: Image mapping to a lower dimensional space based on their similarity.

training set. Assuming that the test data are generated from the
same distribution as the calibration data, the null distribution
is the distribution of the nonconformity (NC) scores of the
calibration set pairs (xi, yi), i = m+ 1, . . . , l.

NCM is a function that computes the dissimilarity be-
tween an example zl+1 and the examples of the training set
z1, . . . , zl. There are many different possible NCMs that can
be used [4], [6], [2], [37], [32], [14]. Having used all the above
NCMs in our previous research work, we find the nearest
centroid to have good trade-off characteristics between the NC
scores quality, the memory requirements and the applicability
in real-time systems when combined with distance metric
learning. The nearest centroid NCM simplifies the task of
computing individual training examples that are similar to a
test input when there is a large amount of training data. We
expect the embedding representations of examples that belong
to a particular class to be close to each other, so for each
class yi we compute its centroid µyi =

∑ni
j=1 v

i
j

ni
, where vij is

the embedding representation of the jth training example from
class yi and ni is the number of training examples in class yi.
The NC function is then defined as

α(x, y) =
d(µy, v)

mini=1,...,n:yi 6=y d(µyi , v)
(9)

where v the embedding representation of the feature vector
x. It should be noted that for computing the nearest centroid
NCM, we need to store only the centroid of each class.

The trustworthiness of a particular class given a test input
is expressed as a p-value. It is computed as the fraction of the
calibration NC scores that are greater or equal to the NC score
computed for the current hypothesis testing. Assume a test
input xl+1, vl+1 = f(xl+1), and we test the null hypothesis,
the class yj is the correct class, yl+1 = yj :

pj(xl+1) =
|{α ∈ A : α ≥ α(xl+1, y

j)}|
|A|

(10)

where A the set of calibration NC scores and α(xl+1, y
j) the

NC score of the pair (xl+1, y
j). This hypothesis is accepted

if pj(xl+1) > ε, where ε the significance level. This process
is repeated for all possible classes yj , j = 1, . . . , |Y |. All the
classes that were not rejected for a chosen ε are added in the
prediction set Γε.

ICP computes well-calibrated prediction sets, defined as
P (yl+1 /∈ Γε) < ε, for any choice of ε with the underlying
assumption that all examples (xi, yi), i = 1, 2, . . . are IID
generated from the same but typically unknown probability
distribution and exchangable [33]. However, the choice of ε is
important for the computation of efficient prediction sets. The
best case scenario for Γε is |Γε| = 1 and the only class that
satisfies pj(xl+1) > ε is the ground truth class.

B. Combining Multiple p-values

The problem of multiple hypothesis testing appears when
a decision about a null hypothesis needs to be made after
a number of tests K > 1. According to the problem we
consider in this paper, the same null hypothesis is tested over
K consecutive frames of a sequence. The p-values p1, . . . , pK ,
obtained from the K individual hypothesis tests need to be
combined into a single p-value. Since the individual tests take
place on consequent frames of a sequence, it is expected the p-
values are dependent with each other. For this combination to
be used in the ICP framework, the combined p-values during
testing should lead to valid prediction sets with error-rate equal
to the chosen significance-level.

Merging Functions In [38], authors propose general meth-
ods for combining a number of p-values without making
any assumptions about their dependence structure. Different
functions for combining p-values can be derived from the
generalized mean p-value (GMP):

Mr,K(p1, . . . , pK) =

(
pr1 + · · ·+ prK

K

)1/r

(11)
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where r ∈ [−∞,∞], K = 2, 3, . . . ,. Merging functions for
combing p-values without the independence assumption are
constructed as

pcomb = ar,KMr,K(p1, . . . , pK)

Special cases of merging functions that we use in our evalu-
ation and are derived from (11) are the minimum, maximum,
arithmetic mean and geometric mean. When r −→ −∞ the
resulting merging function is known as the Bonferroni method
and one of the most well-known methods for multiple testing:

pmin = K min(p1, . . . , pK) (12)

Similarly when r −→∞:

pmax = max(p1, . . . , pK) (13)

(12) and (13) are generalized in [30] to use order statistics of
the p-values:

pord =
K

k
p(k) (14)

where p(k) is the kth smallest p-value of the p1, . . . , pK . When
r = 1 individual p-values are combined using the arithmetic
average. However the arithmetic average of a number of p-
values is not always a p-value. In [31], Theorem 1, it is shown
that multiplying the arithmetic average with a factor of 2 is a
p-value.

parith avg =
2

K

K∑
i=1

pi (15)

When r = 0 individual p-values are combined using the
geometric average:

pgeom avg = e×

(
K∏
i=1

pi

)1/K

(16)

Quantile Combination Approaches The general quantile
combination approach produces p-values that are uniformly
distributed in [0, 1] when the combined p-values are indepen-
dent. If X1, X2, . . . , Xn samples from a continuous distribu-
tion X with CDF FX , then the samples Ui = FX(Xi) follow
a uniform distribution U with CDF FU (u) = u. The proof is
straightforward and is added here for completeness.

FU (u) = P[U ≤ u] = P[FX(X) ≤ u] =

= P
[
X ≤ F−1

X (u)
]

= FX
(
F−1
X (u)

)
= u

(17)

The advantage of leveraging this property is that p-values can
be combined using any arbitrary function f and then transform
the resulting p-values to a uniform distribution using the CDF
of f . However, in our application the p-values computed by
ICP on consequent frames are not independent and cannot
be considered as independent samples from a continuous
distribution. This means that the transformed p-values may
not be uniformly distributed affecting the global validity of
ICP. Since we do not know the dependence structure between
the inputs, these methods could still result in an ICP valid
in regions of interest and we experiment with their use in

CPS. There is a large number of quantile combination methods
proposed in the literature that transform and combine p-values
using functions with CDF that can be expressed in closed
form or can be computed efficiently. However, because of
their independence requirement, this is not an exhaustive list
of methods but an evaluation of the most commonly used
ones. A number of quantile combination methods is evaluated
using ICP computed p-values for multiple underlying model
ensembles in [35], [36].

One way of combining multiple p-values is using their
product. This is commonly known as the Fisher’s method [9].
Assuming that p1, p2, . . . , pk are samples from a uniform
distribution, then

hi = −2 log pi

follows a chi-squared distribution with 2 degrees of freedom.
The sum of independent chi-squared distributions is also a
chi-squared distribution with degrees of freedom equal to
the sum of the degrees of freedom of the individual chi-
squared distributions. The CDF of the chi-squared distribution
is expressed in closed form so a sequence of k independent
p-values can be combined efficiently as

pprod = P

{
y ≤ −2

K∑
i=1

log pi

}
= t

K−1∑
i=0

(− log t)i

i!
(18)

where t =
∏K
i=1 pi.

A similar approach is the Stouffer’s z-transform [34], which
first maps the uniformly distributed and independent p-values
to random variables that follow the normal distribution

hi = Φ−1(1− pi)

where Φ is the cumulative normal distribution. The random
variables hi, i = 1, . . . ,K are then combined such that

h =

∑K
i=1 hi√
K

.

The sequence of p-values, pi, i = 1, . . . ,K, is combined by
sampling the CDF of h

pz = P

{
y ≤

∑K
i=1 hi√
K

}
= 1− Φ(h) (19)

which is not in closed form but easily computed by most
mathematical software. This method is extended in [18] to
assign weights on independent experiments. This can be
useful in our applications as more recent inputs may be more
significant than older ones. We call it the weighted Stouffer’s
method:

pz weighted = 1− Φ

∑K
i=1 wiZi√∑K
i=1 w

2
i

 (20)

The weights we assign are larger for recent inputs in a sliding
window and decrease over time so that wi = i/

∑K
j=1 j.

To keep our evaluation of quantile combination methods
consistent with the merging function presented earlier, order
statistics functions, like min and max, can be used to produce
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p-values by sampling their CDF. Let p(r) be the rth smallest
among K independent p-values. These p-values follow the
Beta(r,K − r + 1) distribution [28]. In this case the CDF is
an incomplete beta function. It cannot be expressed in closed
form but it is easily computed by most mathematical software.

The Cauchi combination test [19] is more recent and al-
though it is based on the quantile combination methods, it is
developed to be applied under arbitrary correlation structures.
Assuming that p1, p2, . . . , pk are samples from a uniform
distribution, then the components

hi = tan{(0.5− pi)π}

follow a standard Cauchi distribution. The sum T =
∑K
i=1 hi

also has a standard Cauchi distribution under the null and the
its CDF can be computed in closed form:

pCauchi = P

{
y ≤

K∑
i=1

hi

}
=

1

2
− arctanT

π
(21)

Expressed in closed form, similar to the previous methods, it
has low computational requirements.

Emprirical CDF Computation In practice, p-value transfor-
mations using CDFs are not always possible. The reason is
twofold: (1) not all arbitrary combination functions have a
CDF that can be expressed in closed form and (2) the p-values
to be combined may be dependent. Instead of using CDFs
we compute an Empirical Cumulative Distribution Function
(ECDF) from a set of calibration sequences. We first com-
pute the combined p-values that are consistent with the null
hypothesis using any arbitrary law f(p1, . . . , pK). Then the
ECDF FX(x) is computed on the finite set of combined p-
values. During test time when a sliding window of K frames
is present, the p-values of each class are combined with an
arbitrary law and the computed ECDF is used to recover
validity of the combined p-values

pcomb = FX [f(p1, . . . , pK)] (22)

where FX is the computed ECDF. To understand the effects
of ECDF, during evaluation we use simple combination laws
consistent with the CDFs above.

VII. EVALUATION

Our assurance evaluator design leverages distance metric
learning techniques to compress the input data to lower
dimensions in order to make the ICP application more efficient
and with lower memory requirements. The objective of the
evaluation is to compare how the suggested architecture of
combining p-values from multiple inputs performs against the
baseline ICP approach that processes one input at a time as
well as investigate the validity/calibration, efficiency (size of
set predictions) and decision making.

A. Experimental Setup

We apply the proposed method to the German Traffic Sign
Recognition Benchmark (GTSRB). A vehicle uses an RGB
camera to recognize the traffic signs that are present in its

surroundings. The dataset consists of 43 classes of signs and
provides videos of 30 frames as well as individual images that
are not part of sequences. The data are collected in various
light conditions and include different artifacts like motion
blur and obstructions by other objects. The image resolution
depends on how far the sign is from the vehicle as shown in
Figure 1. Since the input size is variable, we convert all inputs
to size 30x30x3. 10% of the available sequences is randomly
sampled to form the sequences used for testing. From the
remaining sequences, 20% is used to compute the ECDFs an
the remaining sequences form the training set. The training
set is split into the proper training set and the calibration set
with a ratio of 5:1. 90% of the individual images that are
not part of sequences augment the proper training set and the
calibration set with the same ratio as above and the remaining
10% forms another test set so that we can use it as unity test
for the baseline ICP.

The siamese network is formed using two identical con-
volutional DNNs with shared parameters. The architecture
we chose to use is the one described in [1] for a similar
application. A dense layer of 256 units is used to generate
the embedding representation of the inputs. All the experi-
ments run in a desktop computer equipped with and Intel(R)
Core(TM) i9-9900K CPU and 32 GB RAM and a Geforce
RTX 2080 GPU with 8 GB memory.

B. Siamese Network Evaluation

We first investigate how well the siamese network is trained
looking at two separate metrics. One is the classification
accuracy. The siamese network can be used for classification of
inputs using a k-Nearest Neighbors classifier in the embedding
space. One basic hypothesis of machine learning models is
that the training and testing data sets should consist of IID
samples. This is confirmed in Table II where the accuracy for
the test set of IID examples is similar to the training accuracy
while the testing accuracy for the set that includes sequences
is lower.

Then we evaluate how well the siamese network clusters
data of each class. A commonly used metric of the separation
between classes is the silhouette [29]. For each sample, we
first compute the mean distance between i and all other data
points in the same cluster in the embedding space

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) .

Then we compute the smallest mean distance from i to all the
data points in any other cluster

b(i) = min
k/∈i

1

|Ck|
∑
j∈Ck

d(i, j) .

The silhouette value is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.

Each sample i in the embedding space is assigned a silhouette
value −1 ≤ s(i) ≤ 1 depending on how close it is to
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samples belonging to the same class and how far it is to
samples belonging to different classes. The closer s(i) is to
1, the closer the sample is to samples of the same class and
further from samples belonging to other classes. To compare
the representations learned in the different sets of data, we
compute the mean silhouette value.

Table II: Siamese accuracy evaluation

Accuracy % Silhouette
Training 0.962 0.48

Validation 0.95 0.45
Test IID 0.955 0.44

Test Sequences 0.923 0.51

C. Validity

ICP is proven to be valid when the input data are IID and ex-
changeable regardless the choice of the significance level and
NCM. The first problem we work on is to recover the validity
in cases where the input data are dependent. We examine the
property, P (yl+1 /∈ Γε) < ε in the baseline ICP using the test
set containing IID and the test set containing sequences. For
this, we plot the performance and calibration curves shown
in Figure 5. For different values of the significance level, the
calibration curve show the percentage of test data with their
ground truth class not contained in their prediction set, while
the performance curve shows the percentage of test data that
lead to prediction sets of more than one class. ICP is valid in
the case of IID data but it under-estimates the true error-rate
when data are sequential.

We evaluate the validity of ICP using the Expected Calibra-
tion Error (ECE). A well-calibrated ICP computes prediction
sets with significance levels that are representative of the true
error-rate. Formally a model is well-calibrated when

P (yl+1 ∈ Γε|1− ε = p) = p, ∀p ∈ [0, 1] (23)

where p is the actual prediction accuracy. However, ε is a
continuous random variable so the probability in (23) cannot
be approximated using finitely many samples. According
to (23) a measure of miscalibration can be expressed as
E
ε

[|P (yl+1 ∈ Γε|1− ε = p)− p|]. The Expected Calibration
Error (ECE) [22] computes an approximation of this expected
value across samples of the significance level:

ECE =
1

M

M∑
i=1

|acc(εi) + εi − 1| (24)

Assuming n test examples, acc(εi) =
1

n

∑n
i=1 1(yi ∈ Γεi)

and εi the significance level samples. In this evaluation εi =
i

1000 : i = 1, . . . , 200, as ε > 0.2 would not have any practical
use in most CPS applications. Table III shows the calibration
results of ICP when we combine multiple sequential inputs
in a sliding windows of different size. For comparison when
the baseline ICP is used, ECE is 0.042. Combining p-values
using the ECDF based methods consistently improve the
calibration over the baseline approach and have among the

lowest ECE of all methods we tried. The same is observed
for the merging functions that confirms the literature remarks
about their validity under arbitrary dependence regardless their
simplicity. Larger sliding window sizes affect the combina-
tion functions in different ways and do not guarantee better
calibration. For example a low p-value that corresponds to
a correct class will remain in the history for a longer time
and depending on the combination function can significantly
lower the aggregate p-value. Combining p-values using the
quantile combination approaches, with the exception of the
order statistics function min, produces prediction sets with
large calibration error confirming their inability to deal with
dependence between the performed statistical tests. Combining
multiple p-values by using only their minimum value and
transforming it into a p-value using the incomplete beta
function seems to not be affected by the dependence structure
of the inputs. However, when using the calibration sequences
to capture these dependencies and learn the ECDF instead
of using the incomplete beta function, further improves the
calibration in sliding window sizes greater than six.

D. Assurance Evaluator

The assurance evaluator identifies when a prediction is
trustworthy. ICP computes the credibility and confidence from
the p-values of all classes [Eqs. (1), (2)] and the assurance
evaluator combines them to minimize the risk for any given
coverage. We compare the decision performance of the base-
line ICP and ICP based on combining p-values from multiple
inputs. We also investigate how the sliding window size affects
the decision quality. This comparison is based on the AURC
which evaluates the average risk for different coverage values.
In this part of the evaluation we combine p-values using
the ECDF-based approaches as they showed stability against
dependence between subsequent inputs. Table IV shows the
AURC value for all the ECDF methods and for different
sliding windows. For comparison the computed AURC for
the baseline ICP is 0.011. All four alternatives show that
when predictions are based on sliding windows of more than
one input, the average risk is always lower than in the case
of predictions based on a single input at a time. Moreover,
the size of the sliding window also affects the risk. Our
evaluation results show that predictions based on larger sliding
windows have lower average risk. Figure 6 shows the RC
curves based on the four ECDF methods with sliding window
size 9 compared with the RC curve produced with the baseline
ICP.

VIII. CONCLUSION

CPS use machine learning components for dynamic tasks
that are hard to model such as perception of the environ-
ment. These components make predictions with a non-zero
error-rate which makes their use in safety critical systems
challenging. We designed a selective classifier that evaluates
the trustworthiness of each prediction based on credibility
and confidence values computed by ICP. In order to make
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Figure 5: (a) Baseline ICP on IID data, (b) Baseline ICP on sequential data, (c) Combination of p-values based on the min
ECDF

Table III: Evaluation ECE Comparison

Sliding Window Size
Method 2 3 4 5 6 7 8 9

Merging

Arith Avg 0.018 0.009 0.006 0.006 0.007 0.009 0.010 0.011
Geom Avg 0.038 0.035 0.032 0.029 0.027 0.025 0.023 0.022

Min 0.090 0.122 0.147 0.166 0.182 0.195 0.206 0.216
Max 0.014 0.033 0.043 0.050 0.055 0.059 0.062 0.065

CDF

Fisher 0.086 0.120 0.144 0.162 0.176 0.188 0.198 0.208
Stouffer 0.126 0.180 0.214 0.235 0.252 0.264 0.275 0.285

Stouffer W 0.111 0.157 0.188 0.208 0.223 0.235 0.244 0.252
Min 0.018 0.012 0.007 0.008 0.009 0.011 0.014 0.016

Cauchi 0.052 0.059 0.063 0.065 0.067 0.068 0.070 0.071

ECDF

Sum 0.026 0.029 0.027 0.026 0.025 0.024 0.023 0.023
Product 0.023 0.025 0.025 0.025 0.025 0.025 0.025 0.024

Min 0.018 0.014 0.012 0.010 0.009 0.008 0.009 0.010
Max 0.026 0.030 0.029 0.027 0.024 0.021 0.018 0.015

Table IV: AURC Results

ECDF
Sliding
Window

Size
Sum Product Min Max

2 0.007 0.007 0.007 0.007
3 0.005 0.005 0.005 0.006
4 0.004 0.004 0.004 0.005
5 0.004 0.004 0.004 0.004
6 0.003 0.003 0.004 0.004
7 0.003 0.003 0.004 0.004
8 0.003 0.003 0.003 0.004
9 0.003 0.003 0.003 0.003

efficient use of ICP we used a siamese network to map high-
dimensional inputs to appropriate embedding representations.
To recover the validity of ICP when subsequent inputs are
time-correlated we combined the computed p-values using
different multiple hypothesis testing methods. The experimen-
tal results using the GTSRB dataset, first demonstrate that
taking into account one input at a time lead to over-confident
classifiers. When p-values from more than one input data are
combined using either merging functions or quantile functions
based on ECDFs, we can recover the validity of the prediction
sets. The approach is optimized to minimize the risk given
a data coverage. The evaluation results showed that the use
of more than one subsequent inputs is beneficial and larger

sliding window sizes lead to lower risk. The use of more than
one subsequent inputs is also beneficial for computing the
credibility and confidence needed for the selective classifer.
Classifications based on multiple inputs experience less risk
for the same coverage compared to classifications based on
single inputs. Comparison between different window sizes
show that larger sliding windows lead to lower risk.
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