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Abstract—Machine learning and reinforcement learning are
increasingly used to solve complex tasks in autonomous sys-
tems. However, autonomous agents represented by large neural
networks are not transparent leading to their assurability and
trustworthiness becoming critical challenges. Large models also
result in a lack of interpretability which causes severe obstacles
related to trust in autonomous agents and human-machine
teaming. In this paper, we leverage the hierarchical structure of
behavior trees and hierarchical reinforcement learning to develop
a neurosymbolic model architecture for autonomous agents. The
proposed model, referred to as Evolving Behavior Trees (EBTs),
integrates the required components to represent the learning
tasks as well as the switching between tasks to achieve complex
long-term goals. We design an agent for autonomous navigation
and we evaluate the approach against a state-of-the-art hierar-
chical reinforcement learning method using a Maze Simulation
Environment. The results show autonomous agents represented
by EBTs can be trained efficiently. The approach incorporates
explicit safety constraints into the model and incurs significantly
fewer safety violations during training and execution. Further, the
model provides explanations for the behavior of the autonomous
agent by associating the state of the executing EBT with agent
actions.

Index Terms—explainable AI, behavior trees, hierarchical
reinforcement learning, autonomous navigation

I. INTRODUCTION

Autonomous systems are becoming more effective by using
learning-enabled components (LECs) trained using machine
learning (ML) and reinforcement learning (RL) methods. Au-
tonomous agents used in complex safety-critical applications,
such as autonomous driving, cyber-security, and healthcare,
may cause unintended and harmful behavior if they are not
carefully designed and used [1]. For such applications, agents
must be trustworthy and explainable so that they can be
incorporated into autonomous systems.

RL has been used extensively to perform autonomous
tasks while maintaining safety [2]–[4]. RL agents typically
use neural network models as function approximators trained
using data-driven optimization methods to solve specific tasks.
Existing algorithms work very well for short-term tasks with
well-defined rewards. However, as tasks become longer and
more complex, agents need to perform multiple subtasks that
need to be coordinated at varying time scales. Learning models
rely on an increasing number of parameters, are harder to
train, and may even fail to to achieve long-term objectives
with multiple tasks [5]–[7]. Large neural networks are not

transparent leading to their assurability and trustworthiness
becoming critical challenges. Large models also result in a
lack of interpretability which causes severe obstacles related
to trust in autonomous agents and human-machine teaming.

Autonomous agents need to complete multiple tasks over
variable length time intervals. An agent performing a long-
term task in a complex environment can decompose the task
into multiple subtasks and determine how to coordinate these
subtasks using the information received from the environment.
This coordination can be achieved by creating a hierarchical
organization of subtasks together with logical conditions that
determine their execution. Autonomous agents designed to
solve complex long-term goals can be represented by Behavior
Trees (BTs) [8]. BTs have become a important tool in the
design of autonomous agents in game AI and robotics, and
are widely appreciated for their modularity and reactivity [9]–
[11]. They provide an explicit hierarchical representation of
the task and control structure of an agent based on components
that are interpretable, modular, and reactive. Further, BTs can
use LECs for representing the behaviors of a set of designated
nodes and/or subtrees [12], [13]. Existing methods can be used
for synthesizing the structure of BTs [12] and learning the
behaviors of nodes [14].

Learning the parameters of the LECs can be accomplished
using RL. In previous work, RL was shown to add flexibility
and discover novel solutions to subtasks which is important
when modeling an autonomous agent for a video game or
robotics task. The approach presented in [11] uses a MAXQ
approach to produce adaptive behaviors with constraints. Sim-
ilarly, [10] presents an approach that learns behaviors using Q-
Learning and incorporates them into a BT structure. Different
methods and examples of BTs in robotics with AI algorithms
are discussed in [8]. BT nodes realized as LECs have been
used as execution and control behaviors for the popular video
game Minecraft in [9]. Applications for traffic control flow of
autonomous guided vehicles were explored in [15]. BTs with
LECs are developed to play a minigame in StarCraft 2 [16].
Hierarchical RL (HRL) is used to train components in BTs
in [17]. A finite set of option tasks are predefined by the user,
where the user specifies the purpose of each option using a
task-specific reward function.

In this paper, we leverage the hierarchical structure of BTs
and HRL to develop a neurosymbolic model architecture of
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an autonomous agent. The proposed model, referred to as
Evolving BTs (EBTs), integrates LECs and standard compo-
nents to represent the learning tasks of an autonomous agent
as well as the switching between tasks that is required to
achieve complex long-term goals. Our approach for training
EBTs relies on goal-conditioned HRL, an RL method that
decomposes the problem to well-defined components with
multiple subgoals [5]–[7]. We consider autonomous navigation
as a canonical problem for designing an agent using the pro-
posed model. Autonomous navigation is a long-term problem
for an agent that needs to reach an arbitrary goal position
starting from any initial position by following waypoints or
landmarks while maintaining safety by avoiding collisions
with obstacles. The overall goal can be achieved by performing
and coordinating short-term simpler subtasks.

The main technical contributions of our work are:
• We develop an approach for designing a safe explainable

agent for autonomous navigation using EBTs trained
using goal-conditioned HRL. The model incorporates
multiple LECs that are integrated for achieving the long-
term navigation goal while maintaining safety. In our
approach, we design and optimize an explainable agent
for autonomous navigation that performs interdependent
learning tasks at different time scales that are jointly
trained.

• We evaluate the approach against a state-of-the-art HRL
method using a Maze Simulation Environment. The re-
sults show the autonomous agents represented by EBTs
can be trained efficiently using HRL. The approach
incorporates explicit safety constraints in the model and
incurs significantly fewer safety violations both during
training and execution. Further, the model provides ex-
planations that HRL methods do not for the behavior
of the autonomous agent by associating the state of the
executing EBT with the actions determined by the LECs.

II. PROBLEM FORMULATION

A. Autonomous Agent Design
Machine learning (ML) and reinforcement learning (RL)

are increasingly used to solve complex tasks in autonomous
systems. For example, hierarchical reinforcement learning
(HRL) is used to design agents that perform autonomous
navigation and robotic manipulation tasks. An agent learns
how to make a sequence of decisions in an interactive envi-
ronment through exploration via trial and error using feedback
from its experiences. In RL, an agent aims to learn its policy
in order to optimize the received rewards over a long-term
perspective. Typical algorithms rely on function approximators
such as deep neural networks that receive information from
the environment and compute the optimal actions. Existing
algorithms work very well for short-term tasks with well-
defined rewards. However, complex long-term tasks require
performing multiple subtasks that need to be coordinated at
different time scales. Increasing the parameterization of neural
network architectures for solving such complex problems re-
sults in fundamental limitations. The agents are not robust and

Fig. 1: Point Maze Autonomous Navigation Task

cannot generalize to changes in the environment. In addition,
large neural network models are not transparent leading to
critical challenges arising in their assurability and trustwor-
thiness. Large models also result in a lack of interpretability
which causes severe obstacles related to trust in autonomous
agents and human-machine teaming.

In general, autonomous agents need to complete multiple
tasks over variable length time intervals. An agent performing
a long-term task in a complex environment can decompose
the task into multiple subtasks and determine how to coordi-
nate these subtasks using the information received from the
environment. This coordination can be achieved by creating a
hierarchical organization of subtasks together with logical con-
ditions that determine their execution. Well-defined subtasks
can still be performed using learning-enabled components
(LECs) trained, for example, using RL methods to cope with
the uncertainty and variability of the real-world. Further, for
safety critical applications, the agents can incorporate safety
monitors and mitigation actions that are coordinated with the
execution of the tasks.

In face of these challenges, the objective of the paper is
to develop a neurosymbolic model representation for an au-
tonomous agent that (1) employs LECs for performing specific
subtasks, (2) enables switching between subtasks reacting to
information received by the environment, and (3) captures an
explicit hierarchy by incorporating the control flow required to
execute the subtasks at varying time-scales. The model must
integrate learned representations for the LECs and symbolic
representations for coordination. Also, the model must allow
for optimization through training. Specifically, in this paper we
consider hierarchical RL methods for training. Further, after
training, the model must be used for execution and evaluation
of the autonomous agent.
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B. Autonomous Navigation

We consider autonomous navigation as a canonical problem
for designing an agent using the proposed neurosymbolic
model. Autonomous navigation is viewed as a long-term prob-
lem for an agent that needs to reach an arbitrary goal position
starting from any initial position by following waypoints or
landmarks while maintaining safety by avoiding collisions
with obstacles. In a safety critical application, such as au-
tonomous driving, it is necessary that during execution the
system maintains safety properties and models its current high-
level behaviors for trustworthiness and for manual intervention
in the case that the system exhibits unsafe behavior. The
overall goal can be achieved by performing and coordinating
short-term simpler subtasks.

We consider a specific example with a fixed ”U” shaped
Point Maze where the long-term task is to navigate to a
goal position using an autonomous point agent as shown in
Figure 1. The agent must determine the landmarks to be
followed to reach the goal as well as the low-level continuous
control actions to reach the landmarks. We use HRL to learn
both optimal landmarks and control actions. Also, the agent
must learn to avoid colliding with the barrier obstacles on
the exterior of the maze. In a realistic navigation scenario,
collisions will cause damage to the system or other environ-
ment factors. In summary, the agent must learn to reach any
goal position in the maze environment while avoiding safety
violations from collisions with barriers.

III. BACKGROUND

A. Behavior Trees

The proposed neurosymbolic model is based on behavior
trees (BTs). A BT is a tree structure used to model an
autonomous agent which captures the hierarchy of various sub-
tasks as well as the logical conditions for switching between
them during execution. BTs have been used in various applica-
tions such as video game non-playable characters (NPCs) and
robotics tasks [8], [9], [16] and offer important advantages for
representing autonomous agents that include interpretability,
modularity, and reactivity [8].

Interpretability is inherent to the structure of a BT. Compo-
nents correspond to specific subtasks that need to be executed.
These components are integrated into control structures that
are identifiable as a sequential or logical decision process.
Capturing such processes is beneficial for representing the
switching between specific subtasks that are performed by an
agent.

Modularity allows for re-use of subtasks as well as addition
of new tasks in the BT. Modular subtasks are also transferable
across different tasks with shared components, allowing for
simple construction of new BTs. For example, in the au-
tonomous navigation problem, we can add new subtasks in
the BT representation of an agent for safety monitoring and
mitigation.

Each subtask in a BT represents a sub-tree in the structure.
BT’s reactively switch to subtasks at each step of execution

depending on logical conditions that can be evaluated using
information received from the agent or environment. Subtasks
can be paused and other higher-priority subtasks can be
executed.

BTs are constructed using various types of tree nodes [8].
At each step of execution, one or multiple nodes will be
ticked. Each node that is ticked returns a status of either
Success, Running, or Failure. Figure 2 illustrates the visual
representation for the nodes that are used in the construction
of a learning-enabled BT in our approach.

There are two main types of BT nodes. The first are
execution nodes. They can only be used as the leaf nodes
of the BT and have two following subtypes:

• Action - This is a user-defined node programmed to
complete a subtask. During execution, this node will
return a status of Running. After execution, if the node
is successful in completing the subtask, it will return a
status of Success, otherwise Failure.

• Condition - A condition node returns a status of Success
or Failure, depending on the respective result of a logical
condition.

The second type of nodes are control nodes that determine
the control flow of the BT during execution. Each control node
has n children that determine its current status. Children can
be either execution or other control nodes. The control nodes
are of the following types:

• Sequence (→) - A sequence node executes its children
from left to right. If all children return Success, then
the sequence returns Success. Otherwise, once one child
returns Failure, Failure is returned by the sequence and
execution terminates.

• Fallback (?) - This node executes its children left to right
until one child node returns Success causing the fallback
to return Success. Otherwise, if all child nodes return
Failure, then the fallback returns Failure.

• Decorators (⋄) - Decorators transform the status returned
from one child. An example decorator is an Inverter
(∼) which transforms a status of Success to Failure and
vice-versa. Another decorator is RepeatUntilNSuccesses
(RepN) which returns Success only when its child has
returned Success N times.

Each control node, except decorators, can incorporate mem-
ory. Memory maintains a history of which children have
returned Success, so the control node does not need to con-
tinue status checking. Nodes without memory are useful for
conditions that always need to be evaluated or reactive action
nodes that require re-execution based on logical conditions.

B. BTs with Learning-enabled Components

LECs have been incorporated into execution and control
nodes to represent behaviors that are learned [8]–[11]. The
behavior of a node is represented by a LEC that produces
actions dependent on information from the environment. A
LEC action node is illustrated in Figure 2b. Although LECs
could be trained using different ML methods, we consider
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LECs trained using RL. Note also that BT nodes can share
LECs between each other to increase efficiency in learning
and complete long-term tasks using HRL [16], [17].

C. Goal-Conditioned Hierarchical Reinforcement Learning

We use HRL for training the neurosymbolic model of an
agent. HRL has been shown to complete long-terms tasks
in cases where standard RL algorithms fail [5]–[7]. Specif-
ically, for training we use goal-conditioned HRL due to its
explicit LECs for sub-tasks and explainable subgoals. Goal-
conditioned HRL introduces a subgoal policy πsg that assigns
subgoals sampled from a goal-space to a low-level policy πlow

to achieve. πsg samples a subgoal every k timesteps, while
πlow will generate an action every timestep. The intuition
is that the low level policy learning to achieve short-term
subgoals that ultimately lead to the long-term goal is easier
than training to reach the actual goal.

A popular approach is HRL with off-policy correction
(HIRO) [18], shown to improve sample efficiency and training
success in complex long-term problems. HRL with a k-step
adjacency constraint (HRAC) [19] expands on HIRO, by
constraining sampled subgoals to be reachable in k actions
from the current agent state [19]. This improves learning
performance for long-term manipulation and navigation prob-
lems. HRL guided by landmarks (HIGL) [20] is an extension
of HRAC which guides πsg to produce explicit subgoals
towards explored landmarks leading to a goal. During training,
HIGL, building on previous work in state-space mapping using
landmarks [21], samples landmarks based on coverage and
novelty and constructs a graph from landmarks, the goal, and
the agent’s state. A regularization term is introduced for πsg

that encourages k-step adjacent subgoals towards the landmark
on the shortest path to the goal. This landmark loss is a
combination of the adjacency term with landmarks, replacing
the need for the HRAC adjacency term in the subgoal policy
loss. Then during execution, the subgoal and low-level policy
are used with landmarks excluded.

Our approach for training the proposed neurosymbolic
model is based on HIGL since it includes LECs for landmarks,
subgoals, and low-level actions. The LECs are incorporated in
the BT structure, and in addition, we incorporate an LEC for
ensuring safety. The neurosymbolic model based on the BT
structure represents explicitly switching between the various
learned behaviors during execution of the autonomous agent.

IV. EVOLVING BEHAVIOR TREES

Developing an autonomous agent that can perform a com-
plex long-term task requires coordination of multiple standard
and learning-enabled components. Components must be in-
tegrated into an architecture that provides the control flow
required for training and executing the agent. In this paper, we
use Evolving Behavior Trees (EBTs) as the model representa-
tion for the architecture of an autonomous agent. The primary
benefits of using EBTs lie in explicitly representing learning
tasks using BT nodes together with the control structure that
determines switching between tasks at varying time scales.

EBTs allow for decomposing a complex ML architecture
into a hierarchy of LECs together with the conditions and
control required for their coordination. The model provides
an interpretable representation of the agent. In addition, tasks
captured as LECs are reusable and are transferable between
EBTs to support different goals and missions.

EBTs provide mechanisms for capturing reactive switching
between tasks at different time-scales based on well-defined
logical conditions. In the autonomous navigation example, the
agent decides when to update the next landmark on the path to
the goal based on a logical condition that checks if the agent is
within a certain proximity of the current landmark. The EBT
node responsible for generating and following the landmarks
can be implemented as a LEC which operates at a slower rate
than the node for determining the optimal low-level control
actions for moving safely towards a landmark.

In the following, we describe the design process of EBTs
for the autonomous navigation problem. We first focus on
the learning tasks and associated LEC action nodes. Then,
we construct an EBT for execution of the autonomous agent
that utilizes the LECs. Finally, we explain how the LEC
action nodes will be jointly optimized through a HRL training
process.

A. Learning Tasks

We first define the long-term task for the autonomous
agent. For the autonomous navigation problem, the task is to
navigate between any initial position and final goal position
while avoiding safety violations. The task can be accomplished
using continuous control, a subgoal policy, and landmark
generation as shown in [20]. These subtasks are performed
using LECs that are represented as BT nodes. The subtasks
need to be integrated into a control structure for generating
optimal low-level control actions toward short-term subgoals
in the direction of landmarks on the path to the final goal.

Low-level Control Policy LEC: The optimal low-level
control is determined by the action node SafeMoveTo. The
objective of the component is to determine the optimal action
at every time step to move towards a short-term goal in the
environment. The node can be implemented as a LEC that
receives the current state of the agent and proximity sensor
readings, and computes the optimal control action. Such a
LEC can complete short-term tasks and can be used together
with LECs that are responsible for generating subgoals and
landmarks.

Subgoal Policy LEC: The objective of this component is to
generate locations (referred to as subgoals) in the environment
that can be reach in a fixed number of steps towards the target
position. The component is implemented using a LEC as the
action node SafeGetSG in the EBT. Specifically, SafeGetSG
generates a subgoal towards the target position that can be
reached in k-steps from the previous subgoal and not in close
proximity to obstacles. SafeGetSG provides the subgoal to the
low-level control policy LEC SafeMoveTo which runs for k
times steps to move the agent towards the subgoal.
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(a) Action (b) LEC Action (*) (c) Condition (d) Sequence (e) Fallback

Fig. 2: Base behavior tree nodes used in the formulation of our LEC action nodes and control structure in the Autonomous
Agent EBT.

Landmark Generation LEC: To generate high-level land-
marks for subgoals to move towards, we implement the LEC
action node CompLkGraph. This node uses learned locations
previously explored in the environment to construct a graph of
landmarks. Using this graph, we can execute graph planning
algorithms through landmarks to the goal. The landmarks are
generated based on HIGL [20] which considers both coverage
and novelty. Landmarks are spread around the environment.
Novel locations are dissimilar from locations already seen in
exploration, encouraging an agent, during training, to explore
new areas.

Landmark Selection LEC: After generation of the graph, the
objective is to select a landmark that is close to the agent and
guides it to the goal. For this objective, we use an additional
LEC action node, GetLk, to incorporate the agent’s location
and goal into the learned graph. Based on the shortest path to
the goal, the node selects the landmark adjacent to the agent’s
location on the path. This process is repeated each time the
agent reaches the current landmark until the agent reaches the
goal. The selected landmarks are used to generate subgoals,
which, in turn, are used to generate low-level actions.

B. Autonomous Agent EBT

The EBT governing the execution of the autonomous agent
is shown in Figure 3 with a sequence node as the root of
the tree. Initially, the landmark graph is computed once by
executing CompLkGraph. Landmarks are generated only for
coverage since exploration is not necessary as it is in training.
After computing the graph, CompLkGraph is prevented from
further execution using a logical condition represented by the
condition node LkGraph? that will always return Success after
execution of CompLkGraph.

After computing the landmark graph, the EBT switches
to the next child that represents the traversal of the agent
to the target position. Using a fallback node, the navigation
process executes until the agent reaches the target position
represented by the condition node Done?. A nested fallback
either retrieves a new landmark or navigates towards the
current one using subgoals from SafeGetSG and low-level
actions from SafeMoveTo. A new landmark is retrieved using
GetLk if the agent is within a certain proximity to the current
landmark, represented by the LkClose?, returning Success if
the logical condition is satisfied. Using a sequence, GetLk

will only be executed if the previous child LkClose? returns
Success.

C. Training

The learning tasks incorporated into the EBT prescribe the
basic behaviors that need to be performed by the autonomous
agent. The learning tasks can be realized by LECs that can
handle the uncertainty and variability of the environment. The
LECs are dependent on each other and they must be jointly
trained.

The state s of the agent includes the agent’s location gcur,
velocity, rotation, and sensor information. The low-level con-
trol policy πlow(a|s, g; θlow) used in SafeMoveTo determines
the control action a towards a subgoal gsel parameterized by
θlow. The reward function is based on the distance from the
agent gcur to the subgoal gsel and includes a penalty Clow if
the agent is close to a barrier and it is defined by

rlow =

{
−d(gcur, gsel) if d(gcur, oi) ≥ ϵ

−d(gcur, gsel)− Clow if d(gcur, oi) < ϵ

where oi ∈ O,∀i ∈ |O|, O represent the boundaries of the
obstacles, and ϵ > 0 is a threshold for how close to an obstacle
an agent is allowed to be.

The subgoal policy πsg(g|s; θsg) used in SafeGetSG gener-
ates a subgoal gsel towards a landmark using state s and model
parameters θsg . The reward function for the subgoal policy is
defined based on the sum of the distances to the goal over a
k-step time interval. A penalty Csg is induced if a subgoal is
located close to an obstacle. The definition of the the reward
function is given by

rsg =

{
−rsg,sum if d(gsel, oi) ≥ ϵ

−rsg,sum − Csg if d(gsel, oi) < ϵ
,

where

rsg,sum =

k∑
i=1

d(gcur, gfinal). (1)

Furthermore, the subgoal policy is optimized using a learning-
enabled adjacency component to produce subgoals that can be
reached in a fixed number of steps.

The subgoal policy is dependent on the generation of
learned landmarks. CompLkGraph generates the landmarks
based on the locations encountered from the low-level pol-
icy. As the agent explores the environment, the landmarks
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→

? ?

Done?

→

?

→

SafeGetSG SafeMoveToGetLkLkClose?

LkGraph? CompLkGraph*

* * *

Fig. 3: EBT Model of the Autonomous Agent.

computed increasingly cover the reachable space. The cov-
erage graph is determined using farthest point sampling [22].
Also, using a learning-enabled novelty component based on
Random Network Distillation [23], novel locations, dissimilar
from other locations, are stored as landmarks. The novelty
of locations evolves over training, encouraging the subgoal
policy to direct towards unexplored areas in the environment,
possibly leading to new strategies to the goal. The collection
of landmarks for coverage and novelty are then captured
into a weighted graph where weights are distances between
landmarks approximated using a value iteration technique
utilizing the low-level policy [21]. Only landmarks that are
within a certain distance have weighted edges, since the error
increases as distance increases [21].

The landmark selection in GetLk is inherently related to the
generation of the landmark graph in CompLkGraph. Hence,
GetLk will also be dependent on the locations explored by the
low-level policy. The node adds the agent’s location gcur and
final goal gfinal to the landmark graph using the same distance
approximation technique. The shortest path is constructed from
the learned landmark graph and a landmark is selected based
on learned distance approximations.

V. EVALUATION

We evaluate the training of the autonomous agent focusing
on the efficiency of the training process with an additional
training EBT. We also evaluate the performance of the agent
EBT we constructed for execution in Figure 3. We compare
with the state-of-the-art HRL approach HIGL [20]. We also
extend HIGL by modifying the policies to incorporate safety

1
2

3
4

5

Fig. 4: Maze goals in execution of the agent chosen based
on proximity to barriers and long-term objectives. The goals
map to coordinates [[−1, 7], [0, 8], [3, 6.5], [9.5, 9.5], [8, 4]] re-
spectively. Goal 2 at [0, 8] is the evaluation objective during
training.

similarly to the LECs used in the EBT representation of the
agent (HIGL Safe).

The difference between HIGL Safe and EBT is the explicit
representation of the action and control flow using the EBT
structure and the ability to extract high-level explanations from
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the execution trace of an EBT. Therefore, we expect HIGL
Safe and the EBT to exhibit similar quantitative performance
with EBT representing the high-level behavior switching
through its explainable execution.

A. Software and Hardware

We use the PyTrees framework to implement EBT struc-
tures, PyTorch [24] for optimization of LECs, and OpenAI
Gym [25] for interaction with the Point Maze environment.
The Point Maze environment is implemented in the MuJoCo
Simulator [26]. The experiments are processed using a single
GPU (RTX 3070) and 16 CPUs (11th Gen Intel Core i9-
11900F, 2.50 GHz). PyTrees: https://github.com/splintered-
reality/py trees

B. Training Setup

For training, we develop an additional EBT that models the
training process in HIGL Safe to compare training with BT
nodes to standard approaches. We use the TD3 RL algorithm
[27] with multi-layer perceptrons for both the low-level control
and subgoal policies. To determine unsafe states for the
agent, we utilize 8-dimensional proximity sensor readings. We
choose ϵ = 0.02 as our threshold for safety violations and
Clow = 10 as the penalty during training.

For the subgoal policy, we choose a fixed amount of k = 10
time steps between sampling subgoals. To determine unsafe
subgoals, we assume that we can detect if a subgoal is close to
an obstacle. Similar to the low-level policy, the threshold and
the penalty are set to ϵ = 0.03 and Csg = 10 respectively. The
landmarks during training are retrieved from landmark graphs
with 40 landmarks: 20 for coverage and 20 for novelty.

We use 1000 episodes for training the agent. Each episode is
a simulation of the navigation task over 500 time steps, where
a time step is incremented every tick SafeMoveTo executes a
low-level action. The agent begins at location [0, 0] and has to
reach a random position gfinal ∈ [[−2, 10] × [−2, 10]] using
landmarks sampled at a safe distance δ = 0.5 from the barriers.
Evaluation towards a fixed goal at [0, 8] is conducted every
5000 timesteps.

C. Training Performance

The results of the training are shown in Figure 5. The EBT
and HIGL Safe achieve a higher level of success (100%) in
fewer training time steps than the baseline HIGL as shown
in Figure 5a. This is due to HIGL exploring unnecessary
and unsafe routes that do not lead to the target position. For
example, HIGL, at the beginning of training, can get stuck
colliding against barriers. When the policies consider safety,
the agent collides with fewer barriers and explores the space
more efficiently, ultimately reaching the goal. EBT and HIGL
Safe have similar performance.

Figure 5b shows that the EBT and HIGL Safe achieve lower
safety violations over training. Furthermore, the decrease in
safety violations is related to an increase in training success.
In the EBT approach, once the agent learns to minimizes safety
violations, it can explore the environment more efficiently. In

HIGL, the agent does not learn to avoid barriers, encountering
more safety violations, but after the agent learns to navigate
to the goal, safety violations drastically decrease.

D. Execution Setup

To evaluate the execution of the autonomous agent, we
use the optimized ComputeLkGraph, GetLk, SafeGetSG, and
SafeMoveTo in the EBT in Figure 3. The landmark graph com-
puted from ComputeLkGraph contains 20 landmarks based
on coverage. Since, the agent is not in the exploration phase
during training, we choose to not use the 20 novel landmarks.
We evaluate the execution EBT using variable final goal po-
sitions. We choose five different positions in the environment
given by [[−1, 7], [0, 8], [3, 6.5], [9.5, 9.5], [8, 4]] as illustrated
in Figure 4. For each goal and approach, we record the number
of safety violations and time steps to reach the goal for 500
episodes.

E. Execution Performance

Our results in Table I demonstrate that both HIGL Safe
and EBT achieve significantly lower safety violations per
episode than HIGL. Using a two-sample t-test, we were able
to determine that there is a statistically significant difference
(p < 0.001) between the mean safety violations of HIGL and
both HIGL Safe and the EBT approach.

It is also interesting to note there is a statistically significant
difference (p < 0.001) between HIGL Safe and EBT for safety
violations. The EBT consistently incurs less than 0.1 safety
violations on average. In the case of HIGL Safe, when the
goal is [3, 6.5] the mean safety violations is 0.31, which is
around one safety violation every three timesteps. This is a
scenario where the agent needs to take tight turns. For the
other goals, the EBT and HIGL Safe have a similar amount
of safety violations incurred. Therefore, in most cases, these
two approaches have similar performance. Since, the TD3
algorithm with the reward penalty in is used to optimize the
policies in HIGL Safe and the EBT, we suspect that this
anomalous scenario is due to stochasticity in the training
runs. In either case, we will conduct further analysis into
this scenario and conduct future work towards an optimization
algorithm that guarantees safety during training and execution.

There is a trade off between safety and efficiency. The
results show that HIGL is able to outperform HIGL Safe and
the EBT with a difference in means of 20 timesteps. However,
this is due to HIGL using unsafe routes that incur safety
violations to reach the goal faster. The EBT and HIGL Safe are
more conservative, avoiding safety violations by maintaining
distance from barriers, leading to an increase in timesteps to
reach the goal.

F. Explainability

The EBT in Figure 3 represents the architecture of the
autonomous agent. During execution, the low-level actions can
be explained based on the switching and status of the sub-
tasks. In our implementation, we use the PyTrees framework
to view the structure and execution status of the EBT at every
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Fig. 5: Evaluation over training 500k timesteps (1000 episodes) for the baseline HIGL, HIGL Safe, and EBT. Each datapoint
represents (a) the rate the agent was successful in navigating to a goal at [0, 8] or (b) the average number of safety violations
over five evaluation episodes executed every 5000 timesteps. Since, each episode is 500 timesteps, there is a max of 500
safety violations per episode shown as a dashed red line (b). The solid lines and shaded regions represent mean and standard
deviation over four training runs. For increased visual clarity we apply equal smoothing to all of the curves.

Agent
Execution Safety Violations Timesteps to Goal

Model Mean Median Std Dev Mean Median Std Dev

HIGL 8.1 6 7.45 90.6 95 34.7

HIGL Safe 0.06 0 0.4 112.3 111 33.2

EBT 0.01 0 0.17 111 113 31.2

TABLE I: Execution of the agent over 2500 episodes (500 for each of the five goals) for number of safety violations (collisions
with barriers at each timestep) and timesteps to navigate to the goal.

tick. At a particular tick, the agent illustrates the state of
the EBT with nodes that have succeeded, failed, running, or
not currently executing. Associating the state of the executing
EBT with the actions determined by the agent provides very
useful explanations for the behavior of the autonomous agent
especially compared with HIGL and HIGL Safe.

HIGL and HIGL Safe output a sequence of low-level
control actions and subgoals over one episode to represent
the execution process to reach the goal. In contrast, using the
EBT representation, we obtain a sequence of EBT states paired
with actions. The EBT states are explanations for the actions
and the behavior or subtask associated with it. For example,
in the computation of the landmarks, there is a trajectory
of subgoals and low-level actions until the agent is close to
the current landmark. We can associate this trajectory with
the current landmark as the agent’s objective is navigating to
this landmark. The EBT states also represent the switching
between the nodes SafeMoveTo and SafeGetSG, and reacting
to the logical condition in LkClose? causing GetLk to execute
producing a new landmark. In summary, by monitoring the
EBT execution, low-level actions can be associated with
subtasks performed by well-defined LECs providing providing
explanations about the behavior of the autonomous agent.

Towards future work, a comparative study can be conducted
between the BT approach and other approaches with a sim-
ilar representation such as Hierarchical State Machines. To
quantitatively evaluate the complexity of the models, we will
look at using graph metrics, such as number of nodes, depth,
or clusters. Further, one could conduct a qualitative study
where participants describe and rate the explanation from the
approach. These studies poses new challenges and as so we
leave these for future research.

VI. CONCLUSION

The paper presents an EBT model for representing an
autonomous agent trained with goal-conditioned HRL. The
model incorporates multiple LECs that are integrated for
achieving the long-term navigation goal while maintaining
safety. The approach is evaluated using a maze simulation
environment and the results show the autonomous agent
represented by EBTs can be trained efficiently using HRL.
Further, the model provides explanations for the behavior of
the autonomous agent by associating the state of the executing
EBT with the actions determined by the LECs.

A limitation of our approach is the manual design of
the EBT structure which requires domain knowledge. In the
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future, we will address this limitation by looking into methods,
such as genetic programming, that can learn the optimal
structure of the EBT. Another limitation is our approach
minimizes safety violations during execution, but does not
guarantee zero safety violations. Further work and analysis
will need to be conducted to develop a safety component
with theoretical guarantees. Also, we will extend our approach
to realistic safety critical applications using underwater and
aerial vehicles. Furthermore, we will investigate methods for
analyzing the assurability, explainability, and trustworthiness
of autonomous agents represented by EBTs.
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