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Abstract—A network of reinforcement learning (RL) agents
that cooperate with each other by sharing information can
improve learning performance of control and coordination tasks
when compared to non-cooperative agents. However, networked
Multi-agent Reinforcement Learning (MARL) is vulnerable to
adversarial agents that can compromise some agents and send
malicious information to the network. In this paper, we consider
the problem of resilient MARL in the presence of adversarial
agents that aim to compromise the learning algorithm. First, the
paper presents an attack model which aims to degrade the perfor-
mance of a target agent by modifying the parameters shared by
an attacked agent. In order to improve the resilience, the paper
presents aggregation methods using medoid and soft-medoid.
Our analysis shows that the medoid-based MARL algorithms
converge to an optimal solution given standard assumptions,
and improve the overall learning performance and robustness.
Simulation results show the effectiveness of the aggregation
methods compared with average and median-based aggregation.

Index Terms—Actor-critic algorithm, adversarial attacks,
multi-agent reinforcement learning, neural networks, resilient
aggregation.

I. INTRODUCTION

With the recent advancements of deep learning, Reinforce-

ment Learning (RL) has been applied to many real-world

problems with excellent learning performance [1], [2]. At

the same time, distributed learning has become a prominent

research area in recent years, due to the astonishing progress in

machine learning, data availability, and increased computational

efficiency. Some of its applications are in cellular networks,

smart homes, smart wearable [3], etc. Both these areas together

have given rise to a very exciting research direction, namely

Multi-agent Reinforcement Learning (MARL), and it has

started receiving an increased amount of research attention

from various communities [4]–[6]. In any distributed learning,

each agent shares information with some of the other agents,

referred to as its neighbors. Based on how the agents interact

with the environments, MARL can be of two types. The first

type, MARL in shared MDP, is where the agents operate

in the same environment, and one agent’s action influences

others [7]. In contrast, we are interested in the MARL in
independent MDP setup, where the agents operate in similar

but independent environments, and one agent’s actions do not

influence any other agent [8]. The agents aggregate the useful
information received by communicating with their neighbors.

Due to security concerns, it is often not practical to share the

observation data between agents [9]; instead, they cooperate by

sharing the model parameters. This type of operation is applied

in a cellular network, where the service providers attempt to

learn the user behavior by interacting with different data, but

the underlying models are similar.

The reliability of the system and the learning performance

can be improved by using cooperation among the agents.

The agents share information with each other and update the

parameters accordingly, which causes an overall improved

learning performance [8], [10], [11]. This is achieved either by

using a centralized network, where all the agents send their data

to the same server [12], [13], or in a decentralized way, where

each agent makes its own decision while communicating with a

subset of other agents [7], [10], [14]. Distributed MARL enjoys

some distinct advantages in contrast to the centralized setup.

First, parallel computation can be enabled, which significantly

improves the utilization of computational resources. Second, it

is easier to add new agents and remove malfunctioning ones

from a decentralized network. In addition, a fully-decentralized

distributed learning effectively addresses the scalability issue

and single-point-of-failure problem.

Even though cooperation among agents helps improve

learning performance in an ideal scenario, the overall perfor-

mance of the network may deteriorate in practical cases when

some of the agents are influenced by an external adversary

[8]. MARL algorithms are subject to potential attacks from

various adversarial entities that may target a fraction of

agents in the network. When these attacked agents share the

corrupted information with their neighbors, propagation of this

harmful information may occur potentially deteriorating the

performance of the entire network. This makes it highly critical

for the healthy agents to have a mechanism to maintain their

performance in the presence of a few attacked neighbors whose

identity is unknown to them. The research efforts existing

in literature show that the presence of adversarial attacks in

practical applications of reinforcement learning algorithms may

compromise its performance. For example, [15] shows that

strategically designed attack can affect the performance of

Atari games. RL applied to path-planning application can get

affected due to cyber-attacks [16], [17]. Thus, the design

of resilient algorithms has become a vital area of research

in distributed learning. The main goal is to enable normal

agents to mitigate the effect of corrupted parameters shared by

adversarial agents. One of the most effective ways of achieving
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this goal is by using resilient aggregation, where the healthy

agents update their parameters based on the local and the

shared information [7], [18], while filtering out the effect of

the adversarial information as much as possible.

Similar to the design of resilient learning methods, devel-

oping effective attack models is an active area of research.

There are multiple ways to design an attack. Here we utilize

communication between agents for this purpose. The adversary

modifies the shared parameter of the attacked agent to minimize

the reward of the targeted agent. Attack design by exploiting

the inter-agent communication has been explored in federated

learning [19]; however, to the best of our knowledge, it has

not been applied in the context of MARL.

In this paper, we consider a few different learning tasks,

which the agents learn using an actor-critic algorithm. Actor-

critic learning methods, which are modifications of the standard

policy gradient RL method, are effective for various control

and learning tasks [7], [12], [20]. Actor-critic approach requires

two networks - the critic estimates the state value function,

whereas the actor network evaluates the new state of the system.

Here, we present two novel targeted attack models - depending

on which aggregation method is being used by the RL agents.

It is assumed that the adversary has complete knowledge

about the agents’ algorithm, and the underlying graph of the

communication between agents. The adversary uses this inter-

agent communication to launch the attack, where the parameters

shared by a particular agent (victim node) are modified to

inject the attack to the system. The attack design involves

solving an optimization problem, and it is shown to be effective

through simulation results. Medoid, which is a generalization

of median in a higher dimension, and soft-medoid, which

is a softmax version of the medoid [21], are introduced as

aggregation methods in this paper. The aggregation in MARL

deals with higher dimension data, which limits the choice

for the aggregation function, as many geometric functions

do not translate well in higher dimensions. Both medoid and

soft-medoid have the properties of being applicable in higher

dimensions, and the aggregated data point always lies in the

convex hull of the original data points. In this work, the soft-

medoid aggregation achieves the highest collective reward

among all aggregation.

The contributions of this paper are the following:
i) We design targeted attacks by solving an optimization

problem that uses inter-agent communication. Two attack

models are designed that are suitable for a different type

of baseline aggregation method.

ii) We use medoid and soft-medoid as aggregation protocols

to combine the shared parameters from the neighbors.

These methods ensure better learning performance com-

pared to non-cooperative scenario, and are also resilient

against the proposed attacks. We analytically prove con-

vergence of the learned parameters and the collective

performance improvement in the absence of adversary.

iii) To measure the resilience of these aggregation methods

against attacks, we perform the breakdown point analysis

of these methods.

iv) Simulation results show the effectiveness of the aggrega-

tion methods in comparison with two baseline methods.

The proposed attack models are also simulated, and the

aggregation methods are tested against them.

II. RELATED WORK

In this section, we discuss a few key works from the literature

on relevant areas.

A. Multi-agent Reinforcement Learning

The problem of MARL in the shared MDP scenario

has been thoroughly explored in the literature. Based on

the assigned tasks and the environment, the agents can be

cooperative or competitive [12]. They learn more sophisticated

and complicated tasks through communication with each other.

Some of these works [12], [22], [23] use the paradigm of

centralized training with decentralized execution. There are

works in the literature that propose novel methods and explore

various application fields [24]–[28]. There are a few efforts that

explore the MARL in an independent environment setting. A

distributed Q-learning method was designed in [14]. Distributed

policy evaluation method with linear function approximation

was presented in [10]. Some other important works in this area

include [29], [30].
B. Attack Design in MARL

There are various types of attack that can be applied to RL

algorithms, depending on factors such as the time of the attack,

knowledge available to the adversary, or the attacked signal

[31], [32]. However, attack design for the MARL system needs

more research attention. Among the few existing efforts, the

work in [33] has designed an attack for cooperative MARL in

an interactive environment, where an adversarial agent aims to

maximize a malicious objective, and disregards other agents’

objectives. The effort in [34] was to design an effective attack

model for centralized training distributed execution based
MARL that is capable of reducing the total team reward by

attacking a single agent. Byzantine attack has been applied to

MARL in both independent [8] and cooperative [18] settings.

C. Resilient Aggregation in Learning

In reinforcement learning, the performance enhancement has

been achieved by average-based aggregation [10], or consensus-

based method [7]. A coordinate-wise trimmed mean was used

in [18] as a method of resilient aggregation. In federated

learning, various methods of aggregation functions have been

developed and explored, which have shown to be effective

against Byzantine attacks, examples include coordinate-wise

median [35], coordinate-wise trimmed mean [36], Krun and

multi-Krum [37], Bulyan and multi-Bulyan [38].

III. SYSTEM MODEL AND PROBLEM STATEMENT

Markov decision Process (MDP) is predominantly used

in describing the operation in RL [39]. An MDP can be

characterized as a tuple 〈S,A, P,R〉 [7], where S and A denote

the finite state and action spaces, respectively. P (s′|s, a) :
S × S × A → [0, 1] is the state transition probability from

state s to another state s′ determined by an action a, and
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R(s, a) : S × A → R is the reward function defined

as R(s, a) = E [rt+1|st = s, at = a], with rt+1 being the

immediate reward received at time t. An agent’s action is

defined by a function π. In the case of stochastic policy, it

is the probability of choosing action a at state s, given as,

π : S ×A → [0, 1]. For deterministic policies, the mapping is

defined as, π : S → A.
The notations used in this paper are fairly standard. For a

finite set A, the cardinality is denoted by |A|, [n] denotes the
set {1, 2, . . . , n} and (·)� denotes matrix transposition.

In this work, we consider a network of N agents, represented

by an undirected graph G = (V, E), where the nodes V
represent the agents, and the set of edges E represents pairwise

interactions between them. An edge (l, k) ∈ E , where l, k ∈ V ,
signifies that agents k and l exchange information with each

other. The neighborhood of agent k is the set of agents that

it interacts with including the agent k itself, and is denoted

as Nk = {l ∈ V|(l, k) ∈ E} ∪ {k}. The cardinality of the set

Nk is denoted as nk. We consider a stationary graph, meaning

that the set of neighbors for each agent remains the same

throughout the operation.

The agents operate in independent but similar environments,

which are modeled as independent MDPs given by Mk =
〈S,A, P k, rk〉 for k ∈ [N ]. This representation indicates that

the state and action spaces are fixed for all the agents, but the

transition probability and the reward functions may be different.

As the agents operate in independent MDPs, their actions do

not influence each other. The expected time-average return of

policy π for agent k is defined as

Jk(π) = lim
T

1

T

T−1∑
t=0

E(rkt+1) =
∑
s∈S

dkπ(s)
∑
a∈A

π(s, a)Rk(s, a)

where dkπ = limt P
k(st = s|π) is the stationary distribution

of the Markov chain under policy π for agent k. Further,
we define the action-value associated with a state-action pair

(s, a) under policy π for agent k at instant t as Qk
t (s, a) =∑

t E
[
rkt+1 − Jk(π)|s0 = s, a0 = a, π

]
. The objective of the

networked agents is to cooperatively learn the optimal policy

that maximizes the following optimization function:

max
θ1,...,θN

{
1

N

N∑
k=1

Jk(θk)

}
. (1)

In RL, the action-value function and the policy function can

be parametrized, and the same concept is extended in MARL.

We assume that the action-value function Qk
t of agent k has

the parameter wk
t , and the policy function of the same agent,

πk has parameters θkt .

In this work, we consider that each agent executes an inde-

pendent actor-critic algorithm which includes a combination

step to aggregate the parameters from the neighboring agents.

The agents share the actor and critic parameters with their

neighbors, and in the combination step that follows the update

step, each agent updates the parameters once again using the

shared parameters from the neighbors. In a standard actor-critic

algorithm [39], the critic update step is given as

μk
t+1 = (1− βk

w,t) · μk
t + βk

w,t · rkt+1,

w̃k
t = wk

t + βk
w,t · δkt · ∇wQ

k
t (w

k
t ).

(2)

where the action-value function is Qk
t (w) � Qk(skt , a

k
t ;w),

the action-value temporal difference (TD) error is given by

δkt � rkt+1−μk
t +Q

k
t (w

k
t )−Qk

t (w
k
t ), and β

k
w,t is the step-size.

The actor-step is given as

θ̃kt = θkt + βk
θ,t ·Qk

t (w
k
t ) · ψk

t , (3)

where ψk
t � ∇θ log πθk

t
(skt , a

k
t ) is the gradient of the log of

the policy, and βk
θt
> 0 is the step-size.

Here w̃k
t and θ̃kt are the intermediate values of the parameters

following the update step. These parameter are then shared with

the neighboring agents, and the agents use these information

at the combination step, given by

wk
t+1 =

∑
l∈Nk

ct(k, l) · w̃l
t, (4)

θkt+1 =
∑
l∈Nk

bt(k, l) · θ̃lt, (5)

where ct(k, l) and bt(k, l) are the aggregation weights assigned

by agent k to agent l at time t for the critic and actor parameter

aggregation respectively. These weights are normalized, i.e.,∑
l∈Nk

ct(k, l) = 1, and
∑

l∈Nk

bt(k, l) = 1. Two aggregation

matrices Ct and Bt are formed using the element-wise weights,

where Ct(k, l) = ct(k, l) and Bt(k, l) = bt(k, l). The assigned

weights depend on the aggregation algorithm being used.

The objective of this this work are the following:

i) design a novel attack scheme, targeted to a specific

node, for respective baseline aggregation methods used

by the agents, such that the return of the target agent is

minimized;

ii) implement the medoid and soft-medoid functions for

aggregation of the parameters;

iii) validate the proposed schemes through analytical and

simulation results.

So far we have considered an ideal scenario, where there is

no adversary in the system. But there are instances when one or

more of these agents are under attack, and normal agents do not

know the identity of these agents. In such a scenario, the agents

may receive compromised observation data, false rewards, or

maliciously modified parameters from the neighbors, which

causes their performance to be deteriorated. Here we design

an attack on the shared parameters, which is presented next.

IV. ADVERSARY MODELING AND ATTACK DESIGN

In this section, the proposed attack designs are presented.

We design a targeted attack, which means that the adversary

attacks one particular agent, called the target agent, denoted
as τ ∈ [N ]. The attack is not direct; instead, it is realized

by intercepting the information broadcast from another agent

in the group, which is called the victim agent, denoted by
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ν ∈ [N ]. Here, communication and information sharing have

been utilized in designing the attack, the attacked signal being

the actor and critic model parameter, as shared by the victim

node. It is trivial to note that ν needs to be a neighbor of τ .
Here we present strong attack models, where the adversary

is assumed to have all possible information - the learning

parameters used by the agents, the architecture of the actor and

critic networks, the aggregation function, and the connectivity

of the communication graph. Thus, the proposed model is an

example of the white-box attack. The objective of the adversary
is to make the target agent learn an adversarial policy, given by

πa. The adversary uses a virtual RL agent that learns this policy

using the same network architecture and learning parameters

as used by the agents. This virtual RL agent is denoted as A. It
can be assumed that the state-action value of the virtual agent,

QAt , can be parametrized with parameter wAt . In the same way,

the policy function of the virtual agent can be parametrized

with parameter θAt . So, the simplified objective of the adversary

would be to make the parameters of the target agent converge

to the parameters of the virtual agent, i.e., wτ
t → wAt and

θτt → θAt for t ≥ Ta, where Ta denotes the onset of the attack.

The parameters shared by ν are modified to achieve the

adversarial objective, and this would be different based on the

aggregation method used by the agents. We present the attack

models for two different cases, where the agents are using

average and median based aggregation. The shared parameters

include both the critic and actor parameters. However, due to

space constraints, the design here is performed only for the

critic parameters. The actor parameter modification follows the

same procedure.

The convergence of critic parameters of τ to those of A can

be quantified by the following cost function:

JA =
1

2
E{∥∥wτ

t − wAt
∥∥}2 (6)

To minimize the cost function (6), the parameters of the target

agent should be updated as per the following relation [19]:

wτ
t+1 = wτ

t − βw,t

(
wτ

t − wAt
)
, (7)

where βw,t > 0 is the step size. The adversary cannot regulate

the actor-critic update of the target agent, so the adversarial

update is modified as follows:

wτ
t+1 = w̃τ

t − βw,t

(
w̃τ

t − wAt
)
, (8)

The adversary indirectly forces this update using the aggre-

gation step. The parameters shared by the victim node are

designed based on that objective.

A. Attack design for average aggregation
In average aggregation, the parameters of the target node are

updated using the shared parameters from its neighbor nodes,

given by

wτ
t+1 =

1

nτ

∑
l∈Nτ

w̃l
t =

1

nτ
w̃ν

t +
1

nτ

∑
l∈Nτ\ν

w̃l
t (9)

It is assumed that the adversary knows the values of w̃l
t for

l ∈ Nτ , and has control over w̃ν
t . Comparing (8) and (9), it is

implied that to achieve the adversarial objective, the attacked

parameters shared by ν should be the following:

attw̃
ν
t = nτ

[
w̃τ

t − βw,t(w̃
τ
t − wAt )

]− ∑
l∈Nτ\ν

w̃l
t, (10)

where attw̃
ν
t is the shared parameters of the victim agent, under

attack.

B. Attack design for median aggregation

The attack design for the median aggregation requires

additional constraints to be satisfied, as presented next. The

adversary modifies each entry of wν
t individually, but it also

needs to make sure that the median for that particular coordinate

corresponds to agent ν. Therefore, for median aggregation along

the ith entry in the critic parameter, the adversary needs∑
l∈Nτ\ν

cit(τ, l) · w̃l
t(i) + cit(τ, ν) · w̃ν

t (i)

= w̃τ
t (i)− βi

w,t

(
w̃τ

t (i)− wAt (i)
)

cit(τ, l) = 0, l ∈ Nτ\ν
cit(τ, ν) = 1,

(11)

where w̃l
t(i) is the critic parameter of agent l at the ith

coordinate, ct(k, l)
i is the aggregation weight used for ith

coordinate, and βi
w,t is the step size of the ith entry. The last

two equations in (11) translate to the requirement that

w̃ν
t (i) = med{w̃l

t(i), l ∈ Nτ} (12)

The adversary now has the liberty of attacking each entry of

the parameter independently. The median attack is given by

attw̃
ν
t (i) = w̃τ

t (i)− βi
w,t

(
w̃τ

t (i)− wAt (i)
)
, (13)

when (12) is satisfied. Here attw̃
ν
t (i) is the ith coordinate of

modified value of the parameter shared by the victim node.

We note that in (13), βi
w,t can be regulated by the adversary to

satisfy the median requirement. Due to the constraint imposed,

it is harder to attack the system when it uses median aggregation.

However, the attack is less effective than the one designed for

average aggregation. This supports the well-established fact

that median is more resilient than average.

V. MEDOID AND SOFT-MEDOID BASED PARAMETER

AGGREGATION

A medoid is a generalization of the notion of scalar median

in the higher dimensions. Given a set of n data points X =
{x1, x2, · · · , xn}, where xi ∈ R

m, the medoid is given as,

Med(X) = argmin
y∈X

n∑
j=1

‖xj − y‖ , (14)

i.e., mediod is a point in the given data that minimized the

sum of distances to the rest of the points. Generally, mediod

is a very good approximation for the intuitive center of point

cloud. However, when all the points in the data are farther

away (for example when all points lie on the boundary of

the convex hull), the mediod, being constrained to be one of

the data points, will also be on extreme away from intuitive
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center. To remedy this, a differentiable version of the medoid

was proposed in [21], called soft medoid, that uses a softmax

function and forms a weighted average of all the data points.

This is defined as follows

SM(X) =
n∑

i=1

sixi, (15)

where 0 ≤ si ≤ 1 are the normalized weights, i.e.,
∑
i

si = 1,

which are calculated using the distance between the data points:

si =

exp
(
− 1

T

n∑
j=1

‖xj − xi‖
)

n∑
q=1

exp
(
− 1

T

n∑
j=1

‖xj − xi‖
) , (16)

where T ∈ R
+ is the temperature parameter. For T → 0,

soft-medoid becomes the exact medoid, and T →∞ tends to

calculate the average. Due to their known robustness properties,

mediod and soft-mediod are ideal candidates for aggregation of

parameters in MARL. The data points are the critic parameters

w and the policy parameters θ. In the combination step, each

agent can independently calculate the medoid or soft-medoid

of the communicated parameters from the neighbors.

A. Medoid Based Parameter Aggregation

As discussed in Section III, agents share the actor and critic

parameters with their respective neighbors. The combination

step for the critic and actor parameters using medoid based

aggregation can be described as,

wk
t+1 = arg min

w̃j
t∈Nk

∑
p∈Nk

∥∥∥w̃p
t − w̃j

t

∥∥∥ , (17)

and

θkt+1 = arg min
θ̃j
t∈Nk

∑
p∈Nk

∥∥∥θ̃pt − θ̃jt∥∥∥ , (18)

respectively. This can also be expressed as

wk
t+1 = w̃l1

t

and θkt+1 = θ̃l2t ,
(19)

where l1, l2 ∈ Nk have the minimum loss in terms of critic

and actor parameters, respectively. The losses are calculated

as the sum of the difference of norms with parameters of

every agent in the neighborhood of k. Thus, for the critic

aggregation, ct(k, l1) = 1, and ct(k, p) = 0 for p ∈ Nk,

p �= l1. Similarly, bt(k, l2) = 1, and bt(k, p) = 0 for p ∈ Nk,

p �= l2. Thus, each row of the aggregation matrices Ct and Bt

have only one element as 1, and the rest are all 0. Note that

during a combination step using medoid, it is not necessary

that the same neighboring agent needs to be chosen for both

critic and actor aggregation. This flexibility essentially provides

better resilience against attacks. Consider a scenario where two

different agents are under attack, one sends malicious critic

parameters, and the other shares malicious actor parameters.

Due to the independence of the critic and actor aggregations,

effectively only one agent can be considered to be adversarial.

B. Soft-medoid Based Parameter Aggregation

In this case, each agent combines the parameters received

from the neighbors by a weighted average, in the forms of (4)

and (5), where the weights are calculated using the same idea

as in (16). The critic aggregation can thus be described as,

wk
t+1 =

∑
l∈Nk

( exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃l

t

∥∥∥)
∑

q∈Nk

exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃q

t

∥∥∥)
)
· w̃l

t,

(20)

where Tc is the temperature parameter associated with the critic

aggregation. In a similar way, the actor aggregation weights

are defined as

θkt+1 =
∑
l∈Nk

( exp
(
− 1

Ta

∑
j∈Nk

∥∥∥θ̃jt − θ̃lt∥∥∥)
∑

q∈Nk

exp
(
− 1

Ta

∑
j∈Nk

∥∥∥θ̃jt − θ̃qt ∥∥∥)
)
· θ̃lt, (21)

where Ta is the temperature parameter associated with actor

aggregation. Therefore, the elements of the aggregation matrices

can be calculated as

ct(k, l) =

exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃l

t

∥∥∥)
∑

q∈Nk

exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃q

t

∥∥∥) ,

bt(k, l) =

exp
(
− 1

Ta

∑
j∈Nk

∥∥∥θ̃jt − θ̃lt∥∥∥)
∑

q∈Nk

exp
(
− 1

Ta

∑
j∈Nk

∥∥∥θ̃jt − θ̃qt ∥∥∥) .
(22)

VI. THEORETICAL ANALYSIS

This section presents the analytical results, including the

convergence of the parameters and the overall performance

improvement of the networked agents. Following that, we

analyze the breakdown point of these aggregation methods,

which provides a theoretical bound on the fraction of attacked

agents for the healthy agents’ parameters to stay bounded. As

mentioned earlier, the action-value functions and the policy

functions of each agent are parametrized, and both linear and

nonlinear functions can be used to approximate these functions.

It has been argued in the literature that the convergence

of parameters with nonlinear function approximation using

neural networks cannot be proven explicitly [39]. Here, we

prove convergence with linear function approximations. In the

next section, we validate our proposed method for nonlinear

function approximations through simulation results. Stating the

following assumptions is the key step to prove convergence.

Assumption 1. For each agent k, the action-value func-
tion is parameterized as Qk

t (w) = w�φkw(st, at), where

φkw(s, a) =
[
φkw,1(s, a), . . . , φ

k
w,dw

(s, a)
]�

∈ R
dw is the

uniformly bounded feature vector for any s ∈ S, a ∈ A. In addi-
tion, the feature matrix Φk

w ∈ R
|S|·|A|×dw has full column rank,

where the j-th column of Φk
w is [φkw,j(s, a), s ∈ S, a ∈ A]�,

for j ∈ [dw]. Also, for any u ∈ R
dw , Φk

wu �= �.

40

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 21:33:06 UTC from IEEE Xplore.  Restrictions apply. 



Assumption 2. For each agent k, the policy func-
tion is modeled by a Gaussian function πθk(s, a) =

1
σk

√
2π

exp(− (a−μk(s))
2

2σ2
k

) with μk(s) = θ�k φ
k
π(s) as the mean,

σk > 0 the constant variance, and φkπ(s) ∈ R
dθ the uniformly

bounded feature vector.

The standard practice of proving convergence of parameters

in an actor-critic algorithm is by using two-time-scale stochastic

method [7], where the convergence of the critic step is first

analyzed on a faster time scale, assuming that the policy is

fixed. Following that, the convergence of the policy function is

analyzed, while assuming that the critic parameters have already

converged. The convergence analysis uses some standard

assumptions from the literature, which are listed below [7].

Assumption 3. The transition matrix of the Markov
chain {st}t≥0 induced by policy πθk , i.e., P θk(s′|s) =∑

a∈A πθk(s, a) · P k(s′|s, a), ∀s, s′ ∈ S, is irreducible and
aperiodic under any πθk for k ∈ [N ]. Further, πθk(s, a) > 0
for any s ∈ S, a ∈ A, θk, and πθk(s, a) is continuously
differentiable with respect to θk.

Assumption 4. The instantaneous reward rkt is uniformly
bounded for any k ∈ [N ] and t ≥ 0.

Assumption 5. For every normal agent k ∈ [N ], the step-sizes
βk
w,t and βk

θ,t satisfy∑
t

βk
w,t =

∑
t

βk
θ,t =∞,

∑
t

βk
w,t

2
+ βk

θ,t

2
<∞,

βk
θ,t

βk
w,t

→ 0, lim
t→∞β

k
w,t+1 · βk

w,t

−1
= 1.

Assumption 6. Through the entire history of the algorithm,
θkt belongs to a compact set for all k and t. And this compact
set contains at least one local optimum of the problem (1).

A. Convergence Analysis
One way of proving convergence is by analyzing the

gradients of critic and policy functions. Define Gw
k,t(w) �

δkt · ∇wQ(st, at;w) and G
θ
k,t(θ) � Qk

t (w
k
t ) · ∇θ log πθ(st, at)

as the gradient of the action-value and policy functions for agent

k at time t. Under Assumptions 1-2, by simple mathematical

manipulation, the gradients can be parametrized as

Gw
k,t(w) = γkt + w�φkt , Gθ

k,t(θ) = ξkt − θ�ζkt . (23)

where γkt �
(
rkt+1 − μk

t

) · φkw(st, at),
φkt �

(
φkw(st+1, at+1)− φkw(st, at)

) · φkw(st, at),
ξkt � atφ

k
π(st) · Q

k
t (w

k
t )

σ2
k

, ζkt � φkπ(st)φ
k
π(st) · Q

k
t (w

k
t )

σ2
k

.

Theorem 1. Under Assumptions 1, 3-5, for any policy πθ, with
{wk

t } generated from (2) and aggregated using the medoid rule
(17) or soft-medoid rule (20), we have limt→∞ wk

t = χk(θ)
almost surely for all k ∈ [N ].

Proof. Given the critic aggregation step from (4), the gradient

of critic function can be written as

Gw
k,t(w

k
t+1) = γkt +

∑
l∈Nk

ct(k, l) · (w̃l
t)
�φkt .

In the case of medoid aggregation, for an agent k, the coefficient
equals 1 for only one neighboring agent, and 0 for the rest. In

the case of soft-medoid, we have
∑

l∈Nk

ct(k, l) = 1. Therefore,

we can rewrite the gradient as

Gw
k,t(w

k
t+1) =

∑
l∈Nk

ct(k, l) ·
(
γkt + (w̃l

t)
�φkt
)

=
∑
l∈Nk

ct(k, l)G
w
k,t(w̃

l
t)

Computing norms on both sides, we get∥∥Gw
k,t(w

k
t+1)
∥∥ ≤ ∑

l∈Nk

ct(k, l)
∥∥Gw

k,t(w̃
l
t)
∥∥ .

It has been shown in the Theorem IV.12 of [7] that with the

standard actor-critic algorithm as given in (2) and (3), the

critic parameters converge almost surely, for all k ∈ [N ],
i.e., limt→∞ w̃k

t = χk(θ) a.s., without cooperation. This

essentially means that the gradient norm corresponding to

the critic parameters converge almost surely for all agents,

i.e., limt→∞ ‖Gk,t(w̃
t
k)‖ = 0 a.s. As the aggregation weights

ct(k, l) are finite for all l ∈ Nk, and
∑

l∈Nk

ct(k, l) = 1, in

the case of both medoid and soft-medoid based aggregations,

we conclude that limt→∞ ‖Gk,t(w
t
k)‖ = 0 a.s., and thus

limt→∞ wk
t = χk(θ) a.s.

Theorem 2. Under Assumptions 2, 3-6, with the policy
parameters {θkt } generated from (3) and aggregation using
the medoid rule in (18) or the soft-medoid rule in (21), θkt
converges almost surely to a point in the set Λk for any k ∈ [N ].

Proof. The proof of this theorem follows similar steps as that

of Theorem 1. Given the actor aggregation step (5), the actor

gradient norm can be expressed as

‖Gθ
k,t(θ

k
t+1)‖ ≤

∑
l∈Nk

bt(k, l) · ‖Gθ
k,t(θ̃

k
t )‖.

Using the same arguments as in Theorem 1, we may write∥∥Gθ
k,t(θ

k
t+1)
∥∥ ≤ ∑

l∈Nk

bt(k, l)
∥∥∥Gθ

k,t(θ̃
l
t)
∥∥∥

Literature [7] shows that without cooperation, the actor

parameters converge to a point in the set Λk almost surely for

all k ∈ [N ]. As a result, limt→∞ ‖Gθ
k,t(θ̃

k
t )‖ = 0 a.s. Using

similar arguments about the aggregation weights bt(k, l), we
get limt→∞ ‖Gk,k

θ,t ‖ = 0 a.s. Thus, θkt converges a.s. to a point

in the set Λk.

B. Learning Performance

It is often argued that cooperative MARL improves learning

performance. We analytically show that the overall performance

of the group of agents improves when they cooperate. In the

context of this work, we show the performance improvement for

medoid and soft-medoid based aggregation. The performance

improvement is evaluated based on how close the estimated

parameters of the critic and actor networks are to their

respective optimal values. For the critic parameter estimation
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of agent k, the estimation performance is measured by the

variable ΔQ(skt , a
k
t ;w

k
t ), which is defined as

ΔQ(skt , a
k
t ;w

k
t ) = |Q(skt , a

k
t ;w

k
t )−Q(skt , a

k
t ;w

∗)|,
where w∗ is the optimal critic parameter values. Here

ΔQ(skt , a
k
t ;w

k
t ) ∈ R

+ measures how close the estimate of

the Q-value is to its optimal value, when the actual critic

parameter estimate is used for calculation. To evaluate the

performance of the network before and after the aggregation

step, we define the following variables:

(ΔQ
t+1)

all =
[
ΔQ(s1t , a

1
t ;w

1
t+1) · · ·ΔQ(sNt , a

N
t ;wN

t+1)
] ∈ R

N

(ΔQ
t )

all =
[
ΔQ(s1t , a

1
t ; w̃

1
t ) · · ·ΔQ(sNt , a

N
t ; w̃N

t )
] ∈ R

N

where (ΔQ
t+1)

all and (ΔQ
t )

all are measures of the estimation

errors of the critic parameters after and before the aggregation

step, respectively.

Theorem 3. Consider the distributed actor-critic algorithm of
N cooperating agents with critic parameter update given by
(2). The agents use model aggregation of critic parameters, as
given by (17) (for medoid) or (20) (for soft-medoid), depending
on the method of aggregation. In both of these cases, the
aggregation step results in the critic parameters move closer
to their optimal values, i.e.,∥∥∥(ΔQ

t+1)
all
∥∥∥ ≤ ∥∥∥(ΔQ

t )
all
∥∥∥ . (24)

Proof. From the definition of ΔQ(skt , a
k
t ;w

k
t ) and the critic

aggregation rule (4), we may write

ΔQ(skt , a
k
t ;w

k
t+1) =

∣∣Q(skt , a
k
t ;w

k
t+1)−Q(skt , a

k
t ;w

∗)
∣∣

=
∣∣∣(wk

t+1 − w∗
)T
φkw(s

k
t , a

k
t )
∣∣∣

=

∣∣∣∣∣∣
( ∑

l∈Nk

ct(k, l) · w̃l
t − w∗

)T

φkw(s
k
t , a

k
t )

∣∣∣∣∣∣
≤
∑
l∈Nk

ct(k, l) ·ΔQ(skt , a
k
t ; w̃

l
t).

(25)

Using this inequality, we may write

(ΔQ
t+1)

all ≤ Ct(Δ
Q
t )

all, (26)

where Ct ∈ R
N×N is the critic aggregation matrix of the

network of agents. using norm operator in (26), we get∥∥∥(ΔQ
t+1)

all
∥∥∥ ≤ ρ(Ct)

∥∥∥(ΔQ
t )

all
∥∥∥ , (27)

where ρ(Ct) = λmax(Ct) is the spectral radius of the critic

aggregation matrix, given by the largest absolute value of its

eigenvalues. As shown earlier, in the case of both medoid and

soft-medoid based aggregation, the critic aggregation matrix

Ct is a square matrix with non-negative real values, whose

each row sums up to 1. Thus, the matrix Ct is a row-stochastic

matrix for all t ≥ t0, in the case of medoid and soft-medoid

based aggregations. Using Perron-Frobenius theorem, it can

be concluded that the spectral radius of Ct is bounded by 1,

which implies that
∥∥∥(ΔQ

t+1)
all
∥∥∥ ≤ ∥∥∥(ΔQ

t )
all
∥∥∥.

From Assumption 2, we use the quantity μk(s) to evaluate

the estimate of the policy parameter θ. The proximity of

the estimated policy parameter of agent k is expressed by

the variable ΔΘ(skt ; θ
k
t ), which is defined as ΔΘ(skt ; θ

k
t ) =∣∣μ(skt ; θkt )− μ(skt ; θ∗)∣∣, where θ∗ is the optimal actor param-

eter. Here ΔΘ(skt ; θ
k
t ) measures how close the current policy

chosen by agent k is to the optimal policy. To evaluate the

performance of the actor network of all the agents in the

network, we define the following two variables

(ΔΘ
t+1)

all =
[
ΔΘ(s1t ; θ

1
t+1) · · ·ΔΘ(sNt ; θNt+1)

] ∈ R
N

(ΔΘ
t )

all =
[
ΔQ(s1t ; θ̃

1
t ) · · ·ΔΘ(sNt ; θ̃Nt )

] ∈ R
N

where (ΔΘ
t+1)

all and (ΔΘ
t )

all are measures of the estimation

errors of the actor parameters after and before the aggregation

step, respectively.

Theorem 4. Consider the distributed actor-critic algorithm of
N cooperating agents with actor parameter update (3). The
agents use model aggregation of actor parameters, which is
given by (18) or (21), for medoid an d soft-medoid, respectively.
For both of these methods, the aggregation step results in the
actor parameters move closer to their optimal values, i.e.,∥∥(ΔΘ

t+1)
all
∥∥ ≤ ∥∥(ΔΘ

t )
all
∥∥ . (28)

Proof. From the definition of ΔΘ(skt ; θ
k
t ) and the actor ag-

gregation rule (5), following similar steps as earlier, we get

ΔΘ(skt ; θ
k
t+1) ≤

∑
l∈Nk

bt(k, l) ·ΔΘ(skt ; θ̃
l
t). (29)

Defining the coefficient matrix for actor aggregation as Bt ∈
R

N×N , where Bt(i, j) = bt(i, j), the inequality (29) implies

(ΔΘ
t+1)

all ≤ Bt(Δ
Θ
t )

all, (30)

Using norm operator in (26), we get∥∥(ΔΘ
t+1)

all
∥∥ ≤ ρ(Bt)

∥∥(ΔΘ
t )

all
∥∥ , (31)

where ρ(Bt) = λmax(Bt) is the spectral radius of the actor

aggregation matrix. Following the same arguments as earlier,

where it can be shown that in the case of both medoid and

soft-medoid based aggregations, Bt is a row-stochastic matrix,

thus ρ(Bt) ≤ 1 for all t. This implies that
∥∥(ΔΘ

t+1)
all
∥∥ ≤∥∥(ΔΘ

t )
all
∥∥.

The performance improvement as shown here is based on

a cumulative scale, meaning that the sum of the parameter

estimation error of all agents is non-increasing due to co-

operation, which does not necessarily mean that individual

performances are improved for all the agents. Although, the

inequality in Theorems 3 and 4 does not guarantee performance

improvement, this is the standard practice for convergence

analysis [40].

C. Robustness Analysis

In this work, the adversary targets one node to attack, and

the attack is performed through another node. But owing to the

communication and parameter sharing between the agents, the

performance of some other nodes get affected too, depending
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on the structure of the graph. Sequentially, at a certain point, an

agent may find that more than one of its neighbors are driven by

malicious information. This makes it important to find out how

the percentage of malicious neighbors affects the performance.

In a network of N connected agents, breakdown point analysis

of an agent k is to find out the minimum fraction ε for which
the parameters estimated by agent k remains bounded in the

presence of εN attacked agents [21]. In the MARL setup, we

often do not consider a fully connected graph, so the breakdown

point analysis is performed based on the number of neighbors.

Formal definition of the breakdown point is presented below.

Definition 1. [41] The breakdown point of an estimator T
of a collection X is defined as the smallest fraction m/n of
outliers that can produce an unbounded estimate

ε∗(T,X) = min
1≤m≤n

{m
n

: sup
Ym

‖T(X)− T(Ym)‖ =∞}, (32)

where the supremum is taken over all possible corrupted
collections Ym that are obtained by replacing m data points
of X by arbitrary values.

In this work, we are interested in the breakdown point

analysis of medoid and soft-medoid aggregation. In actor-critic

algorithm, even though the aggregation is done separately for

critic and actor, each agent interacts with the same neighbors

in both these cases. Here the analysis is presented for critic

parameters, the same result holds for the actor parameters.

Let the neighborhood of agent k, denoted as Nk be

divided into two disjoint sets, N (h)
k and N (a)

k , where N (h)
k

denotes the set of healthy neighbors of k, and N (a)
k is the

set of attacked neighbors. Clearly, N (h)
k

⋃N (a)
k = Nk and

N (h)
k

⋂N (a)
k = ∅. The following theorem shows that the

aggregated critic parameter of agent k remains bounded even

when the parameters shared by the attacked agents have an

infinite norm, provided there is a majority of healthy agents in

its neighborhood, i.e.,
∣∣∣N (h)

k

∣∣∣ ≥ ∣∣∣N (a)
k

∣∣∣.
Theorem 5. Consider the distributed actor-critic algorithm
of N cooperating agents with critic parameter update given
by (2). The agents aggregate their critic parameters by (17)

or (20), based on the method used. Some of the agents in
the network are under attack and share adversarial values
for parameter w̃t. Then for each healthy agent k ∈ [N ], the
critic parameter aggregation has a finite breakdown point of
εkSM (w̃l

t, l ∈ Nk) =
1
nk

⌊
(nk+1)

2

⌋
.

Proof. The analysis of breakdown point is performed consider-

ing the worst-case scenario. To calculate the breakdown point

of soft-medoid based aggregation, we need to find the minimal

fraction of attacker neighbors of agent k such that
∥∥wk

t+1

∥∥ <∞
does not hold anymore, given

∥∥w̃l
t

∥∥ → ∞, l ∈ N (a)
k , where

the aggregated parameters wk
t+1 are given as (20). Under this

scenario, the aggregated parameters can remain bounded if and

only if the soft-medoid based aggregation weights associated

with the attacked agents converge to zero, i.e., ct(k, l1)→ 0,

for l1 ∈ N (a)
k .

Using (22), we may write

ct(k, l1)

ct(k, l2)
=

exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃l1

t

∥∥∥)
exp
(
− 1

Tc

∑
j∈Nk

∥∥∥w̃j
t − w̃l2

t

∥∥∥)

= exp

⎧⎨
⎩− 1

Tc

⎛
⎝∑

j∈Nk

∥∥∥w̃j
t − w̃l1

t

∥∥∥− ∑
j∈Nk

∥∥∥w̃j
t − w̃l2

t

∥∥∥
⎞
⎠
⎫⎬
⎭ ,

where l1 ∈ N (a)
k and l2 ∈ N (h)

k . It has been shown in [42] that

the worst-case perturbation is obtained when the perturbation

is concentrated on a point mass. Following that, we assume

that the perturbed parameters of the attacked agents have only

one entry that is infinitely large, and all other entries are zero.

Thus,
∥∥∥w̃l1

t

∥∥∥ = m, where m→∞. Without loss of generality,

we further assume that all the healthy agents’ parameters have

all entries as zero. With these, we get

ct(k, l1)

ct(k, l2)
= exp

⎧⎪⎨
⎪⎩−

1

Tc

⎡
⎢⎣
⎛
⎜⎝ ∑

j∈N (h)
k

m

⎞
⎟⎠−

⎛
⎜⎝ ∑

j∈N (a)
k

m

⎞
⎟⎠
⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

where m → ∞, l1 ∈ N (a)
k and l2 ∈ N (h)

k . If the number of

attacked neighbors is less than the number of healthy neighbors,

i.e.,
∣∣∣N (a)

k

∣∣∣ < ∣∣∣N (h)
k

∣∣∣, then we have lim
m→∞

ct(k,l1)
ct(k,l2)

= 0.

Thus, the aggregated parameters using the soft-medoid based

aggregation remains bounded even when the perturbed param-

eters are placed at infinity, provided we have a majority of

healthy neighbors. The breakdown point of soft-medoid based

aggregation is thus given as 1
nk

⌊
(nk+1)

2

⌋
.

The breakdown point for the medoid-based aggregation is

the same as the soft-medoid case. It is intuitive to verify

that and also follows from the fact that medoid is the

generalization of median in higher dimensions, which also

has a breakdown point of 0.5. The analysis considers the

scenario when the perturbation tends to infinity. However, in

practice, the adversary limits the perturbation to the minimum,

and thus the weights associated with the attacked agents do

not converge to zero.
VII. EVALUATION

In this section, we present the evaluation results for a

popular off-policy actor-critic algorithm, DDPG [43], applied

to MuJoCo continuous control tasks [44] of HalfCheetah and

InvertedPendulum2d through the OpenAI Gym interface [45].

We consider a network of N = 8 agents, and the average

neighborhood size is 1
N

∑
i

Ni = 2.5. The set of neighbors of

the agents is listed as follows: {0, 5, 6}, {1, 3}, {2, 4, 7}, {3,

1, 5}, {4, 2}, {5, 0, 3}, {6, 0}, and {7, 2}. Here each agent in

the group performs the same task in independent environments.

We compare the medoid and soft-medoid based aggregation

methods with three baseline methods: i) no cooperation among

agents, ii) aggregation using average, and iii) aggregation using

point-wise median. The actor and the critic networks of each

agent are assumed to be neural networks (NN) with two hidden

layers, containing 400 and 300 neurons, respectively. The
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Fig. 1: The legends used in the plots.

(a) Task: HalfCheetah (b) Task: Inverted-pendulum

Fig. 2: Average reward of the group for various aggregation methods.

soft-medoid based aggregation method is simulated for three

different values of the temperature variable: 0.1, 1, and 10.

All the figures shown here follow the legends given in Fig. 1.

The average reward of the group for various aggregation

methods is plotted in Fig. 2. It can be verified that the soft-

medoid method attains the highest average reward among all

the agents. Following the normal scenario, now to validate the

proposed attack design, we simulate the average-based attack

and the median-based attack. The targeted node is considered to

be Agent 0 (the numbering starts at 0), and the attacked node is

Agent 6. For both the attacks, it is assumed that the adversary

knows the architecture of networks, all the hyper-parameters

used in learning, the structure of the graph, etc., and utilizes all

this information in running the virtual attacker agent. At each

instant, the adversary calculates the values of the malicious NN

weights, which is used to replace the communicated information

from Agent 6. The average reward of the group performing the

task of HalfCheetah is plotted in Fig. 3 for both these attacks.

It can be verified from the plots that the targeted aggregation

under the particular attacks performs poorly. The soft-medoid

method results in the best performance in both these attack

scenarios. As explained earlier, the attack is propagated through

the network due to coordination among agents. The list of

neighbors suggests that there exists a subgraph consisting of

the nodes {0, 1, 3, 5, 6} that includes both the target and the

(a) average attack (b) median attack

Fig. 3: Average reward of the group under attack (task: HalfCheetah).

(a) average attack (b) median attack

Fig. 4: Average reward of agents 0,1,3,5,6 under attack (HalfCheetah).

(a) average attack (b) median attack

Fig. 5: Average reward of the group under attack (Inverted-pendulum).

victim agents. To better demonstrate the effect of the attacks,

we plot the average reward of these 5 agents, and it is shown

in Fig. 4. It can be observed that these agents perform very

poorly with the aggregation methods which is targeted by the

respective attacks. The results in this section confirm our claim

that the average-based attack is stronger than the median-based

attack. The average reward of all the agents performing the

Inverted-pendulum task, under the two designed attacks are

plotted in Fig. 5.
VIII. CONCLUSION

This paper deals with resilient aggregation in multi-agent

reinforcement learning by using medoid and soft-medoid as

the aggregation protocols. The attack strategies presented here

cannot be used to design attacks against these aggregation

methods, which makes them resilient to an extent against the

designed attacks. However, the simulation results show that

the performance while using medoid aggregation deteriorates

against such attacks, while soft-medoid outperforms all other

methods. The temperature hyper-parameter in soft-medoid

method influences the performance, as depicted in the results.

The breakdown point analysis for medoid and soft-medoid

assures that the aggregated parameters will remain bounded;

however, it does not evaluate the aggregation performance in

the presence of these attacked agents compared to the no-attack

case. Design of more sophisticated attacks against medoid and

soft-medoid attack, and the improvement of performance by

using adaptive weights in these aggregation methods are some

of the directions for extension of this work.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

44

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 21:33:06 UTC from IEEE Xplore.  Restrictions apply. 



[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intelligent
Systems, vol. 35, no. 4, pp. 83–93, 2020.

[4] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156–172, 2008.

[5] P. Kofinas, A. Dounis, and G. Vouros, “Fuzzy q-learning for multi-
agent decentralized energy management in microgrids,” Applied energy,
vol. 219, pp. 53–67, 2018.

[6] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and
Z. Li, “Drn: A deep reinforcement learning framework for news recom-
mendation,” in Proceedings of the 2018 World Wide Web Conference,
pp. 167–176, 2018.

[7] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Interna-
tional Conference on Machine Learning, pp. 5872–5881, PMLR, 2018.

[8] J. Li, F. Cai, and X. Koutsoukos, “Byzantine resilient aggregation
in distributed reinforcement learning,” in International Symposium on
Distributed Computing and Artificial Intelligence, pp. 56–66, Springer,
2021.

[9] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[10] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed, “Distributed policy
evaluation under multiple behavior strategies,” IEEE Transactions on
Automatic Control, vol. 60, no. 5, pp. 1260–1274, 2014.

[11] D. Jin, J. Chen, C. Richard, J. Chen, and A. H. Sayed, “Affine combination
of diffusion strategies over networks,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2087–2104, 2020.

[12] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” arXiv
preprint arXiv:1706.02275, 2017.

[13] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al.,
“Massively parallel methods for deep reinforcement learning,” arXiv
preprint arXiv:1507.04296, 2015.

[14] S. Kar, J. M. Moura, and H. V. Poor, “QD-learning: A collaborative
distributed strategy for multi-agent reinforcement learning through
Consensus + Innovations,” IEEE Transactions on Signal Processing,
vol. 61, no. 7, pp. 1848–1862, 2013.

[15] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
arXiv preprint arXiv:1703.06748, 2017.

[16] J. Liu, W. Niu, J. Liu, J. Zhao, T. Chen, Y. Yang, Y. Xiang, and L. Han,
“A method to effectively detect vulnerabilities on path planning of vin,” in
International Conference on Information and Communications Security,
pp. 374–384, Springer, 2017.

[17] Y. Xiang, W. Niu, J. Liu, T. Chen, and Z. Han, “A pca-based model
to predict adversarial examples on q-learning of path finding,” in 2018
IEEE Third International Conference on Data Science in Cyberspace
(DSC), pp. 773–780, IEEE, 2018.

[18] Y. Lin, S. Gade, R. Sandhu, and J. Liu, “Toward resilient multi-agent
actor-critic algorithms for distributed reinforcement learning,” in 2020
American Control Conference (ACC), pp. 3953–3958, IEEE, 2020.

[19] J. Li, W. Abbas, and X. Koutsoukos, “Resilient distributed diffusion in
networks with adversaries,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 6, pp. 1–17, 2019.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–1870,
PMLR, 2018.

[21] S. Geisler, D. Zügner, and S. Günnemann, “Reliable graph neural
networks via robust aggregation,” arXiv preprint arXiv:2010.15651, 2020.

[22] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate
q-value functions for decentralized pomdps,” Journal of Artificial
Intelligence Research, vol. 32, pp. 289–353, 2008.

[23] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, pp. 4295–4304, PMLR, 2018.

[24] C. Schroeder de Witt, J. Foerster, G. Farquhar, P. Torr, W. Boehmer, and
S. Whiteson, “Multi-agent common knowledge reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 32, pp. 9927–
9939, 2019.

[25] F. Christianos, L. Schäfer, and S. V. Albrecht, “Shared experience
actor-critic for multi-agent reinforcement learning,” arXiv preprint
arXiv:2006.07169, 2020.

[26] D. Maravall, J. de Lope, and R. Domínguez, “Coordination of com-
munication in robot teams by reinforcement learning,” Robotics and
Autonomous Systems, vol. 61, no. 7, pp. 661–666, 2013.

[27] T. Chu, S. Chinchali, and S. Katti, “Multi-agent reinforcement learning
for networked system control,” 8th International Conference on Learning
Representations (ICLR), 2020.

[28] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[29] S. V. Macua, A. Tukiainen, D. G.-O. Hernández, D. Baldazo, E. M.
de Cote, and S. Zazo, “Diff-dac: Distributed actor-critic for multitask
deep reinforcement learning,” arXiv preprint arXiv:1710.10363, 2017.

[30] W. Liu, P. Zhuang, H. Liang, J. Peng, and Z. Huang, “Distributed
economic dispatch in microgrids based on cooperative reinforcement
learning,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 6, pp. 2192–2203, 2018.

[31] I. Ilahi, M. Usama, J. Qadir, M. U. Janjua, A. Al-Fuqaha, D. T. Huang, and
D. Niyato, “Challenges and countermeasures for adversarial attacks on
deep reinforcement learning,” IEEE Transactions on Artificial Intelligence,
2021.

[32] T. Chen, J. Liu, Y. Xiang, W. Niu, E. Tong, and Z. Han, “Adversarial
attack and defense in reinforcement learning-from ai security view,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[33] M. Figura, K. C. Kosaraju, and V. Gupta, “Adversarial attacks in
consensus-based multi-agent reinforcement learning,” arXiv preprint
arXiv:2103.06967, 2021.

[34] J. Lin, K. Dzeparoska, S. Q. Zhang, A. Leon-Garcia, and N. Papernot,
“On the robustness of cooperative multi-agent reinforcement learning,”
in 2020 IEEE Security and Privacy Workshops (SPW), pp. 62–68, IEEE,
2020.

[35] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed
learning: Towards optimal statistical rates,” in International Conference
on Machine Learning, pp. 5650–5659, PMLR, 2018.

[36] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[37] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 118–128, 2017.

[38] R. Guerraoui, S. Rouault, et al., “The hidden vulnerability of distributed
learning in byzantium,” in International Conference on Machine Learning,
pp. 3521–3530, PMLR, 2018.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[40] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic
reinforcement learning with policy consensus,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 4674–4679, IEEE,
2019.

[41] H. P. Lopuhaa and P. J. Rousseeuw, “Breakdown points of affine
equivariant estimators of multivariate location and covariance matrices,”
The Annals of Statistics, pp. 229–248, 1991.

[42] C. Croux, G. Haesbroeck, and P. J. Rousseeuw, “Location adjustment
for the minimum volume ellipsoid estimator,” Statistics and Computing,
vol. 12, no. 3, pp. 191–200, 2002.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[44] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5026–5033, IEEE, 2012.

[45] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

45

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 21:33:06 UTC from IEEE Xplore.  Restrictions apply. 


