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Abstract—Deep neural networks are frequently used by au-
tonomous systems for their ability to learn complex, non-linear
data patterns and make accurate predictions in dynamic environ-
ments. However, their use as black boxes introduces risks as the
confidence in each prediction is unknown. Different frameworks
have been proposed to compute accurate confidence measures
along with the predictions but at the same time introduce a
number of limitations like execution time overhead or inability
to be used with high-dimensional data. In this paper, we use the
Inductive Venn Predictors framework for computing probability
intervals regarding the correctness of each prediction in real-
time. We propose taxonomies based on distance metric learning
to compute informative probability intervals in applications
involving high-dimensional inputs. Empirical evaluation on im-
age classification and botnet attacks detection in Internet-of-
Things (IoT) applications demonstrates improved accuracy and
calibration. The proposed method is computationally efficient,
and therefore, can be used in real-time.

Keywords—deep neural networks, assurance monitoring, in-
ductive venn predictors, probability intervals

I. INTRODUCTION

Modern Deep Neural Network (DNN) architectures have
the capacity to be trained using high-dimensional data and
make accurate decisions in dynamic and uncertain environ-
ments. This ability makes them a common choice for many
autonomous system applications. However, when DNNs are
used as black boxes in safety-critical systems, they may result
in disastrous consequences if it is not possible to reason about
their predictions.

The training of a Learning Enabled Component (LEC)
requires specification of the task, performance measure for
evaluating how well the task is performed, and experience
in the form of training and testing data. An LEC, such as a
DNN, during system operation exhibits some nonzero error
rate and the true error rate is unknown and can only be
approximated during design time using the available data.
Confidence values, such as the softmax probabilities which are
used by most DNNs for classification, are usually greater than

the actual posterior probability that the prediction is correct.
Important factors that make modern DNNs overconfident are
the depth, width, and techniques like weight decay, and batch
normalization [5].

Our objective is to complement the predictions made by
DNNs with a computation of confidence. The confidence
can be expressed as probability intervals to characterize the
correctness of the DNN prediction. An efficient and robust
approach must ensure that the actual accuracy of a DNN is
contained in the computed intervals and the width of the inter-
vals is small. We focus on computationally efficient algorithms
that can be used in real-time. The proposed approach is based
on the Inductive Venn Predictors (IVP) framework [28]. IVP
computes the probability intervals for an unknown input lever-
aging knowledge it has acquired from previous predictions
on labeled data. Most of the IVP or Venn Predictors (VP)
applications in the literature are evaluated on low-dimensional
data [13], [14], [19], [20], [28], [29].

The estimation of reliable predictive uncertainty has become
an important part of many modern machine learning compo-
nents used in safety-critical applications. Even though many
of the proposed methods produce well-calibrated models, their
application in the real world is challenging. In [12], [22], new
training algorithms and loss functions are proposed to achieve
well-calibrated DNNs. These approaches require training DNN
models from scratch and cannot be used with pre-trained ones.
Another category of calibration methods like the Platt’s scal-
ing [23] and temperature scaling [5] proposes ways of post-
processing the outputs of already trained models to produce
calibrated confidence measures. In [11], [18], it is shown
that these methods are not as well-calibrated as it is reported
especially when the validation data are not independent and
identically distributed (IID) and in the presence of distribution
shifts. The Conformal Prediction (CP) framework is developed
to compute prediction sets to satisfy a desired significance
level [1], [26], [28]. The confidence value assigned to each
possible class is in the form of p-values which is less intuitive
than estimating the confidence as probabilities. Another way
of obtaining confidence information about predictions is by978-1-6654-3156-9/21/$31.00 ©2021 IEEE
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using algorithms based on the Bayesian framework. The use
of this framework, however, require some prior knowledge
about the distribution generating the data. In the real world,
this distribution is unknown and it has to be chosen arbitrarily.
In [21], it is shown that the predictive regions produced
by Gaussian Processes, a popular Bayesian machine learning
approach, may be incorrect and misleading when the correct
prior is not known.

The main contribution of our work is that we compute
low-dimensional, appropriate, embedding representations of
the original inputs in a space where the Euclidean distance
is a measure of similarity between the original inputs, in
order to handle high-dimensional inputs in real-time. Then,
we implement four different taxonomies that split the low-
dimensional data into categories based on their similarity. Last,
we present an empirical evaluation of the approach using two
datasets for image classification problems with a large number
of classes as well as detection of botnet attacks in an IoT
device. The underlying models are chosen according to the
input size and shape keeping into account the low-latency and
low-power properties to meet the resource constraints of the
variety of use cases [8].

II. PROBLEM

A perception component in an autonomous system aims
to observe and interpret the environment in order to provide
information for decision-making. For example, a DNN can
be used for classifying traffic signs in autonomous vehicles.
The problem is to complement the prediction of the DNN
with a computation of confidence. An efficient and robust
approach must ensure a small and well-calibrated error rate
to enable real-time operation. The approach must ensure a
bounded small error rate while limiting the number of inputs
for which an accurate prediction cannot be made.

During system operation, for each new input a prediction
is made, usually by a LEC and the objective is to compute
a valid measure of the prediction’s confidence. The objective
is twofold: (1) provide guarantees for the error rate of the
prediction and (2) limit the number of input examples for
which a confident prediction cannot be made. Well-calibrated
confidence in terms of probabilities can be used for decision-
making, for example, by generating warnings when human
intervention is required.

The Venn Prediction (VP) framework can produce predic-
tions with well-calibrated confidence intervals that guarantee
to include the true probabilities for each class output to occur
[28]. The confidence intervals for a test input are generated by
considering the class distribution of labeled inputs assigned to
the same category that are collected offline and are available
to the system. In the literature, VP implementations use
Support Vector Machines (SVMs) or DNN classifiers to create
categories of labeled data [13], [20], [28]. The additional
problem we are considering is the computation of appropriate
embedding representations that can lead to more efficient VPs.
The main idea is to use distance metric learning and enable
DNNs to learn a lower-dimensional representation for each

input on an embedding space where the Euclidean distance
between the input representations is a measure of similarity
between the original inputs themselves. Using such representa-
tions we define taxonomies to form categories of similar input
data. This not only reduces the memory requirements but is
also more efficient in producing more informative intervals.

III. PROBABILITY INTERVALS BASED ON DISTANCE
METRIC LEARNING

Venn Predictors is a machine learning framework that can be
combined with existing classifier architectures for producing
well-calibrated multi-probability predictions under the IID
assumption [1], [28]. This means that the confidence assigned
to a prediction is a probability distribution which in effect
defines lower and upper bounds regarding the probability of
correctness for all possible classes. VPs are well-calibrated and
the probability bounds asymptotically contain the correspond-
ing true conditional probabilities (proof in [28]). However
the framework is computationally inefficient as it requires
training the underlying algorithm after every new test input.
Computational efficiency can be addressed using the Inductive
Venn Predictors [13], [14], an extension of the VP framework.

Central to the VP and IVP frameworks is the definition of
a Venn taxonomy. This is a way of clustering data points into
a number of categories according to their similarity and is
based on an underlying algorithm. For example a taxonomy
can be defined to put in the same category examples that are
classified in the same class by a DNN. The main idea of our
approach is that the taxonomy can be defined efficiently by
learning embedding representations of the inputs for which
the Euclidean distance is a measure of similarity. To compute
the embedding representations of the inputs we train a siamese
network using contrastive loss [6], [9].

We consider the training examples, z1, . . . , zl from Z,
where each zi is a pair (xi, yi) with xi the feature vector and
yi the corresponding label. We also consider a test input xl+1

which we wish to classify. IVP assumes that all the examples
z1, . . . , zl+1 are independent and identically distributed (IID)
generated from the same but usually unknown probability
distribution. The available training examples are split into
two parts: the proper training set with q examples and the
calibration set with l−q examples. The examples in the proper
training set are used to train the siamese network which is used
to define different Venn taxonomies. The roll of the taxonomy
is to divide the l − q calibration examples into a number of
categories based on their similarity. This process takes place
during the design time.

After placing the calibration data into categories using the
underlying algorithm for the taxonomy, during execution time
we consider a test input xl+1 and place it in a category kl+1.
The true class yl+1 is unknown and IVP computes a lower and
an upper probability [L(Yj), U(Yj)] for every possible class
j = 1, . . . , c based on the number of samples of each class
in kl+1. The predicted class for the classification is computed
as:

jbest = arg max
j=1,...,c

p(Yj) (1)
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where p(Yj) is the mean of the probability interval assigned
to Yj . Along with the class Yjbest the IVP framework outputs
the probability interval [L(Yjbest), U(Yjbest)]. The steps taking
place during execution are illustrated in Fig. 1.

IV. DISTANCE-BASED TAXONOMIES

As proved in [28] the probability intervals assigned to each
classification by the VP are well-calibrated regardless of the
choice of the Venn taxonomy and this holds in practice for IVP
as well [13]. However, the choice of the taxonomy affects the
efficiency of the IVP. The probability intervals are desirable
to be relatively narrow to minimize the uncertainty in the
probability of correctness as well as create better separation
between the probabilities of each class. We propose four
different Venn taxonomies based on distance metric learning.
The first two taxonomies are based on a k-Nearest Neighbors
classifier. The naive approach, that we call k-NN V1, trains
a k-NN classifier using the embedding representations of the
proper training set. Then the calibration data, as well as each
new test input, are placed to a category that is defined by the k-
NN prediction using the computed embedding representations.
That is, for a data point xl+1 that needs to be placed into
a category, its embedding representation is computed using
the siamese network, rl+1 = Net(xl+1) and its k nearest
training data are found. Depending on the class ŷl+1 that most
neighbors belong to, the data point is assigned to the category

kl+1 = ŷl+1. (2)

This taxonomy leads to a number of categories that is equal
to the number of classes in the dataset. An extension of the
previous taxonomy, k-NN V2, is also based on a k-Nearest
Neighbors classifier. However, we attempt to more accurately
split the data into categories by taking into account how many
of the k nearest training data points are labeled different than
the predicted class. For a data point xl+1 with embedding
representation rl+1 that needs to be placed into a category
we compute the k-nearest neighbors in the training set and
store their labels in a multi-set Ω. The category where xl+1

is placed is computed as:

kl+1 = ŷl+1 × (k −
⌊
k

c

⌋
) + |i ∈ Ω : i 6= ŷl+1| (3)

where ŷl+1 is the k-NN classification of rl+1, k is the number
of nearest neighbors and c is the number of different classes.
This taxonomy aims at further improving the similarity of the
data in each category leveraging the classifier’s confidence.
It is expected that the more similar labeled neighbor training
data points, the higher the chance of the corresponding class
being the correct one. That way each category of k-NN V1 is
further split into k −

⌊
k
c

⌋
new categories.

The ability of siamese networks to create clusters of similar
data can be used to further reduce the Venn taxonomy compu-
tational requirements when there is a large amount of training
data. Each class cluster i corresponding to class Yi, i = 1 . . . , c

can then be represented by its centroid µi =
∑ni

j=1 rij
ni

, where
rij is the embedding representation of the jth training example

from class Yi and ni is the number of training examples
labeled as Yi. We propose another family of taxonomies based
on the Nearest Centroids. The NC V1 places the calibration
data as well as each new test input to a category that is
the same as the class assigned to their nearest centroid. The
category where an example xl+1 is placed is computed as:

kl+1 = arg min
j=1,...,c

d(rl+1, µj) (4)

where d the Euclidean distance. This leads to a number
of categories that is equal to the number of classes in the
dataset. An extension of this taxonomy, the NC V2, attempts
to form more accurate categories by taking into account the
classification confidence. We expect data points of the same
class to be more similar to each other when their embedding
representations are placed at similar distances to their class
centroid. That way each category of NC V1 is further split
into two categories based on how close an example xl+1 is to
its nearest centroid:

kl+1 = 2× arg min
j=1,...,c

d(rl+1, µj) + h, (5)

h =

{
0, if d(rl+1, µmin) ≤ θ
1, otherwise

where µmin = arg minj=1,...,c d(rl+1, µj) is the distance to the
nearest centroid and θ a chosen distance threshold.

V. EVALUATION METRICS

The performance of IVP based on the proposed taxonomies
is evaluated regarding the accuracy, calibration and efficiency.
The objective is for the computed probability intervals to
contain the true probability of correctness for each prediction.
The probability interval for a given input x with predicted class
ŷ is [L(ŷ), U(ŷ)]. Equivalently, the probability that ŷ is not
the correct classification will be in the complimentary interval
[1−U(ŷ), 1−L(ŷ)], called error probability interval. The true
probability of correctness for a single prediction is unknown
so the correctness of the computed intervals is evaluated over
a number of samples. To do this we use the following metrics:
• cumulative errors

En =

n∑
i=1

erri, (6)

erri =

{
1, if classification ŷi is incorrect
0, otherwise

• cumulative lower and upper error probabilities

LEPn =

n∑
i=1

[1− U(ŷ)], UEPn =

n∑
i=1

[1− L(ŷ)] (7)

To compare the IVP implementations based on our proposed
taxonomies with the baseline taxonomies, scalar metrics are
used that represent the performance regarding accuracy, cali-
bration, and efficiency. Unlike the NN classifiers that produce
a single softmax probability for each class, the IVP framework
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Figure 1. IVP classifier based on distance metric learning

produces probability intervals. For the computation of the
evaluation metrics the probability assigned to a class Yj will
be p(Yj) like in (1). The accuracy of an IVP implementation
is evaluated as the number of correct classifications over the
number of attempted classifications and it is computed as

accuracy = 1− En

n
. (8)

An efficient, or informative, IVP is one that makes predictions
with small diameter probability intervals and their median is
as close to zero or one. The most popular quality metrics for
probability assessments are the negative log-likelihood (NLL)
and the Brier score (BS) [4]. NLL is the simplest out of the two
and only considers the probability assigned to the predicted
class in (1). It is computed as

NLL = −
n∑

i=1

c∑
j=1

tji log(oji ), (9)

where oji = p(Yj) of example i and tji the one-hot represen-
tation of the ground truth classification label yi of example i,
that is

tji =

{
1, if classification yi = Yj

0, otherwise

This metric is minimized by producing intervals that are
narrow and have median probability close to one assigned
to the correct class. Computational issues may occur as the
log score explodes if we observe an event that the classifier
considers impossible. BS is computed as

BS =
1

n

n∑
i=1

c∑
j=1

(oji − t
j
i )

2 (10)

This is, in effect, the mean squared error of the predictions.
Unlike NLL, BS considers the probabilities assigned to all
possible classes and will penalize probability intervals as-
signed to incorrect classes that are not close to zero. There
are different views in the literature regarding which scoring
rule is more appropriate. [2] emphasizes in the importance of
the locality property, meaning, the scoring rule should only
depend on the probability of events that actually occur and
only NLL satisfies this. On the other hand, [25] states that

a scoring rule should be symmetric and only BS satisfies
this. This means that if the true class probability is p and
the predicted probability is p̂, then the score should be equal
to the case where the true probability is p̂ and the predicted
probability is p. However, we think that both metrics produce
useful insights in probability assessment so both are reported
in our experiment results. The interval size has a significant
role on how informative and interpretable a prediction is. We
evaluate the size of the probability intervals by computing the
average interval diameter as

D =

∑n
i=1 U(ŷ)−

∑n
i=1 L(ŷ)

n
(11)

A well-calibrated IVP computes probability intervals that
are representative of the true correctness likelihood. Formally
a model is well-calibrated when

P (ŷ = Y |p̂ = p) = p, ∀p ∈ [0, 1] (12)

However, p̂ is a continuous random variable so the prob-
ability in (12) cannot be approximated using finitely many
samples. According to (12) a measure of miscalibration can
be expressed as Ê

p
[|P (ŷ = y|p̂ = p)− p|]. The Expected Cal-

ibration Error (ECE) [17] computes an approximation of this
expected value across bins:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (13)

where |Bm| is the number of samples in bin Bm, n is
the total number of samples and acc(Bm) and conf(Bm)
are the accuracy and confidence of bin Bm respectively as
defined in [17]. Many times in safety critical applications it
is more useful to compute the maximum miscalibration of a
model than the mean value. This metric is called Maximum
Calibration Error (MCE) [17] and is computed as:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| (14)

VI. EVALUATION

In this section, we evaluate the IVPs that use distance-
based taxonomies with regard to accuracy, calibration, and
efficiency. Additionally, for the evaluation of our proposed
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taxonomies, we use metrics regarding the performance of the
siamese network in clustering similar input data, the execution
time of the framework, and the required memory.

A. Experimental Setup

The embedding representation computations, part of our
proposed taxonomies, are not application-specific and can
improve the performance of IVP in cases where inputs
are high-dimensional. We evaluate the performance of IVP
with distance-learning in two different classification prob-
lems. First, we have two case studies in image classification.
The German Traffic Sign Recognition Benchmark (GTSRB)
dataset is a collection of traffic sign images to be classified in
43 classes [27]. The labeled sign images are of various sizes
between 15x15 to 250x250 pixels depending on the observed
distance. We convert all the images to a fixed shape of 96x96
pixels. The second dataset is the Fruits360 [16]. This dataset
contains images of 131 different kinds of fruits and vegetables.
The input data are used in their original size, 100x100 pixels.

The second classification problem we consider is the detec-
tion of botnet attacks in IoT devices. As part of the evaluation
in [15], authors made available data regarding network traffic
while infecting different common IoT devices two families
of botnets. Mirai and BASHLITE are two common IoT-based
botnets and their harmful capabilities are presented in [10]. In
the dataset there are data for the following ten attacks:
• BASHLITE Attacks

1) Scan: Scanning the network for vulnerable devices
2) Junk: Sending spam data
3) UDP: UDP flooding
4) TCP: TCP flooding
5) COMBO: Sending spam data and opening a con-

nection to a specified IP address and port
• Mirai Attacks

1) Scan: Scanning the network for vulnerable devices
2) Ack: Ack flooding
3) Syn: Syn flooding
4) UDP: UDP flooding
5) UDPplain: UDP flooding with fewer options, opti-

mized for higher PPS
Including the benign network traffic we approach this as a
classification problem with eleven classes. The available data
are in the form of 115 statistical features extracted from the
raw network traffic. The same 23 features, presented in [15],
are extracted from five time windows of the most recent
100ms, 500ms, 1.5sec, 10sec, 1min. The features summarize
the traffic in each of these time windows that has (1) the same
source IP address, (2) the same source IP and MAC address,
(3) been sent between the source and destination IP address,
(4) been sent between the source and destination TCP/UDP
sockets. These features are computed incrementally and in
real-time.

The available data are used throughout the evaluation pro-
cess the same way the same way in every dataset. 10% of
the data are taken out to be used for testing and the rest is

the training set. The training set is then split into the proper
training set and the calibration set. The proper training set
is randomly chosen as 80% of the training set and is used
to train the underlying models and for the computation of
the categories. The calibration set is the remaining 20% of
the available training data is used only to form the categories
during the design time. The reported evaluation results are
computed on the separate test set. All the experiments run in
a desktop computer equipped with and Intel(R) Core(TM) i9-
9900K CPU and 32 GB RAM and a Geforce RTX 2080 GPU
with 8 GB memory.

B. Baseline

To understand the effect of the distance metric learning in
IVP we compare it with approaches that use DNN classifiers as
underlying algorithms. A variety of Venn taxonomy definitions
based on DNNs is proposed in [20]. V1 assigns two examples
to the same category if their maximum softmax outputs
correspond to the same class. V2, divides the examples in the
categories defined by V1 into two smaller categories based
on the value of their maximum softmax output. Their chosen
threshold for the maximum output to create the two smaller
categories is 0.75. V3 divides the examples in the categories
defined by V1 into two smaller categories but this time based
on the second highest softmax output. Their chosen threshold
for the second-highest output is 0.25. V4 divides each category
of taxonomy V1 in two, based on the difference between the
highest and second-highest softmax outputs. The threshold for
this difference is 0.5. In the same paper, they proposed a fifth
taxonomy that creates the categories based on which classes
have softmax outputs above a certain threshold. This taxonomy
creates 2C number of categories making its use infeasible in
our evaluation datasets.

C. Evaluation Results

The difficulty to assign an input to a category and the
memory demands increase as the size and complexity of
the inputs increases. Our goal is to evaluate our method
using general-purpose and lightweight DNNs. For the image
classification problems, we use the MobileNet architecture
for both the embedding representation computation as well
as the classifier used for the baseline taxonomies for its low
latency and low memory requirements. The trade-off between
accuracy and latency is configured by the hyperparameter α.
We set α = 0.5 in the case of GTSRB and α = 1 for the
Fruit360. In both cases the embedding representation vectors
are of size 128. In the case of the botnet attacks detection,
the input data are arranged in vectors of 115 values so we
use a fully connected DNN with two hidden layers, the first
has 10 units, and the second which produces the embedding
representations has 32 units.

After training the siamese network and before it is used
as part of the taxonomies we need to evaluate how well it
performs in clustering similar inputs. For comparison, we use
the embedding space produced by the penultimate layer of the
DNN classifier [7]. A commonly used metric of the separation
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between class clusters is the silhouette coefficient [24]. This
metric evaluates how close together samples from the same
class are, and far from samples of different classes and takes
values in [-1,1]. The results on the silhouette analysis for
the test inputs from both datasets are shown in Table I.
The siamese network produces representations that are well
clustered based on their similarity and better than the represen-
tations produced by the classifier DNN. This is important for
constructing efficient categories using our proposed distance-
based taxonomies.

Table I
SILHOUETTE COEFFICIENT COMPARISON

Classifier Embeddings Siamese Embeddings
GTSRB 0.56 0.98

Fruits360 0.52 0.85
Ecobee Thermostat 0.27 0.46

For illustration, the cumulative upper and lower error prob-
abilities as well as the cumulative error are plotted on the
same axis in Fig. 2 using the NC V2 taxonomy and test data
from the GTSRB dataset. The computed probability intervals
successfully bound the true error-rate.
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Figure 2. Illustration of cumulative metrics in the GTSRB dataset using the
NC V2 taxonomy

The evaluation results are shown in Table II. For both
datasets, we observe that using the proposed distance-based
taxonomies, IVP produces more accurate classifications. Even
though the baseline V1 taxonomy produces probability inter-
vals that are as narrow as the intervals produced by some of
the proposed taxonomies, the proposed taxonomies produce
better quality intervals by keeping the intervals assigned to
the correct class close to 1 and the intervals of the incorrect
classes close to 0, as shown by the NLL and BS metrics.
The differences in ECE are not significant but most of the
proposed taxonomies produce probabilities that are better
calibrated in the whole probability space [0, 1] with no areas
of miscalibration as indicated by MCE.

The times required for the computation of a classification
and the probability intervals when a new input arrives are
similar in both the baseline and our proposed taxonomies
and indicate they can be used for real-time operation. The
speed bottleneck is the computations by the DNNs for either
the classifications or the representation mapping. The k-NN
computation step in the low-dimensional embedding repre-
sentation space adds minimal overhead in the execution time.
The memory requirements have two main parts: the memory
required to store the DNN weights and the memory required to
store the categories after calibration. The proposed taxonomies
have the additional requirement to store either the embedding
representations of the training data to be used by the k-NN or
the centroid of each class. The representations of the training
data are stored in a k− d tree [3] for fast k-NN computation.
With the use of low-dimensional representations, the additional
memory required for the nearest centroid based taxonomies is
small compared to the underlying DNN size.

VII. CONCLUSION

Although DNNs offer advanced capabilities, they must be
complemented by engineering methods and practices for them
to provide accurate measures of prediction confidence. For
classification tasks, the IVP framework computes probability
intervals that contain the probability of the prediction’s correct-
ness by examining the underlying model’s accuracy on similar
data. We presented computationally efficient algorithms based
on appropriate embedding representations learned by siamese
networks that make it possible for IVP to be used with high-
dimensional data for real-time applications. The evaluation
results demonstrate that the IVP framework using distance-
based taxonomies produces high accuracy and probability
intervals that are efficient and well-calibrated. Our choice of
lightweight DNNs and small embedding representation size
make the approach computationally efficient and can be used
in real-time. A direction for future extension of this work is
to improve the probability intervals, regarding their efficiency,
during execution time.
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