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ABSTRACT

In recent years, machine learning (ML) algorithms have
gained significant interest in structural health monitoring
(SHM) applications. Typical approaches assume the train-
ing and test data come from similar distributions. However,
real-world applications, where an ML model is trained, for
example, on numerical simulation data and tested on exper-
imental data, are deemed to fail in detecting the damage, as
the domain data are collected under different conditions and
they do not share the same underlying features. This paper
proposes to apply a domain adaptation approach for solving
SHM problems where the classifier has access to the labeled
training (source) and unlabeled test (target) domain data, and
the source and target domains are statistically different. The
proposed domain adaptation method seeks to form a feature
space that is capable of representing both source and target
domains by implementing a domain-adversarial neural net-
work. This neural network uses H-divergence criteria to min-
imize the discrepancy between the source and target domain
in a latent feature space. To evaluate the performance, we
present two case studies where we design a neural network
model for classifying the health condition of a variety of sys-
tems. The effectiveness of the domain adaptation is shown
by computing the prediction accuracy of the unlabeled tar-
get data with and without domain adaptation. Furthermore,
the performance gain of the domain adaptation over a well-
known transfer knowledge approach called Transfer Com-
ponent Analysis is also demonstrated. Overall, the results
demonstrate that domain adaption is a valid approach for
SHM applications where access to labeled experimental data
is limited.

1. INTRODUCTION

United States (US) has one of the most sophisticated infras-
tructures in the world (World Bank, 2019). However, accord-
ing to a recent study conducted by the American Society of
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Civil Engineers (ASCE), the US infrastructure is aging and
failure on maintaining it may cost an economical loss in GDP
as big as $3.1 trillion (American Society of Civil Engineers,
2013, 2017). The condition of infrastructure for other mod-
ern societies is also under stress (Zachariadis, 2018). Over-
all, it is economically not viable to replace all deteriorating
infrastructure due to limited resources, and the operations of
maintenance, repair, and replacement should be prioritized
accordingly. Acting proactively when a critical infrastruc-
ture requires care and preventing catastrophic damages call
for novel and innovative approaches.

In the last few decades, structural health monitoring (SHM)
has gained a lot of momentum as a means of detecting
and localizing damages (Sohn, Farrar, Hemez, & Czarnecki,
2002). The introduction of machine learning (ML) into
SHM enabled further refinement as mature pattern recogni-
tion techniques provide higher accuracy in recognizing struc-
tural damages compared to traditional methods (Farrar &
Worden, 2012). Among many ML applications, supervised
methods are of particularly useful (Kiranyaz et al., 2019). Es-
pecially, when coupled with artificial neural networks, super-
vised learning offers promising results for damage detection
and localization (Park, Kim, Hong, Ho, & Yi, 2009; Dacker-
mann, Li, & Samali, 2013; Nick, Asamene, Bullock, Ester-
line, & Sundaresan, 2015).

A majority of supervised SHM applications assume that the
data used for training the damage condition classifier has the
same distribution as the testing data. However, this assump-
tion is problematic. First, it is unrealistic that one can obtain
data belonging to a particular damage condition without ac-
tually harming the integrity of the structure before its service
(Lu et al., 2016; Gardner, Liu, & Worden, 2020). In other
words, creating labeled data based on the original state of the
structure is not practical for supervised learning models. On
the other hand, we can generate a labeled data set using a rep-
resentative finite-element model or a similar scaled structure
where introducing damages is a more cost-effective approach.
The collection of labeled normal and damaged state data from
this representative structure is called source domain and could
be used for training a robust damage condition classifier. The
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second problem with the supervised ML applications is that
a model trained with labeled source domain data may fail to
predict the condition original structure during testing time by
looking at the unlabeled examples. The features for the orig-
inal structure establish the target domain. Both source and
target domains are distinct in a way that they have proba-
bility distributions which diverge from each other. To sum-
marize, source domain is the model trained on labeled data
derived from a representation of the original structure. The
model trained on the unlabeled data directly sought from the
original structure is the target domain. Both domains have
different statistics, which is known as domain shift. The ob-
jective of domain adaptation is to design a new learning ar-
chitecture that generalizes the prediction over both domains
(Goodfellow, Bengio, & Courville, 2016). This generaliza-
tion is achieved by finding a mapping that can extract domain-
invariant features. Eventually, this mapping is expected to im-
prove the prediction accuracy for the target domain compared
to an architecture that does not implement domain adaptation.
In brief, transfer of knowledge gained from source domain
to target domain is conceptualized as domain adaptation (see
Figure 1).

First attempt for domain adaptation started by addressing the
distribution shift between labeled training and unlabeled test
data. For example, Kernel Mean Matching (KMM) aims to
minimize the covariate distribution between two datasets in a
higher feature space called Reproducing Kernel Hilbert Space
(RKHS) by reweighing the sample data. As a result, KMM is
capable of producing a mapping that can match the test data
distribution in RKHS (Gretton et al., 2009). While KMM out-
performs ordinary classifiers and regressors, the improvement
is limited to covariate shift such that the conditional distribu-
tion remains same (Ptrain(y|x) = Ptest(y|x)) but input dis-
tribution shifts (Ptrain(x) 6= Ptest(x)) across both domains
(Bouvier, Very, Hudelot, & Chastagnol, 2019).

Many domain adaptation problems are susceptible to dataset
shift where P (Y |X) is not conserved between source and tar-
get domains to its highest degree (M. Wang & Deng, 2018;
Wilson & Cook, 2020). Thus, reweighting algorithms are
not always effective in such cases. Modern domain adap-
tation techniques focus on finding a common latent space
(also known as domain-invariant feature space) that repre-
sents both source and target domains. For example, as an
improvement to KMM, maximum mean discrepancy (MMD)
metric is introduced to measure the divergence between dis-
tributions and to compute a function in RKHS to maximize
the difference in expectations between two probability dis-
tributions (Borgwardt et al., 2006). A well-known transfer
learning method, transfer component analysis (TCA) uses
this MMD metric to minimize the maximum expected dis-
tribution shift between source and target domain (Pan, Tsang,
Kwok, & Yang, 2010). Additionally, Lu et al. utilized MMD
as a loss function for the training of neural networks to im-

prove the prediction over target data using both source and
target data during training. Similarly, Sun and Saenko em-
ployed CORAL, a metric similar to MMD for domain adap-
tation of classification problems.

The new generation domain approaches exploit adversarial
training to find domain-invariant features (Wilson & Cook,
2020). These approaches adopts the zero-sum game where
a label classifier (the network that predicts correct label of
an input whether it is coming from source or target domain)
is trained to deceive a domain classifier (the network that
predicts whether the input is source or target domain data).
For instance, Domain Adversarial Neural Network (DANN)
uses gradient reversal layer during back-propagation to re-
verse the domain classifier weight derivatives to maximize
the domain confusion (Ganin et al., 2016). Adversarial Dis-
criminative Domain Adaptation (ADDA) uses a a two-step
approach where the network is first pre-trained on source data
and then a domain classifier is trained to learn target domain
features. As an alternative to DANN-type of domain adap-
tation, domain mapping approach uses GANs to translate a
sample data in target domain to source domain (Benaim &
Wolf, 2017; Zhu, Park, Isola, & Efros, 2017). However, these
applications are limited to visual domain.

This paper introduces an effective domain adaptation ap-
proach to address the distribution shift between source and
target domain for supervised machine-learning-based SHM
applications. More specifically, we utilize a domain adversar-
ial neural network (DANN) approach to predict the damage
condition of a structure operating under a target domain using
both labeled source and unlabeled target domain data during
training time. The main purpose of the DANN architecture
is learning features that represent both source and target do-
mains. To achieve this goal, DANN implements a multi-task
topology that combines a regular feed-forward neural net-
work (NN) based damage classifier using source data with
a domain discriminator NN which utilizes source and target
domain data. The domain discrimination component enables
the feed-forward NN to extract latent features underlying both
domains by minimizing H-divergence between domains.

To demonstrate the suitability of the DANN for SHM appli-
cations, the paper investigates two case studies. The first case
study focuses on a gearbox system with different damage
conditions operating under low- and high-loads. A DANN
model is trained with labeled low-load and unlabeled high-
load data to predict the damage condition for the high-load
operation of the gearbox. Additionally, for this case, DANN
is compared to a well-known transfer knowledge method,
Transfer Component Analysis (TCA) to show the perfor-
mance gain from DANN. In the second case, the effectiveness
of the domain adaptation from the numerical model to exper-
imental data is studied for a small-scale three-story structure.
The numerical model of the structure is used to simulate var-
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Figure 1. Concept of Domain Adaptation

ious damage conditions for the source domain whereas the
experimental data constitutes the target domain. Results from
both case studies indicate that domain adaptation is a viable
method for SHM applications, and it increases the accuracy
for damage condition prediction considerably. Additionally,
the DANN can be considered as a potential ML architecture
enabling appropriate knowledge transfer across the source
and target domains.

For many machine-learning-based SHM applications focus-
ing on damage detection and localization, a shift from source
to the target domain is expected. Domain adaptation is a vi-
able methodology for minimizing the distribution shift be-
tween source and target domains. This paper demonstrates
that DANN is a suitable approach for learning latent features
that underline both source and target domains. The case stud-
ies examined in this paper show that DANN improves the
prediction accuracy of supervised damage detection and lo-
calization algorithms.

The rest of the paper is outlined as follows. First, Section
2 discusses condition monitoring briefly and formulates the
domain shift problem. Section 3 introduces the DANN model
for SHM applications. Section 4 presents case studies and the
evaluation results. Lastly, Section 5 summarizes the paper
and draw the conclusions.

The code to generate the results in this paper can be accessed
from https://github.com/aliirmak/DASHM.

2. DOMAIN ADAPTATION IN SHM

In traditional SHM applications, vibration data is captured
from various locations of the structure in the form of acceler-
ations (Abdeljaber, Avci, Kiranyaz, Gabbouj, & Inman, 2017;
Ozdagli & Koutsoukos, 2019). Meaningful features extracted
from these measurements through time or frequency domain
analysis establish the input space for a supervised learning
model. Each data in the input space can be associated with a
label describing the structural condition in terms of location
of the damage and its intensity to form {X,Y }. Supervised
learning algorithms require access to those labeled data for
proper training. While the no-damage/normal data is often
available when the structure is first erected, it is impractical

to abuse the structure just to obtain the data relevant to various
damage conditions.

As a solution to the main fallback of the supervised learn-
ing methods, model-based SHM approaches exploit numeri-
cal models to establish a baseline for damage detection and
damage localization (Mirzaee, Abbasnia, & Shayanfar, 2015;
Figueiredo, Moldovan, Santos, Campos, & Costa, 2019). Nu-
merical models can be useful for generating labeled source
domain data. However, an ML model trained with source
domain data may suffer from the uncertainty gap between
the numerical model and the experimental structure (Catbas,
Gokce, & Frangopol, 2013). Consequently, the learning
model may not yield correct labels for the unlabeled target
domain and may diagnose the damage improperly for the tar-
get structure. From the domain adaptation perspective, the
distribution shift between source and target domain should be
addressed (Singh, Azamfar, Ainapure, & Lee, 2020; Li, Li,
He, & Qu, 2020). Accordingly, the problem for supervised
SHM applications is finding domain-invariant features that
represent both labeled source and unlabeled target domain.

In this paper, the source domain DS consists of labeled data
derived either from numerical simulations or from a particu-
lar state of the structure (for example, low wind, low traffic
load, low-load, etc. corresponding to the normal operation).
The target domain DT is either the data captured from the
experimental structure or an operational state of the structure
that is not relevant to source domain (such as high wind, high
traffic, high-load, etc. corresponding to stressing operations)
and it is unlabeled. Then, the typical domain adaptation task
for supervised SHM application is predicting the class for un-
labeled target domain data using the knowledge gained from
both source and target data.

For SHM, it is natural to consider a classification task where
X = {xi}Ni=1 is the input space of features and Y = {yi}Ni=1

is the output space corresponding to the labels. Suppose that
we have two different distributions over the {X,Y }: i) DS

is the source domain which contains the labeled source sam-
ples with S = {(xi, yi)}ni=1 ∼ DS ; and ii) DT is the target
domain which consists of the unlabeled target samples with
T = {xj}n

′

j=1 ∼ DT . We assume that the distributions for
both domains are different such that DS 6= DT . This implies
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that the distributions for the input space from S and T are not
identical, namely p(XS) 6= p(XT ). Similarly, the conditional
distributions that are used for inference may not match, that
is p(YS |XS) 6= p(YT |XT ). Given DS and DT , the task for
the domain adaptation is to build a classification model h(x)
which can predict correct labels for samples from DT using
the knowledge learned from DS and DT .

2.1. Domain Adversarial Neural Network

A common domain adaptation approach is finding a map-
ping function that can minimize a probabilistic discrepancy
metric between the two domains. The majority of these met-
rics focus on computing the divergence, i.e., the distance be-
tween two probability distributions. For example, the kernel
mean matching (KMM) algorithm minimizes the mean dis-
tance in a kernel space by re-weighting the target domain
with respect to source domain(Huang, Gretton, Borgwardt,
Schölkopf, & Smola, 2007). The approach in (Sugiyama,
Nakajima, Kashima, Buenau, & Kawanabe, 2008) proposes
to minimize the Kullback-Leibler (KL) divergence for mini-
mizing domain shifts. A well-known transfer learning algo-
rithm called transfer component analysis (TCA) utilizes Max-
imum Mean Discrepancy (MMD) to minimize the distance
between two domains in Hilbert space (Sejdinovic, Sriperum-
budur, Gretton, & Fukumizu, 2013; Pan et al., 2010). Lastly,
Ben-David et al. hypothesizes that a classifier-induced diver-
gence, namely H-divergence is sufficient for domain adapta-
tion.

H-divergence relies on distinguishing the examples of DS

and DT and computing the domain divergence from the data
in both domains. Accordingly, we label the data fromDS and
DT as 0 and 1, respectively. Then, we have a new dataset that
can be described as:

U = {xi, 0}ni=1 ∪ {xj , 1}n
′

j=1 (1)

Then, the objective is to develop a function that predicts the
class of the sample input χ correctly, i.e., f : χ → [0, 1].
Similarly, h′(x) is the learned model h′ : χ → [0, 1]. Then,
the generalized error is:

ε = E[|h′(x)− f(x)|] (2)

Given ε, the H-divergence is approximately:

d = 2(1− ε) (3)

One purpose of the domain adaptation is minimizing the H-
divergence d. More details on the derivation of the divergence
can be found in (Ben-David et al., 2010; Ganin et al., 2016).

There are inherently two tasks for implementing H-
divergence based domain adaptation. First, we want to
train a domain classifier h′(x) that can discriminate between
source and target domains. At the same time, we want to

design a class predictor h(x) to correctly predict the class for
the source domain data during training. It should be noted
that the class predictor cannot be trained on target domain
data as they are unlabeled. The ultimate aim of the domain
adaptation is finding features that underline both the source
and the target domain. Such a representation is expected to
minimize the H-divergence and the domain predictor h′(x)
should not be able to distinguish between the source and
target domains.

The domain-adversarial neural network (DANN) approach
introduced in (Ganin et al., 2016) exploits this objective by
proposing a multi-task learning approach. The DANN is
composed of three components: feature extractor, label pre-
dictor, and domain classifier (see Figure 2). The feature ex-
tractor (green colored) and label predictor (blue colored) lay-
ers are usually densely connected or convolutional layers.
Both feature extractor and label predictor layers combined
form a feed-forward neural network. This network uses only
the labeled source data for training. The domain classifier
(red-colored) is tasked with discriminating between the two
domains. During the forward-propagation phase of the train-
ing, we can compute the loss over the labeled source data us-
ing the label predictor and the loss over both domain-labeled
source and target data using the domain classifier. For typical
applications, both losses can be logistic regression or cross-
entropy functions depending on the ML task.

In back-propagation, a gradient reversal layer (denoted as GR
in the figure) is added to the architecture to learn the latent
features of both domains. This layer reverses the gradient af-
ter multiplying with a negative small constant. This negative
gradient enforces the distribution of latent features extracted
from both source and target domain to be indistinguishable.
As a result, the entire network is expected to learn domain
invariant features.

3. EVALUATION, RESULTS, AND ANALYSIS

For the evaluation of the proposed domain adaptation ap-
proach for SHM, two case studies are analyzed. The first case
study investigates the prediction performance for the damage
condition of a gearbox system under various torques. In the
second case study, a three-story structure with several levels
of damage conditions is used.

3.1. Case Study 1: Gearbox Fault Detection

3.1.1. Dataset and Preprocessing

PHM Data Challenge 2009 introduced a dataset simulating
various fault types for a generic gearbox system (PHM data
challenge 2009., 2009). Acceleration data were collected at
the input and output shaft of the gearbox at different shaft
speeds (30, 35, 40, 45, and 50 Hz) under two different load-
ing conditions (low- and high-load). For each shaft speed
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Figure 2. Simplified DANN architecture

and loading conditions, 6 fault types are simulated (normal,
chipped gear tooth, broken gear tooth, bent shaft, imbalanced
shaft, broken gear tooth with bent shaft). For each case which
is the combination of fault type, shaft speed, and load condi-
tion, about 4 seconds of data is collected at a sampling rate of
66.67 kHz twice. In this paper, only the output shaft vibration
data is considered.

According to the literature on gearbox fault detection (Chen,
Li, & Sanchez, 2015; Jing, Zhao, Li, & Xu, 2017), the fre-
quency domain provides a rich feature set for fault detec-
tion using vibration data. Thus, before training, all raw data
is converted to the frequency domain using sliding-window
Fast Fourier Transformation (FFT) also known as Short-Time
Fourier Transform (STFT). The parameters for the transfor-
mations are selected as prescribed by the length of each win-
dow segment which is 1000 samples. The segments overlap
by 80 percent and the sample length of FFT is 1200. The
frequency resolution is ∆f = 111 Hz. After prepossessing,
each damage condition case has about 2700 data points with
601 features per loading condition. The dataset is divided
into source and target domains according to loading condi-
tions. The source domain corresponds to low loading condi-
tions consisting of all shaft speeds and fault types whereas the
target domain is composed of the high-load operation. Since
the task is detecting the type of the fault regardless of shaft
speed, the data belonging to the same fault type are stacked
together. Finally, both domain data is split into training and
test data using a 4-to-1 ratio. All data is standardized with
respect to the source training data and all labels are one-hot
encoded.

3.1.2. Implementation

Three different models are developed: Model 1: source-only
model which is trained only with source domain data; Model
2: the multi-tasking DANN model for training which uses
both source and target domain data to discriminate the do-
main and predict the label; and Model 3: single-task DANN
model for prediction and used only for testing. The archi-
tectures are shown in Figure 3. The source-only model is

a shallow network consisting of feature extraction (FE, col-
ored in green) and class prediction (CP, colored in blue) lay-
ers. In addition to FE and CP layers, the multi-tasking DANN
model includes the domain discriminator (DD, colored in red)
layers and the gradient reversal (GR) layer. The single-task
DANN model has the same structure with the source-only
model but with updated weights where the FE contains the
latent features that represent both source and target domains
after training. Model 1 and Model 2 are trained using stochas-
tic gradient descent. All the losses are chosen as categorical
cross-entropy.

The low loading condition data represents the source domain
whereas the high loading condition data corresponds to the
target domain. During training, the DANN utilizes 128 data
points (64 source and 64 target) per batch. We assume we
have access to the source data labels but not to the target do-
main labels. The source (input, label) tuples are used explic-
itly for the class prediction task. For domain prediction, the
source data is labeled as 0 and target data as 1, and then the la-
bels are one-hot encoded. The domain predictor uses both do-
main data for training and creating domain invariant features.
The source-only model is trained with 75 epochs whereas the
DANN is trained for 200 epochs.

In addition to DANN, TCA is used for comparison. TCA
utilizes training data from both source and target domain to
realize dimension reduction using radial basis function as the
kernel. After dimension reduction, an support vector machine
(SVM) classifier is trained on the labeled source data. This
classifier is also used to predict labels on unlabeled target
data. Since TCA is essentially a set of matrix multiplications,
the complete training dataset does not fit into the memory.
Due to this limitation, only a quarter of training samples are
used from both domains. TCA method is only applied to the
first case and then discarded for the second case due to its low
performance.
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(a) Source-only model

(b) DANN model

Figure 3. NN architectures for domain adaptation

3.1.3. Results

Table 1 shows the accuracy for source and target domain test
data on the source-only model and the DANN model. The
accuracy for predicting the source data is about 97 percent
for both models. Without domain adaptation, the accuracy of
the target data for the source-only model is 64 percent. The
DANN improves the prediction on target data and increases
the accuracy to 71 percent. The accuracy of the source-only
and DANN models for the training data is 99.6 and 99.9 per-
cent, respectively, such that the over-fitting is minimal. TCA
method produces lower accuracy for source and target do-
main data ranging between 42 to 63 percent. DANN outper-
forms TCA significantly and this finding implies that TCA
may not be used as a reliable domain adaptation method.

Table 1. Domain adaption performance for gearbox fault de-
tection

Model Input Accuracy

Source-only Model
Source 97.51%
Target 64.29%

DANN Model
Source 97.55%
Target 71.79%

TCA Model
Source 61.87%
Target 42.55%

3.2. Case Study 2: Structural Damage Detection

3.2.1. Structure and Numerical Model

This case studies the performance of domain adaptation when
the training data are generated using a finite element model
but the testing data are from an experimental structure. A
small scale three-story structure is tested by Figueiredo, Park,
Figueiras, Farrar, and Worden at the Los Alamos National
Laboratory. The structure is excited with an electromagnetic
shaker attached to its base. The accelerations at each floor

including the base are recorded at a sampling rate of 320 Hz
for about 25 seconds. 7 damage conditions are considered
where the stiffness of one or two out of four columns at dif-
ferent stories are reduced. Table-2) summarizes the damage
conditions.

Table 2. Damage types for three story structure

Label Damage Type

State #1 Baseline condition - Undamaged
State #2 87.5% stiff. red. in one column at first floor
State #3 87.5% stiff. red. in two columns at first floor
State #4 87.5% stiff. red. in one column at second floor
State #5 87.5% stiff. red. in two columns at second floor
State #6 87.5% stiff. red. in one column at third floor
State #7 87.5% stiff. red. in two columns at third floor

A simple lumped-mass numerical model of the struc-
ture is developed with the modal parameters identified by
Figueiredo et al.. The error between numerical and experi-
mental natural frequencies varies within the range of 0.4 to
3 percent. The numerical model is simulated at 320 Hz in
MATLAB where the base is excited with the acceleration
data captured at the base level from the experimental struc-
ture. Both numerical and experimental vibration data are
converted to the frequency domain using STFT and the same
parameters as in the first case study. For each damage condi-
tion, 2100 data points with 601 features are generated. After
the data is split into training and testing, it is standardized
and the labels are one-hot encoded.

3.2.2. Implementation

Similar to the first case study, three ML models are generated.
For these three models, the data obtained using the numerical
structural model constitutes the source domain and the data
obtained using the experimental model represents the target
domain. The topology and the parameters used in these mod-
els are the same as the one from the first Case 1. The source-
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only domain is trained for 50 epochs and the DANN is trained
for 200 epochs.

3.2.3. Results

Table 1 presents the performance of the DANN in predicting
unlabeled target domain data. The prediction accuracy for the
source data on the source-only and DANN model is almost
100 percent. When the domain adaptation is not considered,
the accuracy of the target data is about 36 percent. With the
DANN, the accuracy increases to 64 percent. The over-fitting
for this case is small, as the accuracy of the source-only and
DANN model for the training data is 100 and 99.98 percent,
respectively.

Table 3. Accuracy for domain adaption from numerical to
experimental world

Model Input Accuracy

Source-only Model
Source 99.92%
Target 36.11%

DANN Model
Source 99.92%
Target 63.08%

3.3. Discussion

To demonstrate the applicability of DANN, we consider two
case studies. In the first case study, we predict the con-
dition of a gearbox system running under high-load using
the knowledge gained from low-load and high-load opera-
tion data. The second study focuses on transferring inference
from labeled simulation data to unlabeled experimental data.
While the improvement DANN provides for case 1 is mod-
est, we observe a 30 percent increase in the target accuracy for
case 2. It is clear that there is a big divergence between source
and target domains for case 2. The learning model produced
with the numerical data is not very successful in predicting
correct labels for the target data without proper domain adap-
tation. However, the DANN is able to improve the accuracy
of the target data by aligning features of source and target
domain through H-divergence minimization. Specifically, for
the first case, TCA produced low accuracy both for source
and target domain data. This could be attributed to the fact
that only a quarter of the total data set is used for the train-
ing since TCA is taxing to the memory similar to Principal
Component Analysis for big number of samples. Thus, the
generalization over both data set may be very well defined.
Additionally, TCA uses SVM on dimension-reduced source
domain dataset. SVM may not be the most suitable classifier
for this application.

4. CONCLUSION

For many SHM methods based on supervised learning, ex-
perimental target data is often not available. For such cases,

a classification model trained with simulation data may not
generate correct predictions for real data. Without addressing
the data shift between the source and target domain, it is chal-
lenging to learn a model that can be used for SHM. This paper
shows that domain adaptation is a viable approach to damage
classification problems. Specifically, we show the applicabil-
ity of adversarial domain adaptation using two case studies.
In the first case, we study the fault detection performance for
a gearbox system between low-load (source) and high-load
(target) domains and we observed that the prediction accuracy
improves using domain adaptation. Additionally, we com-
pared DANN to TCA to demonstrate the performance gain
from DANN over TCA. The second case focuses on detect-
ing and locating damage for a three-story structure. Here,
we utilized a numerical model of the structure for generat-
ing labeled source domain data and the experimental data for
unlabeled target domain data. The results show that DANN
increases classification performance significantly.

The current approach processes source and target data sepa-
rately during training. In reality, for the majority of structural
health monitoring applications, the structure is expected to be
in healthy condition after the construction. As a result of this,
target domain data labeled as normal/undamaged is accessi-
ble for training to some extent. For future research, novel
domain adaptation methods should exploit this limited target
domain data during training to extract more generalized latent
features and to improve the adaptation. In addition, this pa-
per uses only densely connected neural network architectures.
There may exist a better representation mapping within dif-
ferent architectures utilizing convolution (Q. Wang, Michau,
& Fink, 2019). Lastly, other domain adaptation strategies
such as GAN-based discriminate approaches (Tzeng, Hoff-
man, Saenko, & Darrell, 2017) should be also explored.
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