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Abstract—Graph representations in fixed dimensional feature space are vital in applying learning tools and data mining algorithms to
perform graph analytics. Such representations must encode the graph’s topological and structural information at the local and global
scales without posing significant computation overhead. This paper employs a unique approach grounded in networked control system
theory to obtain expressive graph representations with desired properties. We consider graphs as networked dynamical systems and
study their controllability properties to explore the underlying graph structure. The controllability of a networked dynamical system
profoundly depends on the underlying network topology, and we exploit this relationship to design novel graph representations using
controllability Gramian and related metrics. We discuss the merits of this new approach in terms of the desired properties (for instance,
permutation and scale invariance) of the proposed representations. Our evaluation of various benchmark datasets in the graph
classification framework demonstrates that the proposed representations either outperform (sometimes by more than 6%), or give similar
results to the state-of-the-art embeddings.

Index Terms—Graph Embedding, Network Controllability, Graph Classification.
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1 INTRODUCTION

The graph-theoretic framework provides means to analyze
network characteristics and examine the influence of local
interactions on global network behavior. In recent years,
various data-driven approaches have been developed to
solve real-world graph problems like graph classification,
link prediction, community detection, and network evolution.
Applying prevalent data mining techniques and learning
algorithms to solve graph problems is not a straightforward
task. The classical methods are designed for vector-valued
data requiring graphs to be embedded in vector spaces. In
other words, we need to define vector representations of
graphs with some desired properties, such as permutation-
invariance, expressiveness, and accuracy.

In this paper, we design a novel graph representation
grounded in the network controllability paradigm [1]. We
perceive graphs as networked dynamical systems in which
each vertex is an agent (dynamical unit) that maintains a
state. Every agent updates its state through some dynamical
process and interacts with other agents in its neighborhood
defined by the underlying network graph. The states of
all agents define the overall network’s state. The network
controllability paradigm concerns steering a network from
one state to another by injecting some control signals into the
system through a subset of agents. The network’s ability to
be manipulated and controlled through such external inputs
directly depends on the underlying network graph [2]–[6].
As a result, by studying the controllability properties of
dynamical processes over networks, one can gather valuable
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insights into the underlying graph’s structure that are distinct
from other approaches. We propose to understand and harness
the relationship between graph topology and networked dynamical
system behavior to design expressive graph representations in this
work.

The controllability of networked dynamical systems
has been a fundamental topic in control theory. In recent
years, many studies have established profound connections
between network controllability and the underlying graph-
theoretic constructs, such as matching [4], graph distances [7],
dominating sets [8], equitable partitions [3], and zero forcing
sets [9]. At the same time, graph-theoretic characterization
of controllability for various families of network graphs,
such as paths, cycles, trees, complete graphs, random graphs,
symmetric graphs, circulant graphs, bipartite graphs, and
product graphs, have been reported [1].

This paper demonstrates that by exploring controllability
properties of networks, including how ‘much’ of the overall
network can be controlled from a given set of input nodes,
how ‘easy’ it is to steer the network towards desired states,
how the ‘location’ of input nodes affect the controllability,
and how the network topology influences these behaviors,
we can construct effective graph representations (CTRL
and CTRL+ ). We evaluate the proposed representations
for the classification problem on several standard datasets
and report improved or competitive classification accuracy
compared to the existing approaches. We also discuss the
expressiveness and invariance to node orderings of the
proposed graph embeddings. This network control systems
perspective to design graph representations is studied for
the first time to the best of our knowledge.

2 RELATED WORK

Graph representation methods can be broadly divided
into three main approaches: graph kernels, spectral graph
representations and Graph Neural Networks (GNNs). In the
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following subsections, we provide a brief overview of the
recent advancements in these domains.

Graph Kernels: Graph kernels are acknowledged as
prevalent methods for analyzing and comparing graphs.
There are a variety of widely recognized approaches, among
them being the shortest-path kernel [10], the Weisfeiler
Lehman kernel [11], the deep graph kernel [12], and the
graphlet kernel [13], among others. These methods employ
different graph-theoretic metrics like pairwise distances [10],
subgraph mining [14], and neighborhood aggregation [11]
to extract graph representations. To illustrate, the shortest-
path kernel and its several variants, being some of the
earliest and most impactful approaches, utilize the pairwise
distance method to generate the kernel matrix [10]. The
central concept revolves around comparing the lengths of
the shortest paths between all possible pairs of vertices in
two separate graphs. Similarly, random walk kernels offer an
alternative viewpoint on graph kernels by assessing the count
of walks within graphs that are mutual [15]. Another widely
appreciated approaches involve interpreting the graph struc-
ture as a collection of vertices, mirroring the bag-of-words
representation in textual contexts [13]. This approach, while
overlooking the global perspective, zeroes in on the intricate
details of the graph by examining the subgraph structures
[16]. The Weisfeiler-Lehman (WL) kernel is another notable
method in graph kernels. This technique distinguishes itself
by going beyond the traditional graph structures, and instead,
focusing on the neighborhood information of each node
[11]. Despite the significant advances achieved by graph
kernels, they do face certain limitations. For example, their
performance may suffer when applied to large-scale graphs
due to computational complexity. Additionally, their ability
to capture more nuanced or complex patterns and structures
within the graph data can be limited, as they mainly focus
on local graph information [16].

Spectral Graph Representations: Unlike graph kernels,
graph spectral methods leverage the spectrum (i.e., the
eigenvalues) of the graph Laplacian, to describe graph
structures [17]. This approach addresses the limitations of
graph kernels by providing more computationally efficient
solutions, especially for large-scale graphs, and capturing
global patterns and structures within the data [18]. In
recent years, various efforts have been undertaken that have
garnered considerable interest. For instance, the authors in
[17] introduce a family of graph spectral distances (FGSD),
aiming to produce sparse and stable graph representations,
with an emphasized focus on the uniqueness of the resulting
graph representation. This proposed methodology lever-
ages pairwise distances and considers the graph spectrum,
comprising eigenvectors and eigenvalues, as a means to
compute distances. In a similar vein, the authors of [19]
propose the use of the Wasserstein distance to distinguish
graphs based on their node feature distributions, while the
distribution of smooth graph signals is employed in [20] for
graph comparisons. An analogous approach, involving the
optimal transport theory and discrete graph matching in a
continuous domain, is proposed in [21], [22]. Similarly, [18]
introduces a spectral graph representation approach, termed
as NetLSD, which is based on the heat and wave kernel of
the graphs. The crux of this work revolves around the notion
of heat diffusion over the graph, assuming that the heat
originates from a single vertex at time t and subsequently

diffuses throughout the graph at different time scales. These
time scales are computed in the form of a heat matrix,
and the corresponding graph representation is obtained by
taking the trace of the heat matrix calculated at each time
instance. Furthermore, [14], [23] present graph descriptors
that encapsulate the structural information of graphs using
different graph-theoretic methods.

The proposed method of capturing the control-theoretic
properties of a graph offers a rich perspective on obtaining
graph representations. One way to understand such repre-
sentation is by envisioning it as a heat diffusion process on
graphs, similar to NetLSD. However, the diffusion in our
proposal begins from multiple source nodes, offering a more
comprehensive perspective for analyzing the graph structure.
NetLSD is a special case of our proposed approach.

Graph Neural Networks (GNNs): GNNs are useful tools
for learning graph representations. The last few years have
seen a surge in GNNs approaches, introducing different
techniques for improving models’ capabilities. Among these,
message-passing with attention, transformers, and more
recently, unsupervised methods have significantly improved
the models’ performance on different tasks [24], [25]. Re-
cently, various graph representation approaches have been in-
troduced that focus on different aspects of the GNN methods
i.e. scalability, robustness, generalizability, and explanability
[26]. Such approaches include Graph Convolutional Net-
works [27], [28], Graph Reinforcement Learning [29], and Self-
Supervised Learning (SSL) [30]. Graph convolutions involve
two groups of methods: spectral and spatial convolution [31],
[32]. The spectral convolutions methods use graph Fourier
transform or its extensions to translate node representations
to the spectral domain [31], [33]. On the other hand, spatial
convolution methods use a message-passing mechanism to
learn node embeddings [32], [34]. Reinforcement Learning
(RL) based approaches implement RL mechanism to perform
task-oriented learning on graphs such as graph generation,
graph classification, and knowledge graph reasoning [35].
Self-Supervised Learning extracts informative knowledge
through well-designed pretext tasks without relying on
manual labels [30].

These graph neural network approaches report a state-of-
the-art classification accuracy on several standard graph
datasets, their sizable variance is of concern for certain
applications [36]. Additionally, they utilize node features
in the learning process, whereas the kernel methods usually
work on unlabelled graphs.

Unlike the existing works, we pursue a unique approach
to seek expressive graph representation. We consider graphs
as networked dynamical systems and observe their controlla-
bility properties, revealing the extent to which a network can
be manipulated. Using control theory, we employ tools to
capture the relationship between networks’ control behavior
and their underlying topologies. We then propose a graph
representation based on control properties that exhibit good
classification accuracy for a broad range of datasets.

3 NETWORKS AS DYNAMICAL SYSTEMS

A network of inter-connected entities is represented by a
graph G = (V,E), where the vertex set V = V (G) =
{v1, v2, . . . , vN} represents the entities, and the edge set
E = E(G) ⊆ V × V represents the pairs of related entities.
We use the terms vertex, node and agent alternatively. The
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neighborhood of a vertex vi is the set Ni = {vj ∈ V :
(vj , vi) ∈ E}. The degree of vi, denoted by δi, is the size of
the neighborhood Ni. A graph with N nodes is represented
by the adjacency matrix J ∈ {0, 1}N×N , where Ji,j = 1,
if and only if (vj , vi) ∈ E, and Ji,j = 0, otherwise. The
degree matrix of G, denoted by D, is a diagonal matrix with
Di,i = δi. The Laplacian matrix of a graph is defined as
L = D − J . The transpose of a matrix X is denoted by XT .
An N -dimensional vector with all zero entries is denoted
by 0N , and a vector with all 1’s is represented by 1N . We
consider undirected graphs here for the ease of exposition;
however, all the methods and results are also applicable to
directed graphs. We provide the details for directed graphs
in the Supplementary material.

3.1 Problem Description
A graph embedding is defined as a function ϕ(G) : G → Rd,
from the family of graphs, G, to a d-dimensional Euclidean
space. The objective of the graph embedding problem is to
find suitable embeddings for the graphs, where the suitability
of embeddings is driven by a few design goals discussed
here. Most importantly, ϕ should be able to retain information
about the structural similarities between pairs of graphs at
both local and global scales, i.e., if two graphs are structurally
similar, then their embeddings should generate vectors that
are nearby with respect to the Euclidean distance in the
target vector space. Note that the concept of similarities
between two graphs is not a universal notion but rather
depends on a particular application (e.g., graph classification,
nearest neighbor search, clustering) and the family of graphs
considered (e.g., chemical compounds, social networks).
Furthermore, ϕ should be permutation-invariant in the sense
that ϕ should return identical vectors for two graphs, G,H ,
with the same set of edges on a permuted vertex set, i.e.,
∃π : V (G)→ V (H), (u, v) ∈ E(G)⇔ (π(u), π(v)) ∈ E(H),
then we should have ϕ(G) = ϕ(H). Another important
design goal for graph embeddings is scale-adaptiveness. Not
only should a graph embedding be able to map graphs of
varying sizes to a fixed dimensional space, but mapping
should also transcend the graph size to capture its structural
properties. For example, an ideal graph embedding would
map a cycle on ten nodes closer to the mapping of a
cycle on twenty nodes as compared to the mapping of
a wheel on fifteen nodes. In this paper, we address the
problem of finding graph embedding while keeping the
above-mentioned design goals in perspective.

3.2 Control Dynamics Properties over Networks
We design distinctive graph representations by studying
controlled dynamical processes over networks and mapping
the control behavior to the network topology. Consider a net-
work graph in which each agent vi is a dynamical unit with
a state xi(t) ∈ R at time t that the agent also shares with its
neighborsNi. Each agent updates its state by following some
dynamics (e.g., consensus dynamics) while incorporating its
neighbors’ states during the state update process. The state
of the overall system at time t is a vector of the states of all
the agents, i.e., x(t) = [x1(t) x2(t) · · · xN (t)]T . Each agent
updates its state by the consensus dynamics given by

ẋi(t) =
∑

vj∈Ni

(xj(t)− xi(t)) . (1)

The system level dynamics (evolution of the state x(t)) is
then defined by the following linear system:

ẋ(t) = −Lx(t), (2)

where L is the Laplacian matrix of the underlying network
graph. It is well known that if G is connected, then state of
each agent will eventually converge to the average of the
initial states of all agents [1]. Thus, if xi(0) is the initial state
(at t = 0) of agent vi, then

xi(t) → x̄ ≜
1

N

∑
vj∈V

xj(0), as t→∞, (3)

∀vi ∈ V . It means the overall network state x(t) will be
[x̄ x̄ · · · x̄]T = x̄1N ∈ RN , as t → ∞. Thus, under the
consensus dynamics in (2), all agents converge to the same
state. The linear system defined over G in (2) is autonomous
as the system’s state is updated without any external input.
We have no control over the state’s evolution in the sense
that we cannot steer the system to some desired state, say
x∗(tf ) ∈ RN at time tf . For this purpose, external control
signals are injected into the system through a small subset
of agents called leaders. Through these exogenous signals,
leaders’ states can be directly manipulated, i.e., ẋl = ul(t),
where ul(t) is the input signal to the leader agent vl. The
non-leader agents, often called followers, continue to update
their states using (1).

By feeding appropriate control signals to leaders, which
are typically very few, the network’s overall state x(t) ∈ RN

can be manipulated. As a result, we get certain control over
the system’s (state) evolution. The set of states that can be
achieved, that is, to which the system can be driven, depends
on the underlying network graph, the number of leaders, and
their locations within the network. This ability of a network
to be controlled through external inputs is called network
controllability. By studying network controllability, we can
gather valuable information about the network’s structure
as the two are deeply connected. By studying the control-
related properties of the network, for instance, the number of
leaders needed to completely control it, the dimension of the
subspace consisting of controllable states, and the amount
of control energy needed to steer the system from one state
to another, one can thoroughly examine the graph structure
and design effective graph representations.

4 NETWORK CONTROLLABILITY AND GRAPH REP-
RESENTATION

In this section, we will explore network controllability, a
fundamental idea in network theory that helps us understand
how we control systems. First, We will formally define a
dynamic system for networks that can be controlled by
probing the network using external signals. Second, we
define network controllability and discuss various measures
to quantify it. In the end, we will discuss the potential of
these control-based measures in graph representation and
illustrate their capability with a few examples. Based on
these measures, we design novel embeddings for networks
in Section 5.

4.1 Network Dynamics
For a network graph G = (V,E), we partition V into fol-
lower and leader nodes, denoted by Vf and Vℓ, respectively,
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i.e., V = Vf ∪ Vℓ. Here, |Vf | = Nf and |Vℓ| = Nℓ. Without
loss of generality, we assume that Vf = {v1, v2, · · · , vNf

}
and Vℓ = {vNf+1, · · · , vN}. The subgraph induced by Vf is
called the follower graph and is denoted by Gf . The Laplacian
matrix of G is partitioned as

L =

[
A B
BT C

]
, (4)

where A ∈ RNf×Nf , B ∈ RNf×Nℓ and C ∈ RNℓ×Nℓ . An
external input signal ul is given to leader agent vl ∈ Vℓ.
The follower nodes update their states according to (1). The
state vector corresponding to follower nodes is denoted by
xf (t) ∈ RNf , and is updated by the following system.

ẋf (t) = −Axf (t)−Bu(t), (5)

where A and B are in (4) and u(t) =
[uNf+1(t) · · · uN (t)]T ∈ RNℓ is a control signal at
time t. We note that the system matrices −A and −B in (5)
directly depend on the underlying network structure and the
selection of leader agents. As a result, the evolution of xf is
a function of the network graph and the control mechanism,
which includes external inputs and the selection of leader
agents in the network. From the control perspective, we are
interested in knowing if it is possible to steer the system (5)
from an arbitrary initial state to an arbitrary final state in
a finite amount of time t1. If it is possible, then how much
control energy E(u), defined below, would be required.

E(u) =
∫ t1

τ=0
∥u(τ)∥2dτ. (6)

Similarly, if all states are not reachable, then what is the
dimension of the subspace consisting of reachable states?
How these control properties vary as a result of a change in
leader agents? Answers to these questions encode informa-
tion that could be conducive to learn the graph structure. For
this, we need metrics to quantify various aspects of network
controllability. These measures can then be used to obtain
graph embeddings. Controllability of linear systems is a
fundamental topic in Control theory and we use results from
there to quantify the controllability properties of networks.

4.2 Network Controllability Metrics
Controlling a network corresponds to driving a network
from a given initial state to a desired final state by applying
control inputs to leaders in the network. If xf (ti) is the initial
state at time ti, then under the dynamics (5), the state at time
ts is

xf (ts) = e−A(ts−ti)xf (ti) +

∫ ts

ti

e−A(ts−τ)(−B)u(τ)dτ.

(7)
A state x∗

f ∈ RNf is called reachable if there exists an input
that can drive the network from origin 0Nf

to x∗
f in a finite

amount of time. The set of all reachable states constitutes
the controllable subspace.1 The dimension of the controllable
subspace is an important control-theoretic property and can
be computed by the rank of the Controllability matrix below,
[6].

C =
[
−B (−A)(−B) · · · (−A)Nf−1(−B)

]
. (8)

1. In continuous linear time-invariant systems, as in (5), if a state xf
∗

is reachable from the origin, then xf
∗ is also reachable from an arbitrary

initial state in any duration of time.

The rank of the above matrix depends on A and B, which
in turn depend on the network graph and the selection of
leaders. The network is completely controllable if and only
if rank(C) = Nf . Controllability Gramian is an important
mathematical object that provides crucial information about
the control behavior of the network [5], [37], [38]. Using
controllability Gramian, we can quantify how ‘easy’ it is
to go from one state to another in terms of the required
control energy (6). For the system in (5), the infinte horizon
controllability Gramian is defined as [5], [37],

W =

∫ ∞

0
e−Aτ (−B)(−B)T e−AT τdτ ∈ RNf×Nf . (9)

If the system is stable, that is, all eigenvalues of −A have
negative real parts, then W converges asymptotically and
can be computed by the Lyapunov equation,

(−A)W +W(−A)T + (−B)(−B)T = 0, (10)

which is a system of linear equations and is therefore easily
solvable. For the solution of (10) to exist,−A must be a stable
matrix, which is true for connected graphs.

Lemma 1. If we partition the Laplacian matrix L of an undirected
connected graph as in (4), then the matrix A is positive definite
[1].

As a result, −A is negative definite in the case of
connected graphs and the system in (5) is stable, and the
correspondingW can be computed. Controllability Gramian
provides an energy-related quantification of controllability,
and we can obtain several controllability statistics fromW
[5], [37], [38]. We discuss some of them below.

• Trace of W : The trace of the controllability Gramian
is inversely related to the average control energy over
random target states. It can also be considered as a measure
of average controllability in all directions in the state space.

• Minimum eigenvalue ofW : It is the worst-case metric that
is inversely proportional to the control energy required to
steer the network in the least controllable direction in the
controllable subspace.

• Rank of W : The rank of W is the dimension of the
controllable subspace.

• Determinant of W : The quantity ld(W) =

log
(∏

j µj(W)
)

, where µj(W) is a non-zero eigenvalue
ofW , is a volumetric measure of the controllable subspace
reachable with one unit or less of control energy. If the
system is completely controllable, then ld(W) is the log
determinant ofW .

4.3 Main Idea

In this section, we demonstrate the main idea regarding
how can we design successful graph embeddings by exploiting the
behavior of controlled dynamical processes over networks. The
controllability metrics, as defined in the above section, have
the capability to capture the underlying local and global
network topology and merit to distinguish certain graph
families. For instance, Wang in [39] proves that every graph G
satisfying a constraint on the determinant of the controllability
matrix C can be distinguished by the collective spectrum
(eigenvalues) of the adjacency matrix A ∈ RN×N of graph G
and its complement. Theorem 1 in [40] states:
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Theorem 4.1. Every graph in family FN can be determined
completely by its generalized spectrum, where

FN = {G | det(C)
2⌊

N
2 ⌋

is an odd square-free integer} (11)

Wang et al. extends this theorem and proves in [41] that
the tournament networks belong to FN and can be identified
from the adjacency spectrum exhibiting the usefulness of
controllibility metrics in distinguishing graphs. Similarly, there
are numerous results in the literature providing insights
into the relationship between the network topology and the
controllability properties, thus, establishing the potential of
controllability ideas to distinguish graphs in various families.
Some simple examples to further illustrate the differentiating
capabilities of the control metrics are presented below.

Examples: We illustrate through examples that network
controllability depends on the topological organization of
the network and the location of leaders in it. Figure 1 shows
various networks, each of which has eight agents, including
a single leader agent. The controllability properties of the
resulting follower networks, for instance, the rank and the
trace of the controllability Gramian, denoted by rank and
tr, respectively, vary in networks. The path network in
Figure 1(a) is completely controllable with a single leader
agent, which is one of the end nodes. At the same time,
the complete network in Figure 1(c) is least controllable as
the rank of the controllability Gramian is 1. Similarly, in
other networks, the controllability attributes are functions
of the network graph. Along with the network topology,
leader selection also affects the network controllability, as
illustrated in Figure 2. We consider a network of 10 agents,
of which one is a leader agent, which means Nf = 9. In
Figure 2(b), the dimension of the controllable subspace is
9, which means that the follower network is completely
controllable. The edges between a leader and follower nodes,
which decide the structure of B matrix in (5) are shown in
red. In Figure 2(c), we choose a different leader and observe
that the network remains completely controllable; however,
the trace ofW changes.

(a) rank = 7, tr = 0.5 (b) rank = 4, tr = 1 (c) rank = 1, tr = 3.5

(d) rank = 5, tr = 2 (e) rank = 7, tr = 1.5

Fig. 1: Controllability metrics are functions of the underlying
network graph.

To collect valuable information about the graph structure,
we need to probe the network effectively. This can be
achieved by varying the number and locations of leader
nodes and observing the resulting controllability behavior
using measures tr(W), µj(W), rank(W) and ld(W). In the
next section, we use these controllability metrics collected by
various choices of leader selection to construct useful graph
representations.

(a) input G (b) rank = 9, tr = 1.5

(c) rank = 9, tr = 2.5 (d) rank = 8, tr = 2

Fig. 2: Controllability metrics vary with leader selection

Remark 1. The consensus dynamics over the network can
be defined in several other ways, for instance, by considering
the overall state of the network (instead of only the followers’
states xf ) and therefore, selecting −L as the system matrix.

We have discussed various controllability metrics, includ-
ing the Gramian trace, eigenvalues, rank, and resolvability,
which capture important characteristics of the graph in
this section. As illustrated above, these measures provide
valuable insights into the structure and dynamics of the
corresponding graph. Now, armed with this knowledge, we
will present how we can utilize these metrics to construct
expressive graph representations in the next section.

5 GRAPH REPRESENTATION DESIGN

This section describes how we design our graph represen-
tation based on controllability characteristics defined in the
previous section. If the graph is not connected, then the
systems matrix −A in (5) might not be stable for some
choice of leader agents. Consequently, the solution of (10)
might not exist. Therefore, we assume that the input network
graph is connected. However, some real-world phenomena
may generate networks that are disconnected. To handle
such cases, we perform a preprocessing step in which we
introduce a new vertex in such a graph and add an edge from
this new vertex to all other vertices in the graph. This ensures
that the graph becomes connected. Similarly, for extremely
tiny graphs (with less than ten vertices), we perform a
cloning step in which multiple copies of the original graph
are generated to ensure that the input graph contains at least
ten vertices. This is not an ideal solution as it tampers with
the graph’s structure, but we believe this preprocessing is
rarely needed, and it retains enough structural information
from the original graph, as we illustrate in the evaluation
section.

We have two main probes to explore the controllability
aspects of a network graph: the number of leader agents and
their locations in the network. For molecular datasets, we
utilize node information and the leader selection process is
deterministic. For the rest of the datasets, the leader selection
process is uniformly random and the features of the Gramian
are calculated for several different number of leaders. The
details of this leader selection process for each dataset are
provided in Section 6.

For a given set of leader agents, we first compute the cor-
responding system matrices, i.e.,−A and−B by partitioning
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Algorithm 1 CTRL: (Control embedding)

Input: Graph G = (V,E), |V | = N , num iterations
Output: Graph embedding R

1: L← Laplacian of G.
2: Initialize R as an empty list.
3: Create a list of leader sets using the leader selection strategy
(see experimental setup).

4: for each Vl in the list of leader sets do
5: Compute the corresponding system matrices −A,−B

(as in (5)).
6: Compute the GramianW (as in (9) and (10)).
7: Compute the rank, trace, minimum non-zero eigen-

value, µmin, and maximum eigenvalue, µmax, of W .

8: Compute the Resolvability (number of unique distance-
to-leader vectors from [7]) of G corresponding to
selected leader nodes

9: Compute rank, trace, µmin, µmax, Resolvability value
and concatenate to the list R.

10: end for
(Adding some simple stats about the graph
structure to R.)

11: Concatenate N , |E|, number of bi-connected components,
the Laplacian spectrum. (We add three smallest
and largest eigenvalues), Laplacian energy, ec-
centricity spectrum, eccentricity energy, Wiener index,
trace degree sequence of G, and cycles information.

12: Return R

the Laplacian matrix as in (4). Then, we compute the corre-
sponding controllability GramianW as in (10). We note that
to solve the Lyapunov equation (10), efficient algorithms and
solvers exist that scale well to large networks [42], [43]. We
record the trace, rank, minimum (non-zero), and maximum
eigenvalues of the Gramian. Along with these controllability
measures, we also include a few easy-to-compute statistics
about the input graph that are mentioned in Algorithm 1.
A step-wise description of the embedding, which we call
CTRL, is given in Algorithm 1. We provide further details of
the measures we use in the embeddings in supplementary
materials. We cater any structural changes to the input graph
due to the preprocessing step by also designing an enhanced
version, called CTRL+ . In CTRL+ , we simply concatenate
the information in CTRL with another graph embedding that
may have better expressiveness for disconnected and small
graphs. For this work, we use a recent graph embedding
called Higher-Order Structure Descriptor (HOSD), which is
easy to implement and contains the count of various small
subgraphs present at multiple scales in the network [14].
Since CTRL is reasonably sized, concatenating with HOSD
does not create any severe computational overheads.

Next, we analyze some of the properties of CTRL that
are vital for the network classification task as discussed in
Section 3.1.

Permutation Invariance: The CTRL uses the spectrum
(set of eigenvalues) of the controllability Gramian to calculate
the feature descriptors of the given graph G. For a given
graph G with N nodes and given leaders Vl, the Gramian is

defined as:

W(Vl)
G =

∫ ∞

0
e−Aτ (−BVl

)(−BVl
)T e−AT τdτ (12)

where BVl
∈ RNf×Nl for Vl leaders. We show that when we

select the leader nodes uniformly at random, the expectation
of spectrum of the Gramian remains independent of the
permutation of vertices in the adjacency and Laplacian
matrices.

Proposition 5.1. The expected spectrum of the Gramian of
follower dynamics (as in (12)) of a leader-follower network G,
in which the leaders selection is uniform random, is permutation
invariant.

Proof. For uniform random selection of leaders, the expecta-
tion of the Gramian matrixW(j)

G is:

E[WG] =
1

Kl

Kl∑
j=1

∫ ∞

0
e−Aτ (−BVj

)(−BVj
)T e(−Aτ)T dτ

(13)

where Kl =
(N
Nl

)
is the number of choices for a leader set

of size Nl, and BVj
is the input matrix corresponding to

Vj leader set. A permutation matrix Π is a square matrix,
I , formed by a reordering of the rows of the identity
matrix of the corresponding dimensions. If G = (V,E) and
G′ = (V ′, E′) are isomorphic graphs, then there exists a
permutation matrix Π such that Π L Π−1 = L′, where
L and L′ are the corresponding Laplacian matrices of G
and G′ respectively. Recall that Π satisfies the property
Π ΠT = ΠTΠ = I . Let Πf ∈ RNf×Nf be an arbitrary
permutation matrix corresponding to the follower agents.
The GramianWG′ of the follower dynamics obtained from a
permuted copy of the Laplacian matrix L′ = ΠLΠ−1 is

W(j)
G′ =

∫ ∞

0
e−A′τ (−B′

Vj
)(−B′

Vj
)
T
e(−A′τ)T dτ

=

∫ ∞

0
e−ΠfAτΠ−1

f (−B′
Vj
)(−B′

Vj
)
T
e(−ΠfAτΠ−1

f )T dτ

= Πf

∫ ∞

0
e−AτΠT

f (−B′
Vj
)(−BVj

)TΠfe
(Aτ)T dτΠT

f

where Π−T
f = (Π−1

f )T = (ΠT
f )

T = Πf . Further, we can
write,

= Πf

(∫ ∞

0
e−Aτ (ΠT

f B
′
Vj
)(ΠT

f B
′
Vj
)TΠfe

(Aτ)T dτ

)
ΠT

f

Note that the summation of expectation in (13) is over all
choices of leader sets of size Nl. For each (ΠT

f B
′
Vj
), there is

a unique 1 ≤ j′ ≤ Kl such that (ΠT
f B

′
Vj
) = BV ′

j
. Therefore,

E[WG′ ] =
1

Kl

Kl∑
j′=1

ΠfW(j′)
G ΠT

f

E[WG′ ] = Πf (E[WG]) Π
T
f .

Thus, the expected Gramian of a permuted graph is same as
the the permutation of the expected Gramian of the original
graph. Since the spectrum of a matrix is invariant to linear
transformations, we conclude that the expected spectrum of
the Gramian is preserved under vertex permutations.
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(a) (b)

(c) (d)

Fig. 3: (a) & (b) show the mean and variance of the Rank
and Trace obtained for the ER graphs with N = 30 for all
combinations of leaders. (c) & (d) show the same features
for the ER graphs with N = 100 for uniformly randomly
selected 50000 leader sets.

Moreover, a simple numerical analysis on Erdős-Rényi
(ER) graphs shows that the CTRL descriptor converges
towards the mean value with fairly low variance for uni-
formly random leader selection. We randomly generate 25
graphs with N = 30 nodes and the probability p of an
edge between any two nodes to be 0.18. We plot the mean
and variance of rank and trace of the Gramian for all the
leaders combinations from 1 to 5 as shown in Figures 3a
and 3b. We also generate 25 ER graphs with N = 100 and
p = 0.18. For these larger graphs, we uniformly randomly
select 50000 leaders sets for number of leaders from 1 to 30
and plot the mean and variance values of rank and trace
of the Gramian shown in Figures 3c and 3d, respectively.
Interestingly, the rank has very low variance for both graphs
sizes. The variance of the trace value is relatively high for
lower number of nodes (because of lower number of leaders
combinations), but drops for higher number of leaders.

Scale Invariance: For certain families of graphs, some
of the control descriptor features have the capability to be
consistent with the variation of the size of the graphs. For
instance, the Gramian is full rank when either terminal node
of a path graph is selected as a leader [6]. Liu et al. in [44]
provides a relation for rank(W) for path graphs when Nl = 1
and the leader is not a terminal node. Theorem 1 of [44] states
that

Theorem 5.2. Suppose PN = (V,E) be the path graph where
V = {v1, . . . , vN}, and (vi, vi+1) ∈ E ∀i = 1, . . . , N , and
FN = {f1, . . . , fm}, f1 > f2 > . . . > fm > 1, represent
the set of the odd factors of N except for 1. If there exists a set
Mi whose element m belongs to {2, 3, . . . , N − 1} and fi is the
greatest common factor of 2m− 1 and N , and if j ∈Mk, where
k ∈ {1, . . . ,m}, then the rank(W) = N − (fk − 1)/2.

Hence, the rank(W) normalized by the size of the path
graph N is fairly independent of the size of the path graphs.
Likewise, for cycle graphs CN with N nodes, the Gramian
is strictly full rank if any two adjacent nodes are selected
as leader nodes whereas for a single leader, the rank(W) is
always ⌊N/2⌋ [4]. For the controllable subspace with two
non-adjacent leaders in a cycle graph, the parity is important.

TABLE 1: Stats of the datasets, including the number of
graphs, average number of nodes and edges, minimum and
maximum number of vertices, and number of classes.

Dataset #Graphs avg.|V| avg.|E| min.|V| max.|V| #Classes
MUTAG 188 17.93 19.79 10 28 2
PTC 344 14.29 14.69 2 109 2
PROTEINS 1113 39.06 72.82 4 620 2
ENZYMES 600 32.63 62.14 2 149 6
NCI1 4110 29.87 32.30 3 111 2
DD 1178 284.32 715.66 30 5748 2
IMDB-B 1000 19.77 96.53 12 136 2
IMDB-M 1500 13.00 65.94 7 89 3
REDDIT-B 2000 429.63 497.75 6 3782 2
REDDIT-M-5K 4999 508.52 594.87 22 3648 5

Liu et al. in [44] discuss this controllability of a cycle with
two leaders as a function of distances between the leaders.
Theorem 4 of [44] states that

Theorem 5.3. Suppose CN = (V,E) be the cycle graph
where V = {v1, . . . , vN}, (vi, vi+1) ∈ E ∀i = 1, . . . , N ,
(v1, vN ) ∈ E. Let Ik = {mk|m ∈ N+}, and Ink = {x|x ∈ Ik &
x ≤ [N/2]}. For even N , let FE

N = {f1, . . . , fm} denote all even
factors of N except for 2, where N = f1 > f2 > . . . > fm > 3
and let FE

1 = INf1/2, FE
k = INfk/2\∪

m
i=1F

E
i and k = 2, . . . ,m.

Let d(vi, vj) be the number of edges in the shortest path between
vi and vj . If d(v1, v2) ∈ FE

k , where Vl = {v1, v2}, then
rank(W) = N − fk/2 + 1.

The same procedure can be followed for odd N , thus,
exhibiting the scale-invariance of the normalized rank(W)
for cycle graphs to large degree.

6 EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed embeddings
on graph classification tasks and compare the results with the
state-of-the-art graph representation methods. We consider
classification accuracy as an evaluation metric and use 10-
fold cross-validation in our experimental setting. We repeat
the experiments ten times and report the mean of the best
results of each iteration. CTRL and CTRL+ embeddings are
implemented in Python and all the experiments are per-
formed on the Amazon Web Services instance (c5.24xlarge)
with 96-cores and 192 GB of RAM.

Datasets: We perform experiments on 10 standard graph
classification benchmark datasets. MUTAG, PTC MR, PRO-
TEINS, ENZYMES, NCI1, and DD, are six bioinformatics
datasets. IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
and REDDIT-MULTI-5K are four social network datasets
[45]. The bioinformatics datasets describe small molecules
and chemical compounds that belong to two classes except
for the ENZYMES dataset which consists of six classes.
Among the social network datasets, IMDB-BINARY and
IMDB-MULTI describe actors’ ego-networks while REDDIT-
BINARY and REDDIT-MULTI are chosen subreddits from
an online social network. The graphs in IMDB-BINARY and
REDDIT-BINARY are labeled with two classes and there are
three and five classes in IMDB-MULTI and REDDIT-MULTI
datasets, respectively. We provide basic stats of the datasets
in Table 1.

Source code and data including the precomputed CTRL
embeddings on all the datasets are released to the research
community for easier reproducibility of the results2.

2. https://github.com/Anwar-Said/Control-Graph-Embedding
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TABLE 2: Graph classification accuracy comparison of CTRL and CTRL+ against spectral and statistical graph representation
methods. Top three results are highlighted by First, Second and Third. OME is out of memory and > D indicates
computations exceeds 24 hours.

Dataset SP [10] SVM theta [46] GK [47] NetSIMILE [48] NetLSD [18] FGSD [17] CTRL CTRL+
MUTAG 87.28 75.06 79.8 84.63 85.28 88.07 90.99 89.94
PTC 62.50 58.40 64.87 59.09 61.19 58.91 65.70 62.78
PROTEINS 72.68 68.64 72.51 71.15 74.63 70.18 75.2 74.76
ENZYMES 36.33 17.50 34.33 42.10 44.25 33.95 69.67 65.17
NCI1 68.69 50.68 61.22 73.96 76.31 79.60 81.31 81.8
DD 77.51 58.66 71.54 74.72 77.27 76.60 76.23 78.19
IMDB-B 72.40 50.0 76.60 74.41 73.79 73.88 74.8 75.0
IMDB-M 48.73 41.13 49.66 49.32 50.57 50.55 48.0 49.0
REDDIT-B 85.30 50.4 > D 89.53 89.12 81.60 95.9 96.05
REDDIT-M-5K 44.95 20.0 > D 52.78 53.58 OME 52.91 54.69

TABLE 3: Graph classification accuracy with standard deviation comparison against GNNs. The top three results are
highlighted by First, Second and Third. OME is out of memory and N/A is the unavailability of the reproduced results (see
Section 6). > 3D indicates training time exceeds 3 days.

datasets DGCNN DiffPool ECC GIN NGNN CIN SIN SSRead RepPool CTRL CTRL+

MUTAG 85.83± 1.66 86.14± 10.99 N/A 90.00± 8.8 87.30± 5.6 90.00± 6.4 90.55± 8.6 85.14± 4.5 92.12± 7.9 90.99± 6.26 89.94± 6.19

PTC 58.59± 2.47 67.26± 5.12 N/A 63.1± 5.7 55.20± 8.9 61.18± 9.8 66.21± 6.32 55.79± 5.6 71.34± 6.2 65.70± 4.90 62.78± 4.82

ENZYMES 38.9± 5.7 59.5± 5.6 29.5± 8.2 59.6± 4.5 33.0± 6.1 N/A N/A 43.83± 8.8 50.76± 7.9 69.67± 4.8 65.17± 5.9

NCI1 76.4± 1.7 76.9± 1.9 76.2± 1.4 80.0± 1.4 78.6± 1.2 84.13± 1.6 80.26± 1.8 82.70± 1.84 79.53± 3.4 81.31± 2.1 81.8± 1.6

PROTEINS 72.9± 3.5 73.7± 3.5 72.3± 3.4 73.3± 4.0 74.1± 3.7 73.24± 5.5 76.30± 4.0 73.76± 4.8 77.78± 3.7 75.2± 3.1 74.76± 2.9

DD 76.6± 4.3 75.0± 3.5 72.6± 4.1 75.3± 2.9 76.0± 4.3 N/A N/A 70.23± 1.0 79.77± 4.8 76.23± 3.0 78.19± 2.2

IMDB-B 69.2± 3.0 68.4± 3.3 67.7± 2.8 71.2± 3.9 72.0± 4.2 73.90± 6.0 75.5± 3.8 71.4± 2.0 73.93± 4.7 74.8± 2.3 75.0± 2.6

IMDB-M 45.6± 3.4 45.6± 3.4 43.5± 3.1 48.5± 3.3 50.9± 3.4 50.93± 2.6 52.06± 3.4 48.66± 2.8 47.03± 3.8 48.0± 3.9 49.0± 3.7

REDDIT-B 87.8± 2.5 89.1± 1.6 OME 89.9± 1.9 > 3D 92.4± 2.1 93.0± 5.9 93.8± 3.5 90.58± 4.5 95.9± 1.3 96.05± 1.5

REDDIT-5K 49.2± 1.2 53.8± 1.4 OME 56.1± 1.7 > 3D 31.8± 3.1 57.09± 1.7 53.25± 2.0 N/A 52.91± 1.7 54.69± 2.2

Baselines: We consider six graph embeddings methods:
Shortest Path (SP) [10], SVM theta [46] , GK [47], NetSIM-
ILE [48], NetLSD [18], and FGSD [17] for comparing the
performance of the proposed method. Among them, the
first three are state-of-the-art graph kernel methods while the
later are recently proposed graph descriptors. NetLSD and FGSD
use graphs’ spectral features to extract graph information.
NetSIMILE is a graph descriptor that is based on seven
simple graph statistics including average vertex degree,
average clustering coefficient, and standard deviation of the
two-hops neighborhood. To evaluate the performance against
state-of-the-art and recent GNN methods, we also consider
nine Graph Neural Networks (GNNs) models: DGCNN [49],
DiffPool [50], ECC [51], GIN [36], Nested Graph Neural Net-
work (NGNN) with GIN [52], Cell Isomorphism Networks
(CIN) [53], Message Passing Simplicial Networks (SIN) [54],
Structural Semantic Readout (SSRead) [55] with SUM, and
RepPool [56] for comparison. The GNNs models chosen for
comparison include well-known and recent models showing
promising results on the graph classification task.

Experimental setup:
To obtain the control features, we consider different leader

selection techniques. The leader set selection process is as
follows:

• For molecular datasets i.e. MUTAG, PTC, and NCI1, we
use node types for leaders selection process. We take all

the nodes as leaders of the same type and repeat for all the
distinct types of nodes in the dataset. For the ENZYMES
dataset, the first node feature is considered as node type.

• For the rest of the datasets, the leader selection process is
random. There are exponentially many choices to select
Nl leaders among a set of N vertices. Therefore, we make
this choice randomly. Formally, we uniformly select Nl

leader nodes from the vertex set and repeat this random
selection process c times for a given number of leaders.
We first consider a fixed number of leaders, i.e., 1, 2, 5, 9,
and then consider a fraction of overall nodes to be leaders,
that is, 2%, 5%, 10%, 20%, 30% of the total nodes. For each
random leader sets choice, we repeat the experiment 30
times. Every time a set of leader nodes is selected, we
record graph measurements presented in the Algorithm 1.
We use minimum, maximum, and average values of these
measures over c iterations in our graph embedding.

We ensure through a preprocessing step that each graph
has at least 10 nodes and is connected. We use the Random
Forest (RF) algorithm with grid search for the classification
and reported 10−fold cross validation accuracy and their
standard deviation. In the hyper-parameter setting of RF, we
choose

√
d features for building a tree, where d is the feature

vector’s size, and the classical Gini impurity is used as a
metric to build the tree. The number of estimators is chosen
from {50, 100, 500} and total number of samples for a split in
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a tree is chosen from the set {2, 3, 4, 5}. In FGSD experiments,
we set 0.0001 bin-width as recommended in [18]. For NetLSD,
we use all variants mentioned in their paper and report
the best results by utilizing the entire eigenspectrum. For
NetSIMILE, we use their publicly available source codes
and reproduce the results using our experimental setup.
For graph kernel results, we use GraKel [57] library for
computing kernel matrices and then use RF with the same
setting for the classification. For GNNs, we reproduced
the result of NGNN, CIN [53], SIN [54], GCN-SSRead [55]
and RepPool [56] with 10-fold cross validation using the
source codes made publicly available by the authors. The
hyper-parameters are same as in the original papers. Here,
we would like to note that due to the unavailability of a
few datasets in the desired formats, we were not able to
reproduce some of the results, hence N/A is reported. For
DGCNN [49], DiffPool [50], ECC [51] and GIN [36], we
consider the results in [58] that are obtained through identical
frameworks.

Classification results:
We present the classification results of our evaluation

in Table 2 and Table 3. We conclude from the results that
the proposed embeddings either outperform or achieve
comparable performance in terms of prediction accuracy on
all benchmarks. Specifically, in comparison to the embedding
methods, CTRL and CTRL+ rank top on eight out of ten
datasets. On the remaining datasets, the results are within 2%
of the top results. In comparison to GNN models in Table 3,
we observe the superior performance of both CTRL and
CTRL+ on ENZYMES and REDDIT-B datasets. On the re-
maining datasets except IMDB-M, CTRL and CTRL+ achieve
second or third place. Although the proposed descriptor
did not place in the top three on the IMDB-M dataset, the
results are within 3% of the top results. These results clearly
demonstrate the effectiveness of the proposed descriptor for
graph classification.

We expect the results to further improve when combined
with existing graph embeddings (spectral, statistical or
GNNs). Our results empirically confirm that the spectral
information of the network Gramian is effective for con-
structing graph representations.

7 DISCUSSION

Our results reveals that the proposed control theoretic
approach demonstrates promising results within the scope
of both bioinformatics and social networks. This work
represents a novel advancement, as it effectively combines
control theory with graph machine learning, thereby offering
a potent avenue for the enrichment of the graph represen-
tation domain. In the forthcoming sections, we delve into
the computational complexity of the proposed method, as
well as address the issues of scalability and randomness in
the selection of leader nodes. Moreover, we also discuss a
potential use case of CTRL embeddings for Self-Supervised
Learning (SSL), which as an interesting avenue for future
research.

Computational Complexity: We provide the analysis
of the time complexity for each feature in Table 1 of the
Supplementary material. Initially, we compute the system
matrices, which involve array slicing with a complexity
of O(N2) where N is the number of nodes in the graph.
Subsequently, the CTRL features, including the Gramian

matrix and its properties, are computed for each set of
leaders (as depicted in the for loop in line 4 of the algorithm).
The computation of the Gramian matrix entails solving the
generalized Sylvester equation and has a complexity of
O(N3) for sparse matrices [59]. For dense matrices, there are
several iterative methods to compute the Gramian matrix [60].
One widely used method is the Bartels-Stewart method [61].
Its complexity is O(f(σ) × N3) where f(σ) is a linear
function of σ, the average number of iterations to ensure
solution convergence. The computation of eigenvalues and
other matrix properties also has a complexity of O(N3). The
calculation of resolvability also exhibits a time complexity of
O(N3). Therefore, the total computational cost of features for
each set of leaders/followers is generally O(K×f(σ)×N3),
where K represents the number of distinct leader sets for
each graph. For bioinformatics datasets, K is the number
of vertex types in the whole dataset. Whereas, for the social
network datasets, K = c× 9 where c = 30 as explained in
the experimental setup. The simple statistics about the graph
structure have a time complexity of O(N3). These statistics
are independent of the CTRL features and are computed
only once for the entire graph. The overall time complexity
of Algorithm 1 can be expressed as:

O(K×f(σ)×N3)+O(N3)+O(N3) = O(K×f(σ)×N3)

We present the timing information for computing the
CTRL features on various datasets in Table 4. We note that
the DD dataset has three graphs of sizes 2495, 4152, and
5749 that take a total time of 19.32 hrs to compute the CTRL
feature embeddings. The CTRL features for the remaining
1175 graphs are computed in about an hour.

Computing CTRL features requires computing the con-
trollability Gramian of the network control system defined on
the graph. This step is computationally the most expensive
and requires solving a matrix equation called the Sylvester
equation. There are several approaches that can efficiently
approximate the Sylvester equation. These approximations
enable the proposed method to scale effectively on large
graphs. We discuss some of them in more detail in the next
subsection.

TABLE 4: Total Time take to compute CTRL embeddings

Dataset #Graphs avg.|V| Total Time
MUTAG 188 17.93 1.61 sec
PTC 344 25.56 1.81 sec
PROTEINS 1113 39.06 308 sec
ENZYMES 600 32.63 4.25 sec
NCI1 4110 29.87 92.79 sec
DD 1178 284.30 20.6 hrs
IMDB-B 1000 19.77 7.45 sec
IMDB-M 1500 13.00 6.21 sec
REDDIT-B 2000 429.61 5.623 hrs
REDDIT-M-5K 4999 508.50 8.231 hrs

Scalability – The major step involved in the computation
of the proposed representations is the computation of the
infinite horizon controllability Gramian (9). Since it requires
matrix multiplication (10), the overall time complexity is
super-quadratic in Nf . Though it was not an issue for the
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graph classification tasks considered in the paper, the method
could pose computational challenges for very large graphs.

We note that the scalability issue was not the main
focus of this work, instead, a new approach relying on the
control behavior of networks through external perturbations
to encode graph structure was the main consideration.
Nonetheless, there are several ways to deal with it and would
be included in future extensions. Lyapunov equation, whose
solution is the controllability Gramian, is a particular case
of a more general Sylvester equation. While solving the
Sylvester equation through standard methods (e.g., Bartels-
Stewart, Hammarling) could be computationally expensive
in large networks, several techniques have been developed
over the years to significantly improve the computation time
for approximately solving Lyapunov equations (LE) with
reasonable accuracy. These techniques utilize the additional
structure of LE, which includes the low-rank condition of
the matrix (as the number of leaders is typically quite small),
stability and sparsity of the system matrix, and so on. Some
of these methods include iterative methods (e.g., cyclic low-
rank Smith method), alternating directions implicit (ADI)
methods, Krylov subspace methods, projection methods (e.g.,
extended Arnoldi or Glarekin method), see [62] and the
references therein.

Leader Selection Mechanism –In the proposed work, we
mainly considered random leader selection, albeit there can
be other systematic ways; one being leader selection based on
node types used for molecular datasets. Optimizing leader
selection to maximize the performance for the task at hand
could pose a significant computation overhead as leader
selection problems are typically computationally challenging.
For instance, it is NP-hard to determine if a graph with a
fixed number of leader nodes is completely controllable or
not. Thus, we desire a simple and computationally efficient
scheme that gives good performance for a wide range of
applications.

We note that in the control framework, leader nodes
provide a mechanism to probe the network externally so
that we can record the network control behavior and use
it for graph embedding. In the absence of optimal leader
selection, it is a reasonable proposition to probe the network
fairly from all directions to achieve this objective. Random
leader selection achieves these objectives, that is, efficient
computation and fair probing of the network. However,
improved results can be expected with a more standardized
leader selection. We note an increase of about 10% accuracy
in NCI1 dataset with a systematic leader selection process
defined in Section 6. It would be an interesting question to
devise an optimal leader selection problem for specific tasks
and study rigorously the trade-off between the accuracy and
computational costs.

Self-Supervised Learning – Self-supervised learning
(SSL) has emerged as a promising solution for challenging
data labeling scenarios, offering a novel approach to address
the problem of limited labeled data. SSL harnesses the
inherent structure and unique characteristics of data to craft
valuable representations without the need for explicit labels.
Contrastive learning has been a popular approach in SSL,
effectively extracting meaningful representations from unla-
beled data by comparing positive and negative samples. For
graph representation learning, Graph Contrastive Learning
(GCL) has recently gained attention, maximizing agreement
between similar nodes and informative embeddings cap-

turing the graph structure [63]. Although existing graph
contrastive learning approaches mainly focus on node-level
embeddings, our proposed CTRL representation can have
the potential for graph-level embeddings to be used for SSL.

Following the successful trend of contrastive learning
in several other fields [63]–[66], we believe that the CTRL
embeddings has a potential to be used for learning mean-
ingful graph embeddings with contrastive loss. Using the
CTRL embeddings, we can train an encoder by maximizing
agreement between learned embeddings of the original graph
G and their augmented version G′ in a new embedding space.
The augmented version of a graph can be obtained using
various transformations including complementing, node
dropping, edge perturbation, subgraph sampling, etc [63].
As the control properties of a graph heavily depend on the
topology of the graphs, one possibility would be to use the
complement of the graph as the appropriate transformation
since it mitigates any randomness during the transformation.
By computing CTRL embeddings for both the original graph
G and its transformed counterpart G′, we can generate
positive pairs, and the transformed counterpart of every
other graph in a dataset will serve as a negative sample. The
aim is to learn representations in a new embedding space
that minimizes the InfoNCE loss [67], capturing meaningful
graph representations effectively using CTRL embeddings of
these positive and negative pairs. Overall, the incorporation
of CTRL embeddings into SSL provides a novel approach for
addressing graph classification tasks and we aim to pursue it
further in future works.

8 CONCLUSION AND FUTURE WORK

This work asserts that the networked dynamical system per-
spective, in particular, the network controllability paradigm
offers a unique approach to encode the network structure
and obtain effective graph representations. There are several
directions to advance the controllability framework for
graph representations. For instance, instead of Laplacian
dynamics, one can consider different dynamical processes
over networks. Similarly, we can use other controllability
notions, such as, structural controllability, output, or target
controllability, which concerns controlling a focused set of
(target) nodes instead of the entire network [68], [69]. Also,
there are alternative metrics that can be used to express the
network’s dynamical behavior, for instance, control centrality
[70], Gramian-based edge centrality, control range index
[71], and others (e.g., [38], [72]). Network control and graph
learning communities share several scientific grounds, and
viewing graph learning problems from the lens of control
theory offers fresh perspectives and approaches to advance
the field.
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