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Abstract— In this paper, we study the relationship between
resilience and accuracy in the resilient distributed multi-
dimensional consensus problem. We consider a network of
agents, each of which has a state in Rd. Some agents in the
network are adversarial and can change their states arbitrarily.
The normal (non-adversarial) agents interact locally and update
their states to achieve consensus at some point in the convex
hull C of their initial states. This objective is achievable if the
number of adversaries in the neighborhood of normal agents
is less than a specific value, which is a function of the local
connectivity and the state dimension d. However, to be resilient
against adversaries, especially in the case of large d, the desired
local connectivity is large. We discuss that resilience against
adversarial agents can be improved if normal agents are allowed
to converge in a bounded region B ⊇ C, which means normal
agents converge at some point close to but not necessarily inside
C in the worst case. The accuracy of resilient consensus can be
measured by the Hausdorff distance between B and C. As a
result, resilience can be improved at the cost of accuracy. We
propose a resilient bounded consensus algorithm that exploits
the trade-off between resilience and accuracy by projecting
d-dimensional states into lower dimensions and then solving
instances of resilient consensus in lower dimensions. We analyze
the algorithm, present various resilience and accuracy bounds,
and also numerically evaluate our results.

I. INTRODUCTION

Consider a network of agents in which each agent main-
tains a d-dimensional state vector and updates it by inter-
acting with a subset of other agents. Some of the network
agents may be adversarial (or faulty) and therefore send
incorrect states to their neighbors. Moreover, non-adversarial,
or commonly referred to as the normal agents, are unaware
of these adversarial agents’ identities. Resilient distributed
multi-dimensional consensus problem requires that in the
presence of adversarial agents, normal agents update their
states to converge to a common state in the convex hull of
normal agents’ initial states. Resilient multi-dimensional or
vector consensus has several applications, such as in multi-
robot networks [1], [2], distributed computing [3], [4], [5],
distributed optimization [6], [7] and fault-tolerant multiagent
networks [8], [9].

There are distributed algorithms achieving resilient con-
sensus in networks under certain conditions, which include
bounding the maximum number of adversaries in the neigh-
borhood of each normal agent, for instance, [10], [11], [12],
[13], [14], [15]. A recently proposed approximate distributed
robust convergence (ADRC) algorithm [1] guarantees con-
vergence if each normal agent i has at most dNi/2de − 1
adversaries in its neighborhood, where Ni is the size of
the neighborhood of i, and d is the dimension of the state
vector. We observe that the underlying network graph needs

to be dense and highly connected to ensure resilient vector
consensus. Resilience incurs significant overhead in the form
of many interactions between agents, which explodes with
an increase in the dimension d.

In this paper, we study the interplay between resilience
and accuracy in the distributed vector consensus algorithms.
We analyze algorithms’ performance when the number of
adversaries exceeds the allowed limit, which is a function of
the state dimension d and the size of the neighborhood of
normal agents in the underlying network. We discuss that
if conditions in resilient vector consensus algorithms are
not satisfied, then the adversary can drive normal agents
arbitrarily far away from the convex hull of their initial
positions. However, the local connectivity requirements of
normal agents within the network can be significantly relaxed
if we desire normal agents to converge at some point close
to but not necessarily inside the convex hull of their initial
positions. In other words, we can improve the resilience
of vector consensus at the cost of accuracy. We adopt a
simple approach of partitioning a d-dimensional state into
multiple lower-dimensional states to explore this resilience-
accuracy trade-off. Instead of solving a single instance of d-
dimensional resilient consensus, we solve multiple instances
of lower-dimensional resilient consensus problems. Since
a network exhibits improved resilience in low-dimensional
states, the overall resilience is improved, albeit with reduced
accuracy. Our main contributions are:

• We discuss the notion of accuracy in the resilient vector
consensus problem and propose a framework to study
the relationship between accuracy and resilience against
adversarial agents.

• We formulate the resilient bounded consensus problem
to analyze the interplay between resilience and accuracy
in higher d and propose an algorithm to solve it.

• We analyze the algorithm and present various resilience
and accuracy bounds that demonstrate how the re-
silience against adversarial agents improves at the cost
of accuracy. We also numerically evaluate our results.

The rest of the paper is organized as follows: Section II
presents preliminaries. Section III provides an overview of
the resilient multi-dimensional consensus problem. Section
IV formulates the resilient bounded consensus problem to
study the trade-off between resilience and accuracy and
also presents an algorithm. Section V analyzes the proposed
algorithm. Section VI illustrates a numerical example, and
Section VII concludes the paper.

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 3127

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 23,2021 at 20:54:45 UTC from IEEE Xplore.  Restrictions apply. 



II. PRELIMINARIES

We consider a network of agents modeled by a directed
graph G = (V, E), where V represents agents and E repre-
sents interactions between agents. The state of each agent
i ∈ V at time t is represented by a point xi(t) ∈ Rd. An
edge (j, i) means that i can observe the state value of j. The
neighborhood of i is the set of nodes Ni = {j ∈ V|(j, i) ∈
E} ∪ {i}. For a given set of points X ⊂ Rd, we denote
its convex hull by conv(X). A set of points in Rd is said
to be in general positions if no hyperplane of dimension
d − 1 or less contains more than d points. A point x ∈ Rd
is an interior point of a set X ⊂ Rd if there exists an
open ball centered at x which is completely contained in X .
Let X1 ⊂ Rd1 and X2 ⊂ Rd2 , then the Cartesian product
of their convex hulls, denoted by conv(X1)× conv(X2) is
{(x1 x2)| x1 ∈ conv(X1) and x2 ∈ conv(X2)}. We use
terms agents and nodes interchangeably, and similarly use
terms points and states interchangeably.

Normal and Adversarial Agents: There are two types of
agents in the network, normal and adversarial. Normal agents
synchronously interact with their neighbors and update their
states according to a pre-defined state update rule, which
is the consensus algorithm. Adversarial agents can change
their states arbitrarily and do not follow the pre-defined
update rule. Moreover, an adversarial agent can transmit
different values to nodes in its neighborhood, referred to as
the Byzantine model. Fi denotes the number of adversarial
agents in the neighborhood of agent i. A normal agent cannot
distinguish between its normal and adversarial neighbors.

Resilient Vector Consensus: The goal of the resilient
vector consensus is to ensure the following two conditions:
(1) Safety – Let X(0) = {x1(0), x2(0), · · · , xn(0)} ⊂ Rd
be the set of initial states of normal nodes, then at each time
step t, and for any normal node i, xi(t) ∈ conv(X(0)).
(2) Agreement – For every ε > 0, there exists some tε, such
that ||xi(t)− xj(t)|| < ε for all t > tε, and for all normal
node pairs i, j.

III. RESILIENT DISTRIBUTED CONSENSUS IN Rd

In this section, first, we briefly discuss a resilient dis-
tributed vector consensus algorithm, known as the Approxi-
mate Distributed Robust Convergence (ADRC), proposed by
Park and Hutchinson [1]. Second, we discuss a computational
improvement in the algorithm discussed in [16].

A. Approximate Distributed Robust Convergence (ADRC)

The ADRC algorithm guarantees the consensus of normal
agents in Rd if the number of adversarial agents in the
neighborhood of each normal agent is bounded by a certain
value that depends on d. The notion of F -safe point is crucial
to understanding the algorithm.

Definition (F -safe point) Given a set of N points in Rd,
of which at most F are adversarial, then a point p that is
guaranteed to lie in the interior of the convex hull of (N−F )
normal points is an F -safe point.

The ADRC algorithm relies on the computation of an
Fi-safe point by every normal agent i having Ni agents in
its neighborhood, of which at most Fi are adversaries. The
ADRC is a synchronous iterative algorithm in which each
normal agent i updates its state as follows [1]:
• In the iteration t, a normal agent i gathers the state

values of its neighbors Ni(t).
• Then, it computes an Fi-safe point, denoted by si(t),

of points corresponding to its neighbors’ states.
• Agent i then updates it’s state as below.

xi(t+ 1) = αi(t)si(t) + (1− αi(t))xi(t), (1)

where αi(t) is a dynamically chosen parameter in the
range (0 1), whose value depends on the application [1].

If all normal agents follow the above routine and their
underlying network graph satisfies certain connectivity con-
ditions, they are guaranteed to converge at some point in the
convex hull of their initial states [1]. The biggest challenge
here is to ensure that each normal agent can compute a safe
point. For this, [1] utilized ideas from Discrete Geometry
and presented the following result.

Proposition 3.1: (Theoretical bound) Given a set of N
points in general positions in Rd, where d ∈ {2, 3, · · · , 8},
and at most F points are adversarial, then it is possible to
find an F -safe point if

N ≥ (F + 1)(d+ 1). (2)
In particular, [1] used the notion of Tverberg partition to

compute an F -safe point. The main idea is to partition a set
of N points in Rd into (F + 1) parts such that the convex
hull of points in one part has a non-empty intersection with
the convex hull of points in any other part. An F -safe point
is an interior point in the intersection of these F + 1 convex
hulls. In general, the computation of Tverberg partition of
points is an NP-hard problem. The best known approximation
algorithm runs in dO(1)N time and computes a Tverberg
partition of N points into F + 1 parts if F ≤ dN

2d e − 1.
In other words, we can state the following:

Proposition 3.2: (Practical bound) Given a set of N
points in general positions in Rd, of which at most F are
adversarial, then it is possible to compute an F -safe point
(using Tverberg partition) if

F ≤
⌈
N

2d

⌉
− 1. (3)

Thus, (2) and (3) provide theoretical and practical re-
silience guarantees of the ADRC algorithm, respectively.
Consequently, in a network G, if a normal agent i has Ni
neighbors and at most Fi of them are adversarial, then
resilient consensus is guaranteed by the ADRC algorithm,
if Fi ≤ dNi

2d e − 1, for every normal agent i.

B. Resilient Vector Consensus Using Centerpoint

Recently, [16] proposed to utilize the notion of centerpoint
instead of Tverberg partition to compute a safe point. The
centerpoint can be viewed as an extension of the median in
the higher dimension Euclidean space and is defined below.
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Definition (Centerpoint) Given a set X of N points in Rd in
general positions, a centerpoint p is a point, not necessarily
from X , such that any closed half-space1 of Rd containing
p also contains at least N

d+1 points from X .

It is shown in [16] that for a given set of N points in Rd,
an F -safe point is essentially an interior centerpoint for F =
d N
d+1e−1. Using centerpoint to compute safe point improves

the practical resilience guarantees of the ADRC algorithm.
In particular, we have the following result [16].

Proposition 3.3: Given a set of N points in general
positions in Rd, of which at most F are adversarial, then
an F -safe point can be computed (using centerpoint) if

F ≤
⌈

N

d+ 1

⌉
− 1, for d = 2, 3, and

F = Ω

(
Ni
d2

)
for d > 3,

(4)

where r > 1 is some positive integer. Moreover, such an
F -safe point can be computed in O(N) and O(N2) times in
R2 and R3 respectively, and in O

(
N c log d(2d)d

)
in Rd for

d > 3, where c is some constant.
For algorithmic details of computing a centerpoint, we

refer readers to [17], [18], [19].

IV. RESILIENCE-ACCURACY TRADE-OFF AND
RESILIENT BOUNDED CONSENSUS

If the number of adversaries Fi in the neighborhood of
a normal agent i satisfies (2), then all normal agents are
guaranteed to converge in the convex hull of their initial
points. Here, we are interested in analyzing the interplay
between between resilience and accuracy of the algorithm.
In other words, what are the implications if the number of
adversaries is greater than the one in (2)? Can the normal
agents still converge? If they do, how far could the agreement
point be from the convex hull of initial points?

First, we note that if F ≥ dN/(d + 1)e, then an F -safe
point does not exist [16]. Consequently, F ≤ d N

d+1e − 1
is not only a sufficient but also a necessary condition for
the existence of an F -safe point. Second, we note that if
F ≥ d N

d+1e, then the centerpoint of a given set of N points
can be arbitrarily far away from the convex hull of normal
points.2 Thus, in the ADRC algorithm, if a normal agent i
has Ni neighbors, of which Fi ≥ d Ni

d+1e are adversarial, and
i updates its state based on a centerpoint of its neighbors’
states, then xi(t) can be arbitrarily far away from the convex
hull of normal agents’ initial states.

Next, we ask if it is possible to guarantee the convergence
of normal agents in some bounded region B if each normal
agent i satisfies d Ni

d+1e ≤ Fi ≤ F ′i for some F ′i? Here, we
can expect C ⊆ B ⊂ Rd, where C = conv(X(0)) is the
convex hull of the points corresponding to normal agents’

1A closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥ b}
for some a ∈ Rd \ {0}.

2By the Centerpoint Theorem, every finite set of points in Rd has some
centerpoint [20].

initial states. In other words, is it possible to improve the
resilience of the consensus algorithm in d dimensions at the
cost of accuracy, where accuracy measures how far away
from C do normal agents converge? To formalize this, we
define the Resilient Bounded Consensus problem below.

Definition (Resilient Bounded Consensus) Consider a net-
work of agents G(t) = (V, E(t)) in which each normal agent
i has Ni(t) neighbors, of which at most Fi(t) are adversarial.
Normal agents in V update their states such that at each time
step t and for every normal agent i, the state xi(t) is in a
bounded convex region B ⊂ Rd (irrespective of the states of
adversarial agents). Moreover, for every ε > 0, there exists
some tε such that ||xi(t) − xj(t)|| < ε for all t > tε and
for all normal node pairs i, j.

Here, we consider B such that C ⊆ B. If B = C, we get
the typical resilient vector consensus problem (Section II).

A. Accuracy and Resilience in Resilient Bounded Consensus

If x∗ ∈ B is a consensus point of all normal agents in the
resilient bounded consensus, then the distance between x∗

and C, denoted by δ(x∗, C), is defined as,

δ(x∗, C) = min
c∈∂C

||x∗ − c||, (5)

where ∂C is the boundary of C, and ||x∗−c|| is the Euclidean
distance between points x∗ and c. To quantify the accuracy
of bounded consensus—how far can the agreement point
in B be from C—we use the notion of Hausdorff distance,
which is often used to measure how well one convex shape
approximates the other [21], [22].

Definition (Hausdorff Distance) Given two convex regions
B, C ⊂ Rd, the Hausdorff distance from B to C is

δ(B, C) = max
b∈∂B

min
c∈∂C

||b− c||, (6)

where ||b − c|| is the Euclidean distance between b and c,
and ∂B, ∂C are the boundaries of B and C, respectively.

Note that δ(x∗, C) ≤ δ(B, C). Typically, we state the accu-
racy of resilient bounded consensus relative to the diameter
of C, which is denoted by µ(C), and defined as,

µ(C) = max
c1,c2∈C

||c1 − c2||. (7)

We are interested in the ratio δ(B, C)/µ(C) to examine the
accuracy of the resilient bounded consensus.

The resilience of the resilient bounded consensus algo-
rithm is measured by the maximum number of adversarial
agents Fi in the neighborhood of a normal agent i, such
that despite the presence of these adversarial agents, all
normal agents achieve resilient bounded consensus inside
the convex region B. If B = C, the resilience bound is Fi ≤
d Ni

d+1e−1. As B grows (B ⊃ C), the accuracy deteriorates as
δ(B, C) increases. At the same time, the resilience bound may
improve. We are interested in a resilient bounded consensus
algorithm that exploits this resilience-accuracy trade-off.
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B. Resilient Bounded Consensus Algorithm

Our approach to achieving resilient bounded consensus
is to partition the d-dimensional state into parts, implement
the centerpoint based resilient consensus algorithm (in lower
dimensions) on each part, and then combine the results to get
the updated d-dimensional state. The performance, in terms
of resilience and accuracy, will depend on the partition of
state to lower dimensions.

Next, we present Resilient Bounded Consensus (RBC)
algorithm for each normal agent i in Algorithm 1. First, we
introduce some notations:

I {1, 2, . . . , d};
P {I1, I2, · · · , Ik} (partition of I into k subsets);
xi(t) [xi,j(t)]j∈I ∈ Rd (state vector);
x`i(t) [xi,j(t)]j∈I` ∈ R|I`| (vector consisting of the

values of xi(t) at the coordinates indexed in I`);
F `i (t) Ni(t)

|I`|+1 − 1, where Ni(t) = |Ni(t)|;
V̄ ⊆ V set of normal agents.

Algorithm 1 RBC for a Normal Agent i ∈ V̄
1: Given Partition P of I = {1, 2, · · · , d}.
2: for each iteration t do
3: for each I` ∈ P do
4: Compute x`j(t), ∀j ∈ Ni(t).
5: Compute an F `i (t)-safe point, say s`i(t), by

computing a centerpoint of {x`j(t)}, j ∈ Ni(t).
6: Update x`i(t) by the following rule:

x`i(t+ 1) = αi(t)s
`
i(t) + (1− αi(t))x`i(t).

7: end for
8: Combine x`i(t+ 1), ∀` ∈ {1, · · · , k} to get the

updated state xi(t+ 1) ∈ Rd.
9: end for

In line 6, αi(t) satisfies 0 < αi(t) < 1, and is chosen
depending on the specific application [1]. We illustrate the
algorithm using an example in Section VI.

V. ANALYSIS OF THE RESILIENT BOUNDED CONSENSUS
ALGORITHM

In this section, we analyze the accuracy and resilience of
Algorithm 1. First, we define the notions of jointly reachable
and repeatedly reachable sequence of graphs [1] needed
to state the convergence of RBC algorithm. Let Ḡ(t) =
(V̄, Ē(t)) be a graph representing normal nodes V̄ ⊆ V and
edges between them at time t.

Definition (Repeatedly reachable graph sequence) Let j
be a non-negative integer. A finite sequence of graphs
Ḡ(Tj), Ḡ(Tj + 1) · · · , Ḡ(Tj+1− 1), where each graph in the
sequence has the same vertex set V̄ is called jointly reachable
if the union of graphs defined as

Tj+1−1⋃
t=Tj

Ḡ(t) =

V̄, Tj+1−1⋃
t=Tj

Ē(t)



contains a vertex v ∈ V̄ such that for every v′ 6= v there exists a
path form v′ to v in this union of graphs.

Definition (Jointly reachable graph sequence) An infinite
sequence of graphs Ḡ(0), Ḡ(1) · · · is called repeatedly reach-
able if there is a sequence of times 0 = T1 < T2 <
T3 · · · such that Tj+1 − Tj < ∞ and the subsequence
Ḡ(Tj), Ḡ(Tj + 1), · · · Ḡ(Tj+1 − 1) is jointly reachable ∀j.

Basically, an infinite sequence Ḡ(0), Ḡ(1) · · · is repeatedly
reachable if it can be partitioned into contiguous finite length
subsequences that are themselves jointly reachable.

Moreover, we define X`(0) to be the set of initial positions
of normal agents at indices in I`, that is,

X`(0) := {x`i(0)}i∈V̄ , (8)

where V̄ is the set of normal agents. Similarly, let C` be the
convex hull of points in X`(0), that is,

C` := Conv(X`(0)). (9)

A consequence of [1, Theorem V.1] is Theorem 5.1 below
Theorem 5.1: Let G(t) = (V̄ ∪ A, E(t)) be a network of

normal V̄ and A adversarial agents, where each i ∈ (V̄ ∪
A) has a state xi(t) ∈ Rd. Let P = {I1, I2, · · · , Ik} be a
partition of I = {1, 2, · · · , d} into k subsets. Each i ∈ V̄
implements Algorithm 1, and has at most Fi(t) adversaries
in its neighborhood at time t. If

Fi(t) ≤
⌈

Ni(t)

max` |I`|+ 1

⌉
− 1, (10)

and the sequence of connectivity graphs of normal agents
Ḡ(0), Ḡ(1), · · · is repeatedly reachable, then all normal
agents converge to a common point in B, which is a Cartesian
product C1 × C2 × · · · × Ck.

Proof: See [23].
Theorem 5.1 provides a resilience bound for the Algorithm 1
and Figure 1 illustrates it in terms of the resilience of
the ADRC algorithm. We consider a network in which
agents have d-dimensional states and a normal agent i,
implementing ADRC algorithm, is resilient against at most
Fi adversaries in its neighborhood. In Figure 1(a), we plot
the resilience of RBC (in terms of Fi) as a function of the
maximum dimension of state obtained after partitioning a
d-dimensional state. We observe that resilience improves as
the maximum dimension of state in the partition decreases.
For instance, if a d-dimensional state is partitioned into two
d/2-dimensional states, the resilience of RBC improves by
a factor of

2N
d+2−1
N

d+1−1
as compared to the resilience of ADRC

algorithm. In Figure 1(b), we fix Fi and plot the number
of agents needed in the neighborhood of a normal agent i
for it to be resilient against Fi adversaries. Here, Ni is the
number of agents needed in the neighborhood of i in the case
of ADRC algorithm in d-dimensions. Again, we note that as
the maximum dimension of state in the partition decreases,
the required number of agents in the neighborhood of i
decreases. In other words, same resilience can be achieved
with reduced local connectivity.
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Fig. 1: Resilience of RBC as a function of the maximum
dimension of state among partitioned states.

A. Accuracy of the Resilient Bounded Consensus Algorithm

Next, we discuss the accuracy of RBC algorithm by
computing the Hausdorff distance δ(B, C), where B ⊇ C
is the convex region in which normal nodes converge as a
result of RBC. The shape of region B and δ(B, C) depend on
the partition of dimension. If we partition the d-dimensional
state into d scalars in the RBC algorithm and each normal
agent i satisfies Ni(t) ≥ 2(Fi(t)+1), then all normal agents
will converge in a hyperrectangle B = C1 × C2 × · · · × Cd,
where C` is defined in (9). Note that each C` here is an
interval in the `th dimension. We call such a convex region
as the axis-parallel bounding box, and note the following.

Fact 5.2: In RBC algorithm, δ(B, C) is maximum when
B is the axis-parallel bounding box.
Thus, in the following our goal is to estimate the ratio
δ(B, C)/µ(C), where C is the convex hull of a set of points
in Rd, B is the corresponding axis-parallel bounding box,
and µ(C) is the diameter of C. We start our discussion with
the following conjecture:

Conjecture 5.3: For a given set of points in Rd, let C be
the convex hull of points, µ(C) be the diameter of C and B
be the corresponding axis-parallel bounding box, then

δ(B, C) ≤
√
d

2
µ(C). (11)

We prove the above statement for d = 3 and some other
special cases. We believe that the above statement is true for
any d, and would like to find a proof for the general case in
the future. We begin by proving in three dimensions.

Theorem 5.4: Let C be the convex hull of a given set of
points in R3 and B be the axis-parallel bounding box of C,
then

δ(B, C) ≤
√

3

2
µ(C). (12)

Proof: See [23].
In the following, we show that the statement of the conjecture
is true for all d for certain symmetric pointsets. Before we
state and prove the result, we make some observations.

Since translation and rotation of points do not change the
Hausdorff distance, we may assume that the origin is a point
on B with the maximum distance from C. As both C and B
are convex, origin must be a corner vertex of the bounding
box. For B to be a minimum axis-parallel bounding box,
each facets adjacent to origin must contain at least one point
from the given pointset P . For 1 ≤ i ≤ d, let pi be a point in

P closest to the origin for which the ith coordinate is zero.
Then p1, p2, . . . , pd define a hyperplane X . We observe the
following:

Fact 5.5: The Hausdorff distance δ(B, C) is at most the
Euclidean distance from origin to X regardless of the posi-
tions of points pd+1, pd+2, . . . , pn.
Furthermore, there exists a pointset for which the Haus-
dorff distance δ(B, C) is equal to the Euclidean distance
from origin to X , regardless of the positions of points
pd+1, pd+2, . . . , pn. This clearly is the case when all of the
points pd+1, pd+2, . . . , pn lie in the halfspace defined by X
that does not contain origin. From these observations, we
deduce that the upper bound on δ(B, C) is independent of the
positions of points pd+1, . . . , pn. Thus, we only care about
the first d points.

Theorem 5.6: Let {p1, p2, . . . , pd} be a subset of a
pointset such that the ith coordinate of the point pi is zero
and all other coordinates are set to some constant a. Then,

δ(B, C) ≤ (d− 1)/d

√
d

2
× µ(C).

Proof: See [23].
We note in Theorem 5.6 that as d goes to infinity, (d− 1)/d

approaches to one and this ratio goes to
√

d
2 × µ(C). The

following proposition shows that the result in the previous
theorem is the best possible.

Proposition 5.7: There exist pointsets for which
δ(B, C) = (d− 1)/d

√
d
2 × µ(C).

Proof: See [23].

VI. NUMERICAL ILLUSTRATION

We illustrate resilient bounded consensus through an ex-
ample. We consider a complete, undirected network of N =
20 agents, of which 6 are adversarial. The network graph
is fixed and does not change over time. Since all agents
are pairwise adjacent, each normal agent i has Fi = 6
adversarial agents in its neighborhood. Moreover, the state
of each agent is its position in R3. Figure 2(a) shows the
network graph and initial positions of normal and adversarial
agents, which are shown in blue and red colors, respectively.
In our simulations, adversarial agents remain static and do
not update their positions (states).

First, we implement 3-dimensional ADRC consensus al-
gorithm using centerpoint. Since for each normal agent i, we
have Ni = 20 and Fi = 6 > d Ni

d+1e−1, the resilience bound
in (2) is not satisfied. Figure 2(b) shows the final positions of
normal agents and the convex hull of their initial positions.
We can see that normal agents fail to converge at a common
point inside the convex hull of their positions. Second, we
implement the resilient bounded consensus by partitioning
the 3-dimensional state into 2-dimensional and scalar states.
Since Fi = 6 ≤ d 20

3 e − 1, convergence of normal agents
is guaranteed in a bounded region B1. Figure 2(c) shows
final positions of normal agents achieving consensus inside
the bounded region B1. Next, we implement the resilient
bounded consensus by partitioning 3-dimensional state into
three scalar states. The normal agents achieve consensus and
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(a) (b) C (c) B1 (d) B2

Fig. 2: (a) Initial positions of agents. Final positions of normal agents as a result of (b) 3-dimensional ADRC, (c) RBC by
partitioning 3-dimensional state into 2- and 1-dimensional states, and (d) coordinate-wise RBC.

converge at a point inside a bounded region B2, which is a
hyperrectangle illustrated in Figure 2(d).

We observe that the resilient bounded consensus wherein
a 3-dimensional state is partitioned into lower-dimensional
states has an improved resilience (Fi = 6) compared to
the 3-dimensional ADRC, which is resilient against at most
Fi = 4 adversarial agents. However, this improvement comes
at the cost of accuracy. The resilient bounded consensus only
guarantees that normal agents converge in a bounded region
B1 = C1 × C2 and not necessarily inside the convex hull
of initial positions C. Let b1 ∈ B1 (similarly b2 ∈ B2)
be the convergence point of normal agents as a result of
resilient bounded consensus algorithm. Then, the Hausdorff
distance-based accuracy bound in (12) is δ(b1, C) = 0.18 ≤
δ(B1, C) = 0.731 ≤

√
3
2µ(C) = 1.9. Similarly, in case of

b2 ∈ B2, we have δ(b2, C) = 0.16 ≤ δ(B2, C) = 0.75 ≤√
3
2µ(C) = 1.9.

VII. CONCLUSION

There is a trade-off between resilience and accuracy in the
resilient multi-dimensional consensus problem. Resilience
depends on the local connectivity of normal agents and the
dimension of their state vector. If each normal agent i has less
than d Ni

d+1e adversarial agents in its neighborhood, all normal
agents can be guaranteed to converge inside the convex hull
C of their initial states. We showed that the convergence
of normal agents inside a bounded convex region B ⊇ C
can be guaranteed even if the number of adversaries in the
neighborhood of a normal agent is more than d Ni

d+1e. The
maximum possible distance between the convergence point
in B and C can be measured by the Hausdorff distance from
B to C. We provided upper bound on the Hausdorff distance
from B to C in special cases. In the future, we would like to
provide accuracy bounds for more general cases.
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