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Abstract—Machine learning components are used extensively
to cope with various complex tasks in highly-uncertain envi-
ronments. However, Out-Of-Distribution (OOD) data may lead
to predictions with large errors and degrade performance con-
siderably. This paper first introduces different types of OOD
data and then presents an approach for OOD detection for
classification problems efficiently. Our approach utilizes an
Adversarial Autoencoder (AAE) for representing the training
distribution and Inductive Conformal Anomaly Detection (ICAD)
for online detecting OOD high-dimensional data. Experimental
results using several datasets demonstrate that the approach can
detect various types of OOD data with a small number of false
alarms. Moreover, the execution time is very short, allowing for
online detection.

Keywords—Out-of-distribution detection, Machine learning
components for classification, Adversarial autoencoder, Inductive
conformal anomaly detection.

I. INTRODUCTION

Over the past decade, machine learning components, such
as Deep Neural Networks (DNNs), have made remarkable
achievements, resulting in state-of-the-art performance in var-
ious tasks, especially in image classification systems [1], [2].
Nevertheless, there are still several challenges restricting the
deployment of machine learning components to safety-critical
real-world systems. Machine learning models are built upon
an underlying assumption that the training and testing data are
sampled from the same distribution. In a real-world system,
however, even if a machine learning component is well-trained
over an extensive training dataset, Out-Of-Distribution (OOD)
data are still inevitable during testing, and they may cause
the model to make erroneous predictions and degrade the
performance considerably. Hence, detection of OOD data is
significant for the safety of machine learning components.
When OOD data are fed into the predictive model, the detector
can raise alarms for human intervention or redesign of the
model.

Although there are many studies on OOD detection in
machine learning components, especially for classification,
the manifestations of OOD data are still unexplored. OOD
detection methods in the literature [3], [4] attempt to determine
whether an input example is from the same distribution as
the training dataset, which only detects the change in the
distribution of the input variable. Another research direction is
novelty detection for unknown classes [5], [6]. The novelties
from unknown classes can be regarded as another type of

OOD data, where the change in the distribution of the output
variable is also observed. A related research topic to OOD data
is dataset shift, which occurs when the joint distribution of
the input and output variables differ between the training and
testing phases [7]. This paper analyzes the causes of out-of-
distribution data and categorizes them into three types: OOD
data caused by covariate shift, label shift, and concept shift.
It should be noted that, we borrow the idea and terminologies
from the categories of dataset shifts. However, there is still a
specific difference between dataset shift and OOD data: dataset
shift focuses on two distributions – the distributions of the
training dataset and testing dataset; in contrast, the OOD data
focuses on the distribution of the training dataset and a single
test example.

In order to efficiently detect different types of OOD data
in machine learning components, we propose the inductive
conformal out-of-distribution detection, which is based on
the Inductive Conformal Anomaly Detection (ICAD) frame-
work [8]. The core of the ICAD method is the definition
of a nonconformity measure, which is a function measuring
the dissimilarity between a test example and the training
dataset. Our approach utilizes a variant of an Adversarial
Autoencoder (AAE) [9] to define the nonconformity measure,
which can disentangle the label information from the latent
representation by estimating a class variable in addition to
the latent representation. By using such an architecture, the
joint distribution of the input and output variables on the
training dataset can be represented. Therefore, both the input
and output of the machine learning component can be taken
into consideration for OOD detection.

Moreover, the detection method using a single example may
result in a large number of false alarms. The robustness of the
detector can be improved by incorporating multiple examples
into the detection algorithm [10]. Our method follows this idea
and employs an AAE to generate multiple examples for robust
detection. Although multiple examples are considered, our
approach focuses on comparing a single test example with the
training distribution nonetheless. We also design two different
nonconformity measures, quantifying the degree to which the
test example is not sampled from the same distribution as the
training dataset. We conduct extensive experiments on several
datasets to evaluate our approach. The results show that our
approach can efficiently detect different types of OOD data
and can be used for online detection.

The rest of this paper is organized as follows: Section II978-1-6654-3156-9/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 O

m
ni

-L
ay

er
 In

te
lli

ge
nt

 S
ys

te
m

s (
C

O
IN

S)
 | 

97
8-

1-
66

54
-3

15
6-

9/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

O
IN

S5
17

42
.2

02
1.

95
24

16
7

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 03,2022 at 23:47:51 UTC from IEEE Xplore.  Restrictions apply. 



formulates the problem of OOD detection and discusses dif-
ferent types of OOD data in machine learning components for
classification. Section III describes our proposed approach –
inductive conformal out-of-distribution detection. Section IV
utilizes multiple datasets to demonstrate our detection method.
Section V discusses the related work, and Section VI provides
the concluding remarks.

II. OUT-OF-DISTRIBUTION DETECTION IN MACHINE
LEARNING COMPONENTS FOR CLASSIFICATION

In this section, we first formulate the OOD detection prob-
lem in machine learning components for classification. After
that, we categorize the OOD data according to their cause.

A. Problem Formulation

Consider a machine learning component f for a classifi-
cation problem, which is well-trained using a set of labeled
samples Dtrain = {(xi, yi)}li=1, where each example (xi, yi)
consists of the input xi ∈ X and corresponding label yi ∈ Y ,
and it is sampled from a joint distribution Ptrain(x, y). During
the system operation, a test example xl+1 is consumed by the
component to estimate a predictive class y′l+1. The implicit as-
sumption for the effectiveness of machine learning techniques
is that the test example pair (xl+1, y

′
l+1) is sampled from the

same joint distribution of the training dataset Ptrain(x,y). How-
ever, the training dataset Dtrain = {(xi, yi)}li=1 is necessarily
incomplete, and therefore, OOD data are commonly present.
The machine learning component f may become ineffective
due to the OOD data and make predictions with large errors.
In this case, it is desirable to raise alarms or retrain the model,
and therefore, detection of OOD data is of importance for the
safety of the machine learning component.

The detection must be performed efficiently and preferably
online, which means that the execution time should be compa-
rable to the execution time of the machine learning component.
It is very challenging because machine learning components
are increasingly used for tasks with high-dimensional data.

B. Types of Out-of-distribution Data

1) Out-of-distribution data caused by covariate shift: Co-
variate shift is one of the basic and most common dataset shifts
observed in real life [11]. Covariate shift usually occurs when
Ptest(x) changes over time after training, while the conditional
probability P (y|x) remains the same. Extending this definition
to OOD data, if the input variable x of a test example is
not sampled from the same distribution of training dataset
Ptrain(x), while the underlying relationship between input and
output P (y|x) remains unchanged, it is assumed that the OOD
data are caused by covariate shift.

2) Out-of-distribution data caused by label shift: Label
shift, also known as target shift, assumes that the marginal
distribution of y, P (y) changes, but everything else remains
the same [7]. For label shift, the training and testing dis-
tributions of output variables may change in time such that
Ptrain(y) 6= Ptest(y). However, the conditional probability of x
given y stays same, i.e. Ptrain(x|y) = Ptest(x|y). Subsequently,

when the label variable y is out of distribution of the train-
ing dataset Ptrain(y), but the underlying relationship P (x|y)
remains the same, it is assumed that the OOD data are caused
by label shift.

3) Out-of-distribution data caused by concept shift: A con-
cept shift is a form of contextual shift where the relationship
between input and output variables changes [12]. Here, we
assume the data generation mechanism, P (x|y) changes while
class definitions remain same. For a test example, if its output
variable y is in the same distribution of the training dataset
P train(y), but the conditional probability P (x|y) changes, we
define such an example as OOD data caused by concept shift.

III. ADVERSARIAL AUTOENCODER AND
OUT-OF-DISTRIBUTION DETECTION

In this section, we introduce inductive conformal out-of-
distribution detection, which is based on a variant of an
Adversarial Autoencoder (AAE) and the Inductive Conformal
Anomaly Detection (ICAD) framework.

A. Adversarial Autoencoder
An AAE is a generative model which is trained in an ad-

versarial manner to force the aggregated posterior of the latent
coding space of the autoencoder to match an arbitrary known
distribution [9]. Specifically, assuming x is the input and z is
the low-dimensional latent representation, a basic AAE model
consists of an encoder (generator in adversarial network) G(x)
trying to encode the input into the low-dimensional latent rep-
resentation, a decoder De(z) trying to reconstruct the original
input data from the encodings, and a discriminator D(z) trying
to identify the hidden samples z generated by the generator or
sampled from the true prior. The whole architecture is trained
jointly in two phases: the reconstruction phase and regular-
ization phase. In the reconstruction phase, the encoder G(x)
and decoder De(z) are updated to minimize the reconstruction
error. In the regularization phase, the discriminator D(z) is
trained to distinguish the true samples (sampled from the prior
distribution p(z)) from the generated samples (sampled from
the posterior distribution q(z|x)), while the generator G(x)
is trained to deceive the discriminator D(z) by outputting
samples that closely resemble data sampled from the prior
distribution p(z).

In order to disentangle the label information from the latent
representation, a class variable y can be predicted by the
encoder G(x) in addition to the latent variable z, and the one-
hot vector of the predicted class is provided to the decoder
De(y, z) to generate class-conditioned output (Fig. 1). This
architecture can be regarded as a supervised variant of a semi-
supervised AAE introduced in [9]. A supervised classification
phase is performed after the reconstruction and regularization
phases, whose objective is to minimize the cross-entropy cost
between the target distribution p(y) and the approximation of
the target distribution q(y|x).

B. Inductive Conformal Out-of-distribution Detection
The task of anomaly detection is to determine whether the

test example conforms to the normal data. Inductive Conformal
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Fig. 1. A variant of the adversarial autoencoder model.

Anomaly Detection (ICAD) is an anomaly detection frame-
work with the property of well-calibrated false alarms [8].
The ICAD method is based on a definition of a nonconformity
measure, which is a function measuring the dissimilarity
between a test example and the training dataset. Recently, in
order to enable online detection for high-dimensional data,
learning models are trained to represent the distribution of
the input variable of the training dataset and are utilized for
the computation of a nonconformity measure [10]. However,
nonconformity measures considering only the input variable
may not be sufficient for the detection of some specific types of
OOD data because the output variable can also lead the input
and output pair out of the joint distribution of the training
dataset. The variant of AAE can encode a label variable in
addition to a latent variable, and consequently, both input and
output can be represented in such a model. In the following, we
first introduce two different nonconformity measures based on
AAE. Subsequently, we describe the inductive conformal OOD
detection method based on these nonconformity measures.

1) Nonconformity measures: For a test example x, the
encoder portion of the AAE represents x and its predictive
label y′ in a latent space, and the decoder portion generates
a new example x̂ by sampling from the encodings. If x and
its predictive label y′ are from the same joint distribution of
the training dataset, the example x should be reconstructed
with a relatively small reconstruction error. Therefore, the
reconstruction error between the input x and generated output
x̂ can be used as the reconstruction-based nonconformity
measure Arc defined as

Arc = ||x− x̂||2. (1)

The reconstruction-based nonconformity measure treats all
features of the input equally. However, a relatively small part
of the features in the input may have a significant effect on
the final prediction. Therefore, it is not reasonable to treat
all input features equally when they contribute to the output
of the predictive model differently. A novel nonconformity
measure based on saliency maps is introduced to compensate
for such a defect. A saliency map algorithm aims to quantify
the contributions of the input features to the predictive result
of a machine learning model [13]. Specifically, we utilize the

gradient-based saliency map algorithm [13]. It generates the
saliency map by computing the derivative of the SoftMax score
Sy of class y with respect to the input x at a given point x0

w =
∂Sy
∂x
|x0
.

The derivative w reflects the influence of input features on
the final prediction and is used to define the saliency-based
nonconformity measure by weighting the reconstruction error
as

Asaliency = ||w · (x− x̂)||2. (2)

The saliency map w is computed using the portion used for
the classification task in the encoder of the AAE, and the
reconstructed output x̂ is also generated by the AAE.

2) Detection method: Given a test input xl+1 and its predic-
tive label y′l+1, the OOD detection method aims to determine
whether the test input-prediction pair (xl+1, y

′
l+1) is sampled

from the same joint distribution of the training dataset Dtrain =
{(xi, yi)}li=1. The proposed method is based on the framework
of ICAD, and therefore, the detection algorithm is divided
into offline and online phases. During the offline phase, the
training dataset Dtrain is split into two sets: a proper training
set Dproper = {(xi, yi)}mi=1 and a calibration set Dcalibration =
{(xi, yi)}li=m+1. An AAE F is trained over a proper training
set Dproper for the computation of nonconformity measures. Let
A be either nonconformity measure function defined before.
After that, for each data xj , j = m+1, . . . , l in the calibration
set, a new example x̂j is generated using the trained AAE F ,
and its corresponding nonconformity score αΓ

j is computed
according to the nonconformity measure A. In order to reduce
the time complexity of the p-value computation during the
online phase, nonconformity scores of the calibration data are
sorted and stored as {αj}lj=m+1.

At the online detection stage, given the test example xl+1,
in order to improve the robustness of the detection, N ex-
amples {x̂l+1,k}Nk=1 are generated from the AAE. For each
generated example x̂l+1,k, its nonconformity score αl+1,k can
be computed using the same nonconformity measure A as
the calibration set. Subsequently, two different techniques can
be applied to aggregate these N nonconformity scores for
detection.

One option is to compute the expected nonconformity score
ᾱl+1 of N nonconformity scores, and the p-value pl+1 can be
computed as the ratio of calibration nonconformity scores that
are at least as large as ᾱl+1:

pl+1 =
|{i = m+ 1, . . . , l} |αi ≥ ᾱl+1|

l −m
. (3)

A smaller p-value reflects an unusual test example with respect
to the training examples. If the p-value pl+1 is smaller than
a threshold ε, this test example will be classified as an OOD
instance.

Additionally, we can use a martingale test [14], [10] for N
nonconformity scores to detect OOD data. For each nonconfor-
mity score of a generated example αl+1,k, the corresponding
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p-value pl+1,k is calculated using Eq. (3). Then, a simple
mixture martingale [14] is applied, which is defined as

Ml+1 =

∫ 1

0

N∏
k=1

εpε−1
l+1,kdε. (4)

Such martingale value will grow only if there are many
small p-values in {pl+1,k}Nk=1, and the detector will raise
an alarm when the martingale value Ml+1 is greater than
a predefined threshold τ . The martingale test is expected
to have a better performance than the expected p-value of
nonconformity scores since it can enlarge the nonconformity
gap between in-distribution and OOD instances.

The whole procedure of the detection algorithm is summa-
rized in Algorithm 1.

Algorithm 1 Inductive Conformal Out-of-distribution Detec-
tion using Adversarial Autoencoders
Require: Input training set Dtrain = {(xi, yi)}li=1; number of

calibration examples m; number of examples N gener-
ated by the adversarial autoencoder; test example xl+1;
threshold ε of p-value of expected nonconformity score,
or threshold τ of martingale value

Offline:
1: Split the training set Dtrain = {(xi, yi)}li=1 into the proper

training set Dproper = {(xi, yi)}li=1 and calibration set
Dproper = {(xi, yi)}li=m+1

2: Train an adversarial autoencoder F using the proper
training set Dproper

3: for j = m+ 1 to l do
4: Generate x̂j using the trained adversarial autoencoder
5: αΓ

j = A(xj , x̂j)
6: end for
7: {αm+1, . . . , αl} = sort({αΓ

m+1, . . . , α
Γ
l })

Online (p-value of expected nonconformity score):
8: for k = 1 to N do
9: Generate x̂l+1,k using the trained adversarial autoen-

coder
10: αl+1,k = A(xl+1, x̂l+1,k)
11: end for
12: ᾱl+1 = 1

N

∑N
k=1 αl+1,k

13: pl+1 = |{i=m+1,...,l} |αi≥ᾱl+1|
l−m

14: Anoml+1 ← pl+1 > ε
Online (martingale test):
15: for k = 1 to N do
16: Generate x̂l+1,k using the trained adversarial autoen-

coder
17: αl+1,k = A(xl+1, x̂l+1,k)

18: pl+1,k =
|{i=m+1,...,l} |αi≥αl+1,k|

l−m
19: end for
20: Ml+1 =

∫ 1

0

∏N
k=1 εp

ε−1
l+1,kdε

21: Anoml+1 ←Ml+1 > τ

IV. EVALUATION

To demonstrate the effectiveness of the proposed approach,
we conduct extensive experiments for the detection of different

types of OOD data using several datasets. In this section, we
describe the implementation details first. Then, we describe
the experimental setup and present evaluation results for three
different types of OOD. Finally, we measure and report the
execution time of the proposed method.

A. Experiment Implementation

1) Neural network architecture: The AAE is trained to
perform both classification and detection tasks. For different
types of inputs, we use different architectures of the AAE. For
the image input (Experiment 1-2), in order to allow for online
detection, we implement the AAE with a relatively shallow
convolutional network: the encoder contains three convolu-
tional layers and one fully connected layer. The decoder has
symmetric one fully connected layer and three deconvolutional
layers. Furthermore, three fully connected layers form the
discriminator. For the non-image input (Experiment 3), the
AAE is implemented with three fully connected layers. The
decoder has a symmetric architecture, and the discriminator
contains three fully-connected layers.

2) Evaluation metrics: The Receiver Operating Character-
istic (ROC) curve plots the true positive rate against the false
positive rate by varying the detection threshold. The Area
Under ROC (AUROC) curve is a threshold-free metric and
is considered as the evaluation metric for OOD detection. The
worst value of AUROC is 0.5 yielded by an uninformative
classifier with a random guess. The best value of AUROC is
1.0, implying that the nonconformity scores for all the OOD
data are greater than the score for any in-distribution data.

B. Out-of-distribution Data Caused by Covariate Shift

Experiment 1: The OOD data caused by covariate shift is
present when the input variable x is sampled from a different
distribution of training dataset, but the underlying relationship
between the input and output P (y|x) remains unchanged.
MNIST [15], colorful MNIST [16], and SVHN [17], are the
image classification datasets with the same labels of ten digits,
while the inputs are from different distributions: for MNIST,
the inputs are black and white images with handwritten
digits; for colorful MNIST, the inputs are the MNIST images
synthesized with colorful backgrounds; for SVHN, the inputs
are the digit images from the street view house numbers. In
our experiment, we train the AAE with the MNIST dataset
and test it with colorful MNIST (Experiment 1-1) and SVHN
(Experiment 1-2). It can be regarded as the OOD data caused
by covariate shift since the input variable is sampled from a
different distribution of training dataset, but the conditional
probability of y given x stays the same.

Results of Experiment 1: We report the accuracy of the
classification task and the AUROC of the detection task in
Table I using different nonconformity measures and different
techniques applied to nonconformity scores (”Ave” is for the
technique using expected p-value of N nonconformity scores;
”Mart” is for the technique using martingale test). As it can
be seen from the table, the accuracy of the classification for
the in-distribution data is not degraded. Further, the AUROC in
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Experiment 1-1 and 1-2 are almost close to 1.0. Therefore, the
proposed method can be used to detect the out-of-distribution
data caused by covariate shift. Besides, it should be noted
that for this experiment, no baselines can be compared in the
literature.

TABLE I
AUROC FOR INDUCTIVE OUT-OF-DISTRIBUTION DETECTION.

Accuracy Arc(Ave/Mart) Asaliency(Ave/Mart)
Experiment 1-1

99.3%
0.998/0.999 0.999/0.999

Experiment 1-2 1.000/1.000 1.000/1.000
Experiment 2-1 99.5% 0.943/0.932 0940/0.931
Experiment 2-2 97.2% 0.840/0.847 0.829/0.821
Experiment 2-3 90.1% 0.692/0.683 0.683/0.690
Experiment 3 96.3% 0.682/0.693 0.674/0.681

C. Out-of-distribution Data Caused by Label Shift
Experiment 2: Novelty detection for unknown classes is

a representative example of the OOD data caused by label
shift, where the label variable y is not sampled from the same
distribution of the training dataset, but the output-conditional
distribution P (x|y) remains the same. In our experiment, fol-
lowing the experimental settings in [6], we randomly sample 6
classes in MNIST(Experiment2-1) [15], SVHN(Experiment 2-
2) [17], and CIFAR10(Experiment 2-3) [18] as known classes,
and rest 4 classes are unknowns. The training dataset only
contains the 6 known classes, but the testing dataset contains
all 10 classes.

Results of experiment 2: In this case, we report the eval-
uation results in Table I. The results demonstrate the effec-
tiveness of our approach for detecting the OOD data caused
by label shift. Although the AUROC of our approach is
smaller than the other state-of-the-art methods [6], [19], our
approach uses a more shallow neural network allowing for
online detection.

D. Out-of-distribution Data Caused by Concept Shift
Experiment 3: The OOD data caused by concept shift is

present when the output variable y is sampled from the training
dataset, but the conditional probability of P (x|y) changes.
A gear dataset is used in the experiment to evaluate our
approach for detecting such OOD data. Gearbox fault detection
dataset [20] focuses on classifying the type of damage that
may occur on a generic gearbox. The state of the gearbox is
measured using accelerometers attached at various locations.
The gearbox can operate at five different constant shaft speeds
under two different loading conditions (low- and high-load).
For each shaft speed and loading conditions, six fault types are
simulated (normal, chipped gear tooth, broken gear tooth, bent
shaft, imbalanced shaft, broken gear tooth with bent shaft). For
each case which is the combination of fault type, shaft speed,
and load condition, about 4 seconds of data are collected at a
sampling rate of 66.67 kHz twice. To make the dataset suitable
for this research, preprocessing is performed: In this paper,
only the output shaft vibration data is considered. The dataset
is divided into two main subsets; those are low-load and high-
load. For each subset, regardless of shaft speed, the dataset

is aggregated with respect to the type of fault. All available
data is converted into the frequency domain using Short Time
Fourier Transform. Our experiment uses the subset from the
low-load as the training dataset and both subsets from low- and
high-load as the testing dataset. The distribution over output
P (y) stays the same, but the conditional probability P (x|y)
changes. Thus, it can be regarded as the OOD data caused by
concept shift.

Results of experiment 3: Evaluation results corresponding
to the experiment are shown in Table I. Although there is
no baseline in the literature used to compare with, as it
can be seen from this table, the approach can detect OOD
data caused by concept shift using different nonconformity
measures without loss of classification accuracy.

E. Execution Time

In order to characterize the efficiency of the approach, we
measure and report execution times for Experiment 1-1 using
two different nonconformity measures and martingale test
using a box plot in Fig. 2. The execution times are measured
on a 6-core Ryzen 5 desktop with a single GTX 1080Ti GPU.

Arc Asaliency
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n
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Fig. 2. Execution times of proposed method.

From the results, the execution times of the method using
nonconformity measure Asaliency are slightly longer than the
method using Arc due to the extra execution time for comput-
ing the saliency maps. The execution times for all two noncon-
formity measures are very short, which is comparable to the
inference time of typical machine learning component [21]..
Therefore, our approach is applicable for online detection.
Moreover, the number of the examples generated from AAE N
is fixed at 10 in experiments. As the number of N increases,
the execution time will also increase since the AAE model
needs to be inferred N times to generate N examples.

V. RELATED WORK

In the last decade, a significant amount of work in the
literature focuses on detecting OOD examples. A baseline
method is proposed in [3], which utilizes the SoftMax score to
classify the in-distribution and OOD instances. A method of
learning confidence estimates for neural networks is proposed
in [22], which adds an additional branch to yield a confidence
logit. The OOD detection can be performed by evaluating the
learned confidence estimates.

Data from unknown classes can be considered as a type of
out-of-distribution data. The problem of detecting the novelty
for unknown classes is usually considered together with open-
set recognition. Open-set recognition performs two tasks:
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novelty detection for unknown classes and classification for
known classes. A Class Conditioned Autoencoder (C2AE) is
trained for open-set recognition in [6]. Conditional Gaussian
Distribution Learning (CGDL) method is presented in [23],
which applies a probabilistic ladder network trying to learn
conditional Gaussian distributions by forcing different latent
features to approximate different Gaussian models. The recon-
struction error and the probability of the test sample located
in the latent space are combined to detect the unknown class.

When the distribution of the test dataset is given instead
of only a single test example, the problem of OOD detec-
tion evolves into dataset shift detection. The state-of-the-art
approaches for label shift detection known as Black Box Shift
Estimation (BBSE) and Maximum Likelihood Label Shift
(MLLS) are proposed in [24] and [25], respectively. As for
covariate shift, an Exponentially Weighted Moving Average
chart (EWMA) model is used in [26] to detect covariate
shifts in non-stationary environments. ADaptive WINdowing
(ADWIN), an adaptive sliding window algorithm for detecting
concept shift, or concept drift, is raised in [27]. In [28],
the conformal prediction and exchangeability martingales are
adapted for testing concept shift online.

VI. CONCLUSIONS

In this paper, we formalize the problem of detecting OOD
data in machine learning components for classification and
categorize the OOD data according to their causes. Then, we
present an approach based on inductive conformal anomaly de-
tection. An adversarial autoencoder model is adopted to char-
acterize the joint distribution of the training dataset, allowing
online detection for high-dimensional data. Experiments using
several datasets demonstrate the effectiveness of the approach
for the detection of different types of OOD data. Moreover, the
execution time is very small, and consequently, the approach
can be used for online out-of-distribution detection. To extend
this work, we plan to compare our approach with state-of-
the-art methods for OOD detection to demonstrate the benefit
of taking the output into consideration. Evaluation with real-
world image datasets is also a part of future work.
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