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Abstract
Adversaries may cause significant damage to smart infrastructure using malicious attacks.
To detect and mitigate these attacks before they can cause physical damage, operators can
deploy anomaly detection systems (ADS), which can alarm operators to suspicious activities.
However, detection thresholds of ADS need to be configured properly, as an oversensitive
detector raises a prohibitively large number of false alarms, while an undersensitive detector
may miss actual attacks. This is an especially challenging problem in dynamical environ-
ments, where the impact of attacks may significantly vary over time. Using a game-theoretic
approach, we formulate the problem of computing optimal detection thresholds which min-
imize both the number of false alarms and the probability of missing actual attacks as a
two-player Stackelberg security game. We provide an efficient dynamic programming-based
algorithm for solving the game, thereby finding optimal detection thresholds. We analyze the
performance of the proposed algorithm and show that its running time scales polynomially
as the length of the time horizon of interest increases. In addition, we study the problem
of finding optimal thresholds in the presence of both random faults and attacks. Finally, we
evaluate our result using a case study of contamination attacks in water networks, and show
that our optimal thresholds significantly outperform fixed thresholds that do not consider that
the environment is dynamical.
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1 Introduction

Smart infrastructures equipped with data-gathering devices and computational capabilities
for data-intensive analysis lead to efficient monitoring and management of cyber-physical
systems including transportation, electrical, and water distribution systems. The ability to
collect diverse data at low-cost allows for intelligent system monitoring, automation, and
efficient resource management. Continuous monitoring of modern infrastructure networks
to detect anomalies and malicious intruders is a prominent requirement for smart operations.
Inability to early detect a malicious attack on some system component might not only cause
disruption of services but could lead to complete system failure, excessive physical and finan-
cial losses. For instance, in water networks, water pipes are exposed to the risk of intentional
contamination with toxic chemicals. If not detected early, such a malicious attack may have
detrimental consequences, including poisoning and propagation of infectious diseases.

Efficient intrusion and attack detection mechanisms need to be employed to quickly and
accurately detect attacks.Attackers, on the other hand, strive tomaximize the damage inflicted
to the system while remaining covert and not getting detected for an extended duration of
time. An anomaly detection system (ADS) can monitor the system for signatures of known
attacks or for anomalies. When an ADS detects suspicious activity, it raises an alarm, which
can then be investigated by system operators and experts. For instance, in the case of water
networks, water quality sensors continuously monitor parameters such as chlorine, pH, and
turbidity. The collected data is then analyzed by detection systems such as CANARY [15] to
detect anomalous events and provide an indication of potential contamination.

Awell-knownmethod that can be used for detecting anomalies is sequential change detec-
tion [5]. This method considers a sequence of measurements that starts under the normal
hypothesis and then, at some point in time, changes to the anomaly hypothesis. In sequential
change detection, the detection delay is the time difference between when an anomaly occurs
and when an alarm is raised. Detection algorithms may induce false positives that are alarms
raised for normal system behavior. In general, it is desirable to reduce detection delay as
much as possible while maintaining an acceptable false-positive rate. There exists a trade-
off between the detection delay and the rate of false positives, which can be controlled by
changing the sensitivity of the detector. A typical way to control the sensitivity is by changing
the detection threshold. By decreasing (increasing) the detection threshold, a defender can
decrease (increase) the detection delay and increase (decrease) the false-positive rate. Conse-
quently, the detection threshold must be carefully selected, since a large value may result in
large detection delays, while a small value may result in wasting resources on investigating
false alarms.

Finding an optimal threshold, which optimally balances the trade-off between detection
delay and rate of false positives is a challenging problem. The problem is exacerbated when
detectors are deployed in systems with dynamic behavior and when the expected damage
incurred from undetected attacks depends on the system state and time. For example, in water
distribution networks, contamination attacks at a high-demand time are more calamitous
than attacks at a low-demand time. Hence, defenders need to incorporate time-dependent
information in computing optimal detection thresholds when facing strategic attackers. In
dynamic systems, potential damage from attacks changes over time, which implies that
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optimal thresholds must also change with time. However, if we have to select a different
threshold for each time period, then the number of possible solutions grows exponentially
with the time-horizon.

An adversary can attack a system inmultiple ways, and each of thesemay cause a different
amount of damage or may be detected with a different delay. To account for these differences,
attack types available to the adversary must be explicitly modeled. For instance, in water-
distribution networks, potassium ferricyanide and arsenic trioxide are both chemicals that can
be used to contaminate water. In this case, addition of a specific toxic chemical constitutes
an attack type as each chemical affects water quality in different ways and hence may cause
different damage or may be detected with different delay [14].

Contamination events may also occur due to non-malicious incidents or equipment fail-
ures. For instance, pipe bursts and leakages can become a source of water contamination.
Therefore, it is desirable to design ADS that are able to quickly and accurately detect either
incidental contaminations or malicious attacks.

We study the problemoffinding optimal thresholds for anomaly-based detection in dynam-
ical systems in the face of strategic attacks.1 Our main contributions are the following:

– We formulate a two-player Stackelberg game between a defender and an adversary. We
assume that the adversary attacks the system, choosing the time and type of the attack (e.g.,
type of harmful chemical introduced into a water-distribution network) to maximize the
inflicted damage.On the other hand, the defender selects detection thresholds tominimize
both damage from best-response attacks and the cost of false alarms.

– We present a dynamic-programming based algorithm to solve the game, thereby com-
puting optimal time-dependent thresholds. We call this approach the time-dependent
threshold strategy. We analyze the performance of the proposed algorithm and show
that its running time scales polynomially as the length of the time horizon of interest
increases, which is important in practice from the perspective of scalability.

– We also provide and study a polynomial-time algorithm for the problem of computing
optimal fixed thresholds, which do not change with time.

– In addition, we study the problem of finding optimal thresholds in the presence of random
faults and attacks, and present an algorithm that computes the optimal thresholds. The
running time of the algorithm scales polynomially as the length of the time horizon of
interest increases.

– Finally, we evaluate and apply our results to the detection of contamination attacks in a
water-distribution system as a case study. Since expected damage to the system by an
attack is time-dependent aswater demand changes throughout the day, the time-dependent
threshold strategy can achieve much lower losses than a fixed-threshold strategy. Our
simulation results confirm this, showing that time-dependent thresholds significantly
outperform fixed ones.

1 This work is a significant extension of our conference paper [11], which appeared at the 7th Conference
on Decision and Game Theory for Security (GameSec 2016). The novel contributions are the following: (1)
extended model that considers multiple attack types, which can be used to represent, for example, multiple
targets within a system that an adversary may attack or multiple choices for the magnitude of the attack; (2)
novel polynomial-time algorithms and theoretical analysis for finding optimal detector configurations against
multiple attack types; (3) extended model that considers both intentional attacks and random faults (e.g.,
reliability failures that occur at random) and novel algorithms for finding optimal detection thresholds in the
presence of both attacks and random faults; (4) comprehensive numerical results based on real-wold data and
simulations, which study multiple attack types, random faults, sensitivity analysis, etc.
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2 Related work

The problem of optimal design of anomaly detection systems has been studied in a variety of
different ways in the academic literature [7,31]. Nevertheless, to the best of our knowledge,
prior work has not specifically addressed the optimal threshold selection problem in the face
of strategic attacks when the damage corresponding to an attack depends on time-varying
properties of the underlying system.

Change detection methods with adaptive thresholds have been previously used. An exten-
sion of CUSUM test that can be configured at run-time is proposed in [1]. The paper discusses
methods to configure the detector’s parameters, and shows how the detector performs when
the correct configuration is not known a priori. Further, a procedure to obtain adaptive thresh-
olds for CUSUM-type detectors is presented that takes into account non-stationary nature
of the stochastic systems under supervision [33]. The proposed method outperforms fixed
threshold in obtaining desired rate of false alarms. Finally, an adaptive CUSUM control chart
is presented that uses variable sampling intervals [19]. Themethod is shown to perform better
than the fixed sampling interval approach. Nonetheless, unlike our work, these studies fail
to address dependencies between the detector’s performance and dynamic properties of a
system that can be maliciously exploited by strategic adversaries.

There have been several distinct efforts involving game-theoretic modeling of anomaly
detection. The first is signaling games used to model intrusion detection [10,25]. For exam-
ple, an intrusion detection game based on a signaling game is proposed in order to select
the optimal detection strategy that lowers resource consumption [29]. Further, distributed
intrusion detection is studied as a game between an IDS and an attacker using a model that
represents the flow of information from the attacker to the IDS [2,3]. The work investigates
the existence of a unique Nash equilibrium and best-response strategies. Nevertheless, the
IDS models used in these works are significantly different from the ones used in our work
(i.e., anomaly-based change detection). Another related game-theoretic setting is FlipIt game
[18,32]. FlipIt is an attacker-defender game that studies the problem of stealthy takeover of
control over a critical resource, in which the players receive benefits proportional to the total
time that they control the resource. A framework for the interaction between an attacker,
defender, and a cloud-connected device is presented in [26]. The interactions are described
using a combination of a FlipIt game and a signaling game. What distinguishes our work
from FlipIt is using an anomaly detector that has detection delay and false alarms. Finally,
our work is related to the broad literature on Stackelberg security games [17,24,30], although
our particular problem and model are novel in that context.

Contaminant intrusion in water distribution network has been considered in water security
literature [8,9]. In particular, data-driven water monitoring approaches have received con-
siderable attention due to the advances in smart monitoring technologies [16,22]. Bayesian
sequential analysis is integrated with neural network models to detect possible quality threats
in water distribution systems [28]. Further, a dynamic thresholds scheme for contamination
event detection is presented by defining optimal detection thresholds as the ones that maxi-
mize detection rate [4]. While the mentioned work also uses detection thresholds that change
in time, themethod of threshold selection does not consider losses obtained by detection delay
and false alarms. In addition, unlike our work, it does not consider malicious adversaries that
exploit time-varying aspects of WDS.

Sequential change detection methods such as CUSUM have been used to detect changes
in water quality. Combined Shewhart-CUSUM control charts are used for ground water
monitoring in [12]. The study uses Shewhart control chart for identifying large changes at
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a single timestep in addition to CUSUM chart for detecting small continuous changes. The
method is evaluated by presenting false-positive rate, false-negative rate, and detection delay.
Further, CUSUMmethods forwater qualitymonitoring are implemented in [20]. Considering
six kinds of quality trends, the performance of CUSUM is studied by measuring detection
delay and false-negative error. It is concluded that CUSUM performs well when used for
monitoring water quality. While such studies effectively use sequential change detection
for water quality monitoring, they simply use fixed thresholds and do not consider time-
dependent thresholds. In this work, we show that time-dependent thresholds significantly
outperform the fixed threshold in terms of minimizing the losses.

3 Systemmodel

We consider a systemwhichmay be attacked by an adversary.We assume a discrete-time sys-
tem model with a finite time horizon of interest denoted by {1, . . . , T }. The system provides
some utility in its normal state and this utility is substantially reduced when the system is
under attack. Further, the system and hence these utilities may be be time-dependent. Instead
of explicitly considering these quantities, we take a general, security-focused approach and
model the impact of attacks using a time-dependent damage function D. Finally, we assume
that the system is monitored by a set of sensors and an operator can use anomaly detection
based on sensor data for detecting attacks.

For example, consider a water distribution network that is monitored by sensors that
measure water quality using pH or choline levels. The system is subject to attacks such as
intrusive contamination with toxic chemicals [13]. The utility from supplying clean water for
residential consumption depends on the water demand, which fluctuates significantly over
time. The damage caused by a contamination attack depends on both the lack of clean water
supply as well as the impact on public health of the population exposed to contaminated
water. Water quality sensors may be used to detect anomalies, such as changes in chemical
concentrations that could be attributed to the introduction of harmful chemicals.

Our primary goal is to address the problem of finding optimal time-dependent configura-
tions for anomaly detection algorithms. Table 1 shows a list of symbols used in this paper.
In addition, Fig. 1 shows a high level overview of the system model, whose elements will be
detailed in the following subsections.

Attack model Adversaries may compromise the system through an attack of type λ ∈ Λ

(e.g., type of harmful chemical introduced into awater-distribution network). The attack starts
at time ka and ends at ke, thus spanning the interval [ka, ke]. If an attack remains undetected,
it will enable the attacker to cause physical or financial damage. In order to represent the
tight relation between the system’s dynamic behavior and the expected loss incurred from
undetected attacks, we model the potential damage of an attack as a function of time.

Definition 1 (Expected Damage Function) The damage function of a system is a function
D : {1, . . . , T } × Λ → R+ which represents the expected damage D(k, λ) incurred by the
system from an undetected attack of type λ ∈ Λ at time k ∈ {1, . . . , T }.

Detector We consider a defender whose objective is to protect the system using anomaly
detection based on the sensor measurements. The detector’s goal is to determine whether a
sequence of received measurements corresponds to normal behavior or an attack. Although
the proposed approach can be used for various detection algorithms, we consider a widely
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Table 1 List of symbols

Symbol Description

T Cardinality of time horizon of interest

η Vector of time-dependent threshold η = 〈ηk 〉Tk=1

Λ Set of attack types

D(k, λ) Expected damage caused by an attack of type λ ∈ Λ at timestep k

δ(ηk , λ) Detection delay given detection threshold ηk and attack type λ

FP(ηk ) False alarm probability given detection threshold ηk

C f Cost of false alarms

Cd Cost of changing the detection threshold

P(η, ka , λ) Attacker’s payoff for time-dependent threshold η = 〈ηk 〉Tk=1 and attack (ka , λ)

L(η, ka , λ) Defender’s loss for threshold η = 〈ηk 〉Tk=1 and attack (ka , λ)

E Set of thresholds corresponding to set of possible detection delays Δ

PF (η) Defender’s loss for time-dependent threshold η = 〈ηk 〉Tk=1 due to random faults

LC (η, ka , λ) Defender’s loss for threshold η = 〈ηk 〉Tk=1 due to random faults and attack (ka , λ)

Fig. 1 System description Physical system
D, T Sensors

Detector
δ, FP

Attacker
Λ

Optimal thresholds
Cf , Cd

ka, λ η

used method known as sequential change detection [5]. This method assumes a sequence
of measurements that starts under the normal hypothesis, and then, at some point in time,
changes to the attack hypothesis. Change detection attempts to detect this change as soon as
possible. Examples of change detection algorithms are geometric moving average, general-
ized likelihood ratio (GLR), and cumulative sum (CUSUM) [5].

The performance of change detectors is characterized by the detection delay, which is the
time between the beginning of an attack and the time when an alarm is raised, and the false-
positive probability, which is the probability of raising an alarmwhen there has been no attack.
In general, it is desirable to reduce detection delay while maintaining an acceptable false-
positive probability. However, there exists a trade-off between the detection delay and the
probability of false positives, which can be controlled by changing the detection threshold.
In particular, by decreasing (increasing) the detection threshold, a defender can decrease
(increase) the detection delay and increase (decrease) the false-positive probability. Finding
the optimal trade-off and its corresponding optimal threshold is an important problem since
the damage from an attack depends on the performance of the detector.

The time-dependent threshold is denoted by η = 〈ηk〉Tk=1 and the detection delay by
δ : R+ × Λ → N ∪ {0}, where δ(η, λ) is the detection delay (in timesteps) when the
threshold is η ∈ R+ and the type of the attack is λ ∈ Λ. The rationale behind this model of
delay is that while a certain threshold might not detect an attack immediately after it happens,
the same threshold might detect the attack later. For example, to detect an attack of type λ

using a CUSUM-based detector, enough error has to accumulate to reach a threshold η,
which takes a certain number of timesteps δ(η, λ). We assume that for each λ ∈ Λ, δ(η, λ)
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is a left-continuous function of η.2 Further, we denote the false-positive probability (i.e.,
probability of raising a false alarm during a single timestep) by FP : R+ → [0, 1], where
FP(η) is the false-positive probability when the detection threshold is η. We assume that
FP is decreasing and δ is non-decreasing with respect to η, which is true for most typical
detectors, including sequential change detectors. For example, in Sect. 7, we obtain detection
delay and false-positive probability for a CUSUM detector.

4 Problem statement

In this section, we present the optimal threshold selection problem. We consider the case in
which the defender selects time-dependent thresholds for the anomaly detection. We model
this problem as a conflict between a defender and an attacker, which is formulated as a
two-player Stackelberg security game.

The idea of time-dependent threshold is to reduce the detector’s sensitivity during less
critical periods (via increasing the threshold) and increase the sensitivity during more critical
periods (via decreasing the threshold). As we will show, this significantly decreases the loss
corresponding to false alarms. However, the defender may not want to continuously change
the threshold, since a threshold change requires a reconfiguration of the detector that has a
cost. Hence, the defender needs to find an optimal threshold, which is a balance between
continuously changing the threshold and keeping it fixed.

Defender’s loss and attacker’s payoff The defender’s strategic choice is to select the
threshold η = 〈ηk〉Tk=1 for each timestep. We consider a worst-case attacker who will not
stop the attack before detection in order tomaximize the damage. Consequently, the attacker’s
strategic choice becomes to select an attack type λ and a time ka to start the attack.

Since our work focuses on optimizing detection delay, we consider damage arising from
attacks only during the time they remain undetected. In other words, we consider the impact
of an attack from its beginning until its detection. We define the detection time σ(η, ka, λ)

of an attack of type λ that starts at ka as the first timestep in which an alarm is raised due to
the attack. Since an alarm is raised in timestep k for an attack of type λ that started at ka if
and only if δ(ηk, λ) ≤ k − ka , the detection time of an attack is

σ(η, ka, λ) = {min k | δ(ηk, λ) ≤ k − ka} .

Note that the equation above represents the timestep at which the attack is first detected, and
not the detection delay.

For the strategies (η, ka, λ), the attacker’s payoff is the total damage until the expected
detection time,

P(η, ka, λ) =
σ(η,ka ,λ)∑

k=ka

D(k, λ) , (1)

that is, the total damage incurred by the system until the expected detection time. This payoff
function assumes a worst-case attacker that has the goal of maximizing the damage.

2 Weassume that δ(η, λ) is left continuous to ensure that the optimal thresholds exist (seeDefinition 3).Without
this assumption, the loss L(η, ka , λ) would have an infimum but not necessarily a minimum. Similarly, the
maximum thresholds in Eq. (4) would not necessarily exist. Since these phenomena have virtually no practical
relevance (in practice, values will typically be represented as floating-point numbers with limited precision),
we introduce the mild assumption of left continuity for ease of presentation.
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If an alarm is raised, the defender needs to investigate the system to determine whether an
attack has actually occurred or not, which will cost C f . Further, let Cd be the cost associated
with each threshold change. The number of threshold changes is described by N (η) = |Γ |,
whereΓ = {k | ηk �= ηk+1, k ∈ {1, . . . , T −1}}.When the defender selects a time-dependent
threshold η, and the attacker starts the attack at a timestep ka , the defender’s loss (i.e., inverse
payoff) is

L(η, ka, λ) = N (η) · Cd +
T∑

k=1

C f · FP(ηk) +
σ(η,ka ,λ)∑

k=ka

D(k, λ) , (2)

that is, the amount of resources spent on changing the threshold, operational costs of
manually investigating false alarms, and the expected amount of damage caused by the
attack before its detection.

Best-response attack and optimal threshold We assume that the attacker has complete
and perfect information, and will play a best-response attack to the defender’s strategy as
defined below.

Definition 2 (Best-Response Attack) Assuming a defender’s strategy, the attacker’s strategy
is a best-response if it maximizes the attacker’s payoff. Formally, an attack (ka, λ) is a best-
response given a defense strategy η if it maximizes P(η, ka, λ) as defined in (1).

Further, the defender must choose his strategy expecting that the attacker will play a
best-response or uniformly random attack. We formulate the defender’s optimal strategy as
a strong Stackelberg equilibrium (SSE), which is commonly used in the security literature
for solving Stackelberg games [17].

Definition 3 (Optimal Thresholds) We call a defense strategy optimal if it minimizes the
defender’s loss given that the attacker always plays a best-response with tie-breaking in favor
of the defender. Formally, an optimal defense is

argmin
η,

(ka ,λ)∈bestResponses(η)

L(η, ka, λ), (3)

where bestResponses(η) are the best-response attacks against η.

5 Selection of optimal thresholds

In this section, we present an approach for computing optimal thresholds for any instance
of the attacker-defender game, based on the SSE. The approach consists of two steps: (1) a
dynamic-programming algorithm (Algorithm 1) for findingminimum-cost thresholds subject
to the constraint that the damage caused by a best-response attack is lower than or equal to
a given damage bound and (2) an exhaustive-search algorithm (Algorithm 2) that finds an
optimal damage bound and thereby optimal thresholds.

Let Δ denote the set of all possible detection delay values:

Δ = {
m ∈ {1, . . . , T } ∣∣ ∃λ ∈ Λ, η ∈ R+

[
m = δ(η, λ)

]}
.

In other words, Δ is the set of all delay values between 1 and T that can be attained by some
threshold η for some attack type λ.
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Algorithm 1MinimumCostThresholds(P)

1: ∀ m ∈ Δ|Λ|, η ∈ E : Cost(T + 1,m, η) ← 0
2: for n = T , . . . , 1 do
3: for all m ∈ Δ|Λ| do
4: for all ηprev ∈ E do

5: if
∨

λ∈Λ

(∑n
k=n−mλ

D(k, λ) > P
)
then

6: Cost(n,m, ηprev) ← ∞
7: else
8: for all η ∈ E do
9: if ηprev = η ∨ n = 1 then

10:
S(n,m, ηprev, η)

← Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η) + C f · FP(η)

11: else

12:
S(n,m, ηprev, η)

← Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η) + C f · FP(η) + Cd

13: η∗(n,m, ηprev) ← argminη S(n,m, ηprev, η)

14: Cost(n,m, ηprev) ← minη S(n,m, ηprev, η)

15: m ← 〈0, . . . , 0〉, η∗
0 ← arbitrary

16: for all n = 1, . . . T do
17: η∗

n ← η∗(n,m, η∗
n−1)

18: m ← 〈min{δ(η∗
n , λ),mλ + 1}〉λ∈Λ

19: return
(
Cost(1, 〈0, . . . , 0〉, arbitrary), η∗)

Algorithm 2 OptimalThresholds

1: SearchSpace ←
{∑ka+δ

k=ka
D(k, λ)

∣∣∣
∃ ka ∈ {1, . . . , T − 1}, δ ∈ Δ, λ ∈ Λ}

2: for all P ∈ SearchSpace do
3: (TC(P), η∗(P)) ← MinimumCostThresholds(P)

4: P∗ ← argminP ∈ SearchSpace TC(P) + P
5: return η∗(P∗)

Next, let E be the set of maximal threshold values that attain the delay values Δ:

E =
{
η∗

∣∣∣∣ ∃λ ∈ Λ,m ∈ Δ

[
η∗ = max

η : δ(η,λ)≤m
η

]}
. (4)

Introducing the set E enables us to restrict the strategy set of the defender to a discrete set. The
following lemma shows that the defender can always find optimal thresholds by considering
only threshold values from the set E .

Theorem 1 Given an instance of our game, there exist optimal thresholds η such that

∀k ∈ {1, . . . , T } : ηk ∈ E .

The intuition behind Theorem 1 is that any threshold value ηk /∈ E can be replaced with
η∗
k ∈ E such that δ(η∗

k , λ) = δ(ηk, λ), and this replacement cannot increase attack damage
(since detection delay δ remains the same), but it may decrease false-alert losses (since
threshold ηk may increase). We provide a formal proof in Appendix A.1.

Consequently, for the remainder of this paper, we will consider only strategies in which
every threshold ηk is chosen from the set E .
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Next, we present the algorithm for computing the optimal thresholds. The dynamic-
programming algorithm (Algorithm 1) finds minimum-cost thresholds subject to the
constraint that the damage caused by a best-response attack is lower than or equal to a given
damage bound P . The exhaustive search (Algorithm 2) computes the optimal thresholds by
finding an optimal damage bound P and using Algorithm 1.

In the first algorithm (Algorithm 1), we use a dynamic-programming approach, iter-
ating backwards through the timesteps. The key idea of our approach is that we can
compute optimal thresholds for timesteps n, n + 1, . . . , T without knowing the preced-
ing thresholds 1, 2, . . . , n − 1: we need to know only what undetected attacks may be
in progress at the beginning of timestep n. We can describe the state of these attacks
by specifying for each attack type λ ∈ Λ when in the last Δ timesteps the attacker
may have started a yet undetected attack. Consequently, the optimal thresholds for the
remaining timesteps depend only on the attack state m ∈ Δ|Λ|, which enables us to for-
mulate the following dynamic-programming algorithm. For each timestep n ∈ {T , . . . , 1}
and attack state m ∈ Δ|Λ|, we assume that the optimal thresholds for the remain-
ing timesteps (for each possible following state) have already been computed, and we
compute the optimal threshold ηk for timestep n and attack state m in polynomial-
time.

When computing the optimal threshold ηk , we must consider the cost of false alerts in the
current timestep n as well as the possible costs in the remaining timesteps n+1, n+2, . . . , T .
To keep track of possible costs during backwards induction, we define Cost(n,m) to be the
minimum attainable cost of false alerts from timesteps n to T subject to the damage bound
P , given that attacks of type λ can start at ka ∈ {n − mλ, . . . , T } and they are not detected
prior to n. Note that for certain values of n and m, there exist no thresholds that could satisfy
the damage bound P . For such values, we let Cost(n,m) be equal to ∞. We will assign ∞
to Cost(n,m) directly if values n and m allow an attack to cause more than P damage by
timestep n. For values that lead to a violation of the damage bound in a later timestep, we let
the backward propagation assign ∞.

We can compute cost Cost(n,m) recursively as

Cost(n,m)

=

⎧
⎪⎨

⎪⎩

∞ if
∨

λ∈Λ

∑n
k=n−mλ

D(k, λ) > P,

minη C f · FP(η) + Cost(n + 1,

〈min{δ(η, λ),mλ + 1}〉λ∈Λ)
otherwise.

Since cost Cost(n,m) depends only on costs Cost(n + 1, . . .), we can compute all cost
using backwards induction. Further, by also keeping track of the minimizing threshold η∗

n ,
our dynamic programming algorithm will readily have the optimal thresholds.

In addition to the cost of false alerts, we also need to minimize the cost of threshold
changes. To account for these, we extend the state that is used by our dynamic program-
ming algorithm to also include the threshold of the previous timestep. Formally, we define
Cost(n,m, ηprev) to be the minimum attainable cost for timesteps starting from n sub-
ject to the same constraints as before but also given that the threshold value in timestep
n − 1 (i.e., the previous timestep) is ηprev. Again, we can compute this cost recursively
as
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Cost(n,m, ηprev) =
{

∞ if
∨

λ∈Λ

∑n
k=n−mλ

D(k, λ) > P,

minη S(n,m, ηprev, η) otherwise.

where

S(n,m, ηprev, η)

=
{
Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + C f · FP(η) if η = ηprev ∨ n = 1,

Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + C f · FP(η) + Cd otherwise.

(5)

Lemma 1 For any given damage bound P ∈ R, Algorithm 1 computes thresholds η =
〈ηk〉Tk=1 that minimize

N · Cd +
T∑

k=1

C f · FP(ηk)

subject to

∀ka ∈ {1, . . . , T }, λ ∈ Λ : P(η, ka, λ) ≤ P. (6)

The algorithm returns the minimum cost attained, or if no thresholds exist satisfying (6), it
returns infinity as the cost.

We provide a proof of Lemma 1 and a more detailed discussion of Algorithm 1 in
Appendix A.2.

By building onAlgorithm 1, our second algorithm (Algorithm 2) finds the optimal damage
bound P∗ and thereby the optimal thresholds (Definition 3). Recall that Algorithm 1 finds
the minimum cost of false alerts and threshold changes subject to the constraint that a best-
response attack may cause at most damage P . For a given damage bound P , we let this
minimum cost be denoted by TC(P). Then, we can express the problem of finding an
optimal damage bound P∗ and optimal thresholds as

min
P

TC(P) + P. (7)

To find the minimizing damage bound P∗, observe that the amount of damage that an
attack may cause belongs to a limited set of attainable damage values. In fact, the amount
of damage resulting from any attack (regardless of the thresholds) is necessarily from the
following set:

⎧
⎨

⎩

ka+δ∑

k=ka

D(λ, k)

∣∣∣∣∣∣
∃ ka ∈ {1, . . . , T }, δ ∈ Δ, λ ∈ Λ

⎫
⎬

⎭ . (8)

Then, it is easy to see that we can find the optimal damage bound P∗ by searching over the
above set, whose cardinality is polynomial in the size of the input. The following theorem
establishes that Algorithm 2 indeed finds optimal thresholds.

Theorem 2 Algorithm 2 computes optimal thresholds that minimize the defender’s loss (see
Definition 3).

We provide a proof of Theorem 2 and a more detailed discussion of Algorithm 2 in
Appendix A.3.
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Proposition 1 The running time of Algorithm 2 is O(T 2 · |Δ||Λ|+2 · |Λ|2 · |E |).
We provide a proof of Proposition 1 in Appendix A.4.
Note that since detection delay values can be upper-bounded by T , the running time of

Algorithm 2 is also O(T |Λ|+4 · |Λ|2 · |E |).
Finally, note that the running time of the algorithm can be substantially reduced in practice

by computing Cost in a lazy manner. Starting from n = 1 and m = 〈0, . . . , 0〉, we can
compute and store the value of each Cost(n,m, δprev) only when it is referenced, and then
reuse it when it is referenced again.

Fixed detection thresholds

We also present an efficient polynomial-time algorithm to compute the optimal threshold
for the special case when the threshold is fixed for the time horizon {1, . . . , T }. In this case,
a detection threshold is chosen and is kept fixed. Detectors with fixed threshold are widely
used in practice and are advantageous when it is not possible to change the threshold due to
operational restrictions. To compute an optimal fixed threshold, we use an exhaustive search
algorithm,whichwe formally present asAlgorithm 3 inAppendixA.5. The algorithm iterates
over all possible threshold values η ∈ E and selects one that minimizes the defender’s loss
considering a best-response attack. Given a threshold η, to find a best-response attack (ka, λ),
the algorithm iterates over all possible pairs of (ka, λ), and selects one that maximizes the
payoff.

Proposition 2 Algorithm 3 computes an optimal fixed threshold in O(T · |E | · |Λ|) steps.
We provide a proof of Proposition 2 in Appendix A.5.

6 Optimal thresholds in the presence of faults and attacks

In this section, we modify our game to take into account random faults and attacks. This
is motivated by the fact that contamination may also occur due to non-malicious incidents
such as pipe bursts and leakages. Therefore, it is desirable to design anomaly detectors that
are able to quickly and accurately detect either random faults or attacks. We formally define
random faults as follows.

Definition 4 (Random Fault) A random fault is represented by (ka, λ) where ka and λ are
randomly selected from uniform distributions over {1, . . . , T } and Λ.

The expected loss from random faults, denoted by PF (η) is the mean of the losses, that is

PF (η) = 1

T · |Λ|
T∑

ka=1

∑

λ∈Λ

σ(η,ka ,λ)∑

k=ka

D(k, λ). (9)

Then, the combined loss due to faults and attacks can be represented as the average of the
loss (9) due to random faults and the loss (1) due to attacks:3

PC (η, ka, λ) = 1

2
(PF (η) + P(η, ka, λ)) . (10)

3 Note that combined loss could be defined as a general linear combination of faults and attacks, i.e., PC =
αF · PF + α · P , where αF and α are arbitrary constants. Our results can be extended trivially to cover this
more general formulation by simply scaling the constants in our model up or down. For ease of presentation,
we consider combined loss to be the average of faults and attacks.
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Therefore, the defender’s total loss with both random faults and best-response attacks is

LC (η, ka, λ) =N (η) · Cd +
T∑

k=1

C f · FP(ηk) + PC (η, ka, λ) (11)

=N (η) · Cd +
T∑

k=1

C f · FP(ηk) + 1

2
(PF (η) + P(η, ka, λ)) (12)

As before, the defender’s problem is to find the thresholds that minimize the loss, that is

argmin
η,

(ka ,λ)∈bestResponses(η)

LC (η, ka, λ), (13)

Algorithm
Here, we show how to generalize Algorithms 1 and 2 to account for random faults. First,

we introduce the problem of finding thresholds that minimize costs and damage from random
faults subject to the constraint that an attackmay cause atmost P damage. Formally,we define
the following subproblem given a damage bound P:

TCC (P) =min
η

N (η) · Cd +
T∑

k=1

C f · FP(ηk)

+ 1

2
· 1

T · |Λ|
T∑

k′
a=1

∑

λ′∈Λ

σ(η,k′
a ,λ

′)∑

k=k′
a

D(k, λ′)

subject to

∀ka, λ : 1

2

σ(η,ka ,λ)∑

k=ka

D(k, λ) ≤ P,

We let TCC (P) = ∞ if there exist no ka and λ that would satisfy the constraint of TCC (P).
Then, it follows from the argument that we presented for Theorem 2 that we can find an

optimal damage bound P∗ by solving

min
P

TCC (P) + P. (14)

Further, it also follows from the same argument that for an optimal damage bound P∗, an
optimal solution η∗ to TCC (P∗) is also an optimal solution to (13).

Next, to compute TCC (P), we generalize Algorithm 1 by defining the following sub-
subproblem:

Cost(P, n,m, ηn−1) = min
ηn ,ηn+1,...,ηT

N (〈ηn−1, ηn, . . . , ηT 〉) · Cd

+
T∑

k=n

C f · FP(ηk)

+ 1

2

1

T · |Λ|
∑

λ′∈Λ

T∑

k′
a=n−mλ′

σ(η,k′
a ,λ

′)∑

k=n

D(k, λ′)
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subject to

∀λ, ka ∈{n − mλ, . . . , T } :
min{i | i≥n ∧ δ(ηi ,λ)≤i−ka}∑

k=ka

1

2
D(k, λ) ≤ P,

where P is a real number, n ∈ {1, . . . , T }, m is a |Λ|-element vector of natural numbers,
and ηn−1 ∈ E . Clearly, we have TCC (P) = Cost(P, 1, (0, . . . , 0), η0) for any η0, and an
optimal solution to Cost is also an optimal solution to TCC .

Finally, we show that we can solve Cost using dynamic programming. We let
Cost(P, n,m, ηn−1) = ∞ if there exist no ηn, ηn+1, . . . , ηT that would satisfy the constraint
of Cost(P, n,m, ηn−1). Then, we can break down the computation of Cost as Eq. (15), where
1x is equal to 1 if x is true, and 0 otherwise. The correctness of the reduction follows from
the same argument that was presented in Lemma 1.

Cost(P, n,m, ηn−1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if
∨

λ
1
2

∑n
k=n−mλ

D(k, λ) > P,

minηn Cost(P, n + 1, 〈min{δ(ηn, λ),mλ + 1}〉λ∈Λ, ηn)

+ 1{ηn−1 �=ηn}Cd + C f · FP(ηn)

+ 1
2

1
T ·|Λ|

∑
λ′∈Λ

∑T
k′
a=n−mλ′ 1{n≤σ(η,k′

a ,λ
′)}D(n, λ′) otherwise.

(15)

7 Evaluation

In this section, we evaluate our approach numerically using a case study of detecting contam-
ination attacks in water distribution systems. Ensuring the supply of clean and safe drinking
water is mandatory for anywater infrastructure. This requires continuousmonitoring of water
quality parameters and assessing the sensormeasurements for any intrusive (or non-intrusive)
contamination.

7.1 Systemmodel

We consider a water distribution system (WDS) and a malicious adversary who attempts to
penetrate the system through one of many entry points, such as hydrant and connections,
and contaminate the water with toxic chemicals [13]. To model normal behavior, we use
data collected by a utility in the United States available at [6]. The data contains water
quality measurements at a resolution of 10 min spanning 6 weeks (i.e., 6048 time steps). All
measurements are taken under normal conditions and include the following water quality
parameters: Total chlorine, electrical conductivity (EC), pH, total organic carbon (TOC), and
turbidity.4 We divide the data into two subsets, 67% for training and 33% for testing. The
training subset is used to construct an estimator used in the detector. The testing subset is
used to imitate real-time operation and to evaluate the detector by considering contamination
attacks.

4 Studies on the response of water quality sensors to chemical and biological loads have shown that free chlo-
rine, total organic carbon (TOC), electrical conductivity, and chloride are among the most reactive parameters
to water contaminants [14].
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Contamination attack A contamination attack consists of adding harmful contaminants in
the water-distribution network to decrease the quality of drinking water below safe levels. As
a result of a contamination attack, there are abrupt changes and spikes in the water quality
parameters that are measured by sensors at various locations within the network. An optimal
attack, which results in maximum damage, is characterized by itsmagnitude (i.e., magnitude
of abrupt changes in the water quality parameters) as well as its starting time. To model
the magnitude of a contamination attack, we use a standard approach that is employed in
the water networks literature to simulate anomalous events disrupting water quality data
[14,16,22,28].

The first step of this approach is the standardization of data to a common scale since
various water quality parameters are measured in different units. The standardization of
data is performed as follows: For each water quality parameter i , the data collected from
the water quality sensors is normalized by subtracting the mean μi of the parameter value
from each water quality measurement xi (k) and dividing this difference by the standard
deviation σi of the parameter; that is, we compute zi (k) = xi (k)−μi

σi
. For our evaluation, we

estimated the mean μi and standard deviation σi of each parameter i based on the six weeks
of data collected under normal conditions (see Sect. 7.1). In the standardized data, all quality
parameters have zero mean and unit standard deviation. To simulate a contamination attack
at a particular time k, we multiply the normal water quality value at that time by a certain
factor λ and then superimpose it on the normal data; that is, the attacked value is computed
as z′i (k) = (λ + 1) · zi (k). For instance, if the standardized pH value is zpH(k) = 0.5 at time
k, then an attack with factor λ = 3 results in attacked pH value z′pH(k) = (3 + 1) · 0.5 = 2.
Once we have superimposed the anomalous event on the normal standardized data, we de-
normalize the data by transforming it to the original units. We de-normalize the data by
multiplying z′i (k) with standard deviation σi and adding mean μi to the result. We refer
readers to [22] for a detailed account of this approach for simulating contamination events.
Finally, in our evaluation, we consider six attackmagnitudes λ ∈ {1.5, 2, 2.5, 3, 4, 5}, andwe
consider best-response attacks that select magnitude and starting time to maximize damage.
Note that for given thresholds, finding a best-response attack is computationally easy since
an exhaustive search needs to consider only T · Λ possible attacks.

Damage function Figure 2 presents a typical water demand during a day [21]. Since
demand is time-dependent, expected damage caused by contamination attacks, e.g., exposed
population and volume of contaminated water, is also time-dependent. That is, expected
disruptions at a high-demand time would cause higher damage than disruptions at a low-
demand time. To model the damage function, we consider the finite horizon to be a single
day divided into 10 min intervals (i.e., T = {1, . . . , 144}). Then, for each timestep k ∈ T , we
define the expected damage as D(k, λ) = (λ − 1) · d(k), where d(k) ∈ [0, 1] is the demand
ratio at time k and λ − 1 is the added attack magnitude.

7.2 Detector model

The detector comprises two parts: (1) An estimator, which estimates a relation between
the water quality parameters during normal operation, and (2) a detection algorithm, which
identifies whether an attack has occurred in the system.

Estimator We construct an estimator using an artificial neural network (ANN) for each
water quality parameter [28]. For each parameter, the inputs to its corresponding ANN are
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Fig. 2 Hourly water demand during a day [21]

Table 2 Model assessment on
test data

Chl. EC pH Temp. TOC Turb.

R2 0.939 0.980 0.967 0.344 0.920 0.538

MSE 0.003 14.639 0.001 10.3 0.002 0.000

the parameter’s lagged measurements and current measurements of all the other quality
parameters. Formally, we have ẑi (k) = f (zi (k − 1), z−i (k)), where ẑi (k) and zi (k) are,
respectively, the estimated and measured values of water parameter i at timestep k, and f is a
function attained by the artificial neural network. The estimated values are used to calculate
the residuals, which are defined as the difference between the measured and estimated values,
denoted by ri (k) = zi (k)− ẑi (k), where ri (k) is the residual signal for parameter i at timestep
k.

Six neural networks, one for each water quality parameter, are trained. A feed-forward
back-propagation network with twenty neurons in the hidden layer is used, and the network is
trained using scikit-learn 0.18.1 library with tan-sigmoid transfer function in the hidden layer
and linear transfer function in the output layer [27]. Table 2 shows the estimator’s perfor-
mance usingmean squared error (MSE) and coefficient of determination (R2) as performance
criteria.

Detection algorithm We use the CUSUM method as the detection algorithm. CUSUM is
a sequential algorithm frequently used for change detection [23,33]. The CUSUM statistic
S(k) is described by S(k) = (S(k−1)+r(k)−b)+, where S(0) = 0, (a)+ = a if a ≥ 0 and
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zero otherwise, r(k) is a residual difference between expected and measured sensor values
generated by an estimator such that under normal behavior it has expected value of zero,
and b ∈ R+ is a small constant. Assigning ηk as the detection threshold selected based on a
desired false-alarm probability, the decision rule is defined as

d(S(k)) =
{
Attack if S(k) > ηk
Normal otherwise.

As discussed in Sect. 3, for each attack type (characterized by attack magnitude in this case),
there exists a trade-off between the false-positive probability and detection delay, which
depends on the detection threshold. To obtain the trade-off curve for an attack magnitude, we
simulate attacks for various threshold values with randomly chosen start times, and thenmea-
sure the detection delay values. For each threshold value, we perform 1000 simulations and
compute the average detection delay. Next, using the same threshold, we simulate the system
under normal operation and measure the false-positive probability. By varying the threshold
and repeating these steps for all attack magnitudes, we derive the attainable detection delays
and false alarm probabilities.

We consider six attack magnitudes λ ∈ {1.5, 2, 2.5, 3, 4, 5}. We select b = 0.01 for the
CUSUM detector in order to allow small displacements to be detected quickly. Our results
for a water quality parameter (total chlorine) are demonstrated in the trade-off curve shown
in Fig. 3, which defines the false-positive probability that can be obtained as a function of the
corresponding detection delay. The results confirm that the detection delay is proportional to
the threshold, and the false positive rate is inversely proportional to the threshold. Further, it
can be observed that as the absolute value of attack magnitude increases, the detection delay
decreases.
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Fig. 3 Trade-off between detection delay and false-positive probability (total chlorine)
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Fig. 4 Best-response attack against the optimal time-dependent threshold has the magnitude λ = 5 and starts
at ka = 116

7.3 Optimal thresholds

The objective is to select the strategy that minimizes the defender’s loss while assuming that
the attacker responds using a best-response attack, which is characterized by its magnitude
and start time. We let C f = 10 and Cd = 1, and use Algorithm 2 to compute the optimal
time-dependent threshold. Figure 4 shows the obtained thresholds for each timestep. The
resulting optimal loss is L∗ = 187.72. Figure 4 shows the corresponding best-response
attack. The best-response attack has the magnitude λ = 5 and starts at ka = 116. The attack
is detected 4 timesteps later and attains the payoff P∗ = ∑120

k=116 D(k, λ) = 120.00. The
figure also demonstrates that the detection threshold decreases as the system experiences
high-demand, so that the attacks can be detected early enough. On the other hand, as the
system experiences low-demand, the threshold increases to have fewer false alarms.

We also compute the optimal fixed threshold in order to compare with the time-dependent
thresholds. In this case, we obtain the optimal fixed threshold η∗ = 0.90 and the optimal
loss L∗ = 222.45. Figure 5 shows the best-response attack corresponding to this threshold.
The best-response attack has the magnitude λ = 4 and starts at k∗

a = 44. The attack is
detected 6 timesteps later and attains the payoff P∗ = ∑44+6

k=44 D(k, λ) = 144.00. Note that
if the attacker starts the attack at any other timestep, the damage caused before detection is
less than P∗. We observe that the optimal loss obtained by the time-dependent threshold is
significantly smaller than the loss obtained by the fixed threshold.

Simulation results We test the optimal thresholds by performing simulations that imitate
realistic operation. Using our dataset, we run 42 simulations, with each of them representing
a single day. We consider scenarios where the defender selects the optimal thresholds for
the detector, and then the adversary attacks the system using a best-response attack. In each
simulation, we record the payoff attained by the attacker and the loss incurred by the defender.
Table 3 summarizes the simulation results. The results show that the defender’s actual loss
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Fig. 5 Best-response attack against the optimal fixed threshold has the magnitude λ = 4 and starts at ka = 44

Table 3 Simulation results Loss Payoff Delay Number of FPs

Mean 195.83 110.29 3.71 5.60

STD 4.66 8.87 0.31 0.25

MSE 87.04 127.99 0.12 0.43

is very close to the optimal loss computed by the algorithm. In particular, the relative error
between the optimal loss and the mean loss is 4.26% for the time-dependent threshold and
2.45% for the fixed threshold.

Sensitivity analysis Figure 6a shows the optimal loss as a function of cost of threshold
change Cd , when keeping cost of false positive fixed at C f = 10. For small values of Cd , the
optimal losses obtained by the time-dependent threshold strategy are significantly lower than
the loss obtained by the fixed threshold strategy. As the cost of threshold changeCd increases,
the solutions of time-dependent and fixed threshold problems becomemore similar. The time-
dependent threshold solution converges to a fixed threshold when Cd ≥ 13.50. Figure 6b
shows the optimal loss as a function of cost of false positives for fixed and time-dependent
threshold strategies when the cost of threshold change is fixed at Cd = 1. It can be seen that
in both cases, the optimal loss increases as the cost of false alarms increases. However, in
the case of time-dependent threshold, the change in loss is relatively smaller than the fixed
threshold.

Running time We now compare the running time of Algorithm 2 with an algorithm that
finds the optimal thresholds using an exhaustive search. Figure 6c plots the running times as
a function of T (i.e., time horizon). It can be seen that the exhaustive search algorithm has
an exponential running time with respect to T , and its running time becomes significantly
high even for small values of T . This is expected as the exhaustive search algorithm has
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Fig. 6 a The defender’s loss as a function of cost of threshold change. b The defender’s loss as a function of
cost of false alarms. c Running time of Algorithm 2 compared to exhaustive search

the running time O(ΔT+|Λ|). In contrast, Algorithm 2 performs considerably better, and the
running time is reasonable for all values of T .

7.4 Random faults

Figure 7 shows a comparison between thresholds chosen based on only attacks and combi-
nation of either faults or attacks. For each set of thresholds, we compute two different losses,
loss due to only attacks [i.e., Eq. (2)] and loss due to combination of either faults or attacks
[i.e., Eq. (11)]. In the figure, we denote the thresholds obtained by considering faults and
attacks as η∗

C and the thresholds obtained by considering only attacks as η∗
A. We also let

L∗
C (η) be the combination, i.e., (11), when thresholds η are selected. Similarly, we let L∗

A(η)

be the loss considering only attacks, i.e., Equation(2), when thresholds η are selected.
We observe thatL∗

C (η∗
C ) outperformsL∗

C (η∗
A) andLA(η∗

A) outperformsLA(η∗
C ). This was

clearly expected as η∗
C are the optimal thresholds with respect to L∗

C and η∗
A are the optimal

thresholds with respect to L∗
A. However, we notice that the difference between L∗

C (η∗
A) and

L∗
C (η∗

C ) is extremely small, whereas the difference between L∗
A(η∗

A) and L∗
A(η∗

C ) is very
large. In other words, the thresholds η∗

C perform well only when combination of faults and
attacks is considered and perform very poorly when only attacks is considered, whereas
the thresholds η∗

A perform very well in both cases. This highlights the difference between
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Fig. 7 The defender’s loss as a function of cost of false alarms for time-dependent thresholds. η∗
A is the optimal

threshold for attacks and η∗
C is the optimal threshold for combination of faults and attacks

minimizing losses due to attacks and due to random faults. In the former case, the defender
must focus on the timesteps in which the system is most vulnerable (i.e., highest expected
damage), and it can be less vigilant at other times since the attacker will not choose to attack
when the system is less vulnerable. Therefore, thresholds η∗

A may be “negligent” at times
when the expected damage D is low; however, even if a random fault occurs at such time, it
will cause minor damage. When minimizing losses due to random faults, the defender must
be vigilant at all times, which means that it cannot afford to focus on the timesteps in which
the system is most vulnerable. Therefore, if thresholds minimize losses due to random faults,
an attack can cause catastrophic losses by targeting one of these vulnerable timesteps. Since
thresholds η∗

C consider both attacks and random faults, they do not perform catastrophically
against attacks, but they do perform poorly in comparison with the other cases.

8 Conclusion

In this paper, we studied the problem of finding optimal detection thresholds for anomaly-
based detectors implemented in dynamical systems in the face of strategic attacks. We
formulated the problem as an attacker-defender security game that determined thresholds
for the detector to achieve an optimal trade-off between the detection delay and the false-
positive probabilities. To this end, we presented a dynamic-programming based algorithm
that computes optimal time-dependent thresholds. We analyzed the performance of the time-
dependent threshold strategy, showing that the running time of our algorithm is polynomial
in the time dimension. As a special case, we also studied and provided a polynomial-time
algorithm for the problem of computing optimal fixed thresholds, which do not change with
time. In addition, we studied the problem of finding optimal thresholds in the presence of
random faults and attacks, and presented an efficient algorithm that computes the optimal
thresholds. Finally, we evaluated our results using a case study of detecting contamination
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attacks in a water distribution system.We showed that the optimal time-dependent thresholds
found using our algorithm significantly outperform fixed thresholds.

Funding Funding was provided by National Science Foundation (Grant No. CNS-1238959).

A Appendix

A.1 Proof of Theorem 1

Proof Given an instance of the Stackelberg game, let η be optimal thresholds that do not
necessarily satisfy the constraint of the lemma. Then, construct thresholds η∗ that satisfy the
constraint by replacing each ηk with η∗

k = maxη : δ(η,λ)≤ δ(ηk ,λ) η. For any attack (ka, λ), the
detection delay and hence the expected damage are the same for η and η∗. Consequently,
the damage caused by best-response attacks must also be the same for η and η∗. Further, the
defender’s costs for η are greater than or equal to those for η∗ since 1) for every k, ηk ≤ η∗

k
and FP is decreasing, and 2) the number of threshold changes in η is greater than or equal
to that in η∗. Therefore, η∗ is optimal, which concludes our proof. ��

A.2 Proof of Lemma 1

Proof We assume that we are given a damage bound P , and we have to find thresholds that
minimize the total cost of false positives and threshold changes, subject to the constraint
that any attack against these thresholds will result in at most P damage. In order to solve
this problem, we use a dynamic-programming algorithm. We will first discuss the algorithm
without a cost for changing thresholds, and then show how to extend it to consider costly
threshold changes.

We let Δ|Λ| denote the Cartesian power Δ × Δ × · · · × Δ︸ ︷︷ ︸
|Λ|

of the set Δ. For any two

variables n ∈ {1, . . . , T } and m ∈ Δ|Λ| such that ∀λ ∈ Λ : 0 ≤ mλ < n, we define
Cost(n,m) to be the minimum cost of false positives from n to T subject to the damage
bound P , given that attacks of type λ can start at ka ∈ {n − mλ, . . . , T } and they are not
detected prior to n. Formally, we can define Cost(n,m) as

min
(ηn ,...,ηT )

T∑

k=n

C f · FP(ηk) (16)

subject to

∀λ ∈ Λ, ka ∈ {n − mλ, . . . , T } :
min

i : i≥n ∧ δ(ηi ,λ)≤i−ka
i

∑

k=ka

D(k, λ) ≤ P. (17)

If there are no thresholds that satisfy the damage bound P under these conditions, we let
Cost(n,m) be ∞.5

5 Note that in practice, ∞ can be represented by a sufficiently high natural number.
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We can recursively compute Cost(n,m) as follows. Firstly, for any n and m, if there
exists an attack type λ such that

∑n
k=n−mλ

D(k, λ) > P , then an attack of type λ starting
at time n − mλ will cause greater than P damage, regardless of the thresholds ηn, . . . , ηT .
Consequently, in this case, we can immediately set Cost(n,m) to ∞.

Otherwise, we iterate over all possible threshold values η ∈ E , and choose the one that
minimizes the cost Cost(n,m). For any threshold η, we can compute the resulting cost as
follows. If δ(η, λ) > mλ, then no attack of type λ would be detected at time n, so we would
have to increasemλ for the next timestepn+1.On the other hand, if δ(η, λ) ≤ mλ, then attacks
starting at time n−δ(η, λ) or earlier would be detected at time n, sowewould have to decrease
mλ to δ(η, λ) for the next timestep n+1. Hence, if we selected threshold η for timestep n, then
we would have to update m to 〈min{δ(η, λ),mλ + 1}〉λ∈Λ for the next timestep. Therefore,
if we selected threshold η for timestep n, then the attained cost would be the sum of the cost
C f ·FP(η) for timestep n and the best possible costCost(n+1, 〈min{δ(η, λ),mλ +1}〉λ∈Λ)

for the remaining timesteps. By combining this formula with the rule for assigning infinite
cost, we can compute Cost(n,m) as

Cost(n,m) =

⎧
⎪⎨

⎪⎩

∞ if
∨

λ∈Λ

∑n
k=n−mλ

D(k, λ) > P,

minη Cost(n + 1, 〈min{δ(η, λ),

mλ + 1}〉λ∈Λ) + C f · FP(η)
otherwise.

(18)

Note that in the equation above, Cost(n,m) does not depend on η1, . . . , ηn−1, it depends
only on the feasible thresholds for the subsequent timesteps. Therefore, starting from the last
timestep T and iterating backwards, we are able to compute Cost(n,m) for all timesteps n
and all valuesm. Finally, for n = T and anym, computingCost(T ,m) is straightforward: if
the damage fromm does not exceed the threshold P for any attack typeλ, thenCost(T ,m) =
minη∈E C f · FP(η); otherwise, Cost(T ,m) = ∞.

Having found Cost(n,m) for all n and m, by definition, Cost(1, 〈0, . . . , 0〉) is the mini-
mum cost of false positives subject to the damage bound P . The minimizing threshold values
can be recovered by iterating forward from n = 1 to T and again using Eq. (18). That is, for
every n, we select the threshold value η∗

n that attains the minimum cost Cost(n,m), where
m can easily be computed from the preceding threshold values η∗

1, . . . , η
∗
n−1.

6

Costly threshold changes Now, we show how to extend the computation of Cost to
consider the cost Cd of changing the threshold. Let Cost(n,m, ηprev) be the minimum cost
for timesteps starting from n subject to the same constraints as before but also given that the
threshold value in timestep n−1 (i.e., the previous timestep) is ηprev. Then,Cost(n,m, ηprev)

can be computed similarly to Cost(n,m): for any n < T , iterate over all possible threshold
values η, and choose the one that results in the lowest cost Cost(n,m, ηprev). If ηprev = η

or if n = 1, then the cost is computed the same way as in the previous case [i.e., similar
to Eq. (18)]. Otherwise, the cost also has to include the cost Cd of changing the threshold.
Consequently, we first define

S(n,m, ηprev, η)

=
{
Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + C f · FP(η) if η ∈ {ηprev, 1},
Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + C f · FP(η) + Cd otherwise.

(19)

6 Note that in Algorithm 1, we store the minimizing values η∗(n,m) for every n and m when iterating
backwards, thereby decreasing running time and simplifying the presentation of our algorithm.
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Then, similar to Eq. (18), we can express the optimal cost as

Cost(n,m, ηprev) =
{

∞ if
∨

λ∈Λ

∑n
k=n−mλ

D(k, λ) > P,

minη S(n,m, ηprev, η) otherwise.
(20)

Note that for n = 1, we do not add the cost Cd of changing the threshold. Similarly to
the previous case, Cost(1, 0, arbitrary) is the minimum cost subject to the damage bound P ,
and the minimizing thresholds can be recovered by iterating forward. ��

A.3 Proof of Theorem 2

Proof For any damage bound P , using the algorithm MinimumCostThresholds (Algo-
rithm 1), we can find thresholds that minimize the total cost of false positives and threshold
changes, which we will denote by TC(P), subject to the constraint that an attack can cause at
most P damage. Since the defender’s loss is the sum of its total cost and the damage resulting
from a best-response attack, we can find optimal thresholds by solving

min
P

TC(P) + P (21)

and computing the optimal thresholds η∗ for the minimizing P∗ using our dynamic-program-
ming algorithm.

To show that this formulation does indeed solve the problem of finding optimal thresholds,
we use indirect proof. For the sake of contradiction, suppose that there exist thresholds η′
for which the defender’s loss L ′ is lower than the loss L∗ for the solution η∗ of the above
formulation. Let P ′ be the damage resulting from the attacker’s best-response against η′, and
let TC ′ be the defender’s total cost for η′. Since the best-response attack against η′ achieves
at most P ′ damage, we have from the definition of TC(P) that TC ′ ≥ TC(P ′). It also
follows from the definition of TC(P) that L∗ ≤ TC(P∗) + P∗. Combining the above with
our supposition L∗ > L ′, we get

TC(P∗) + P∗ ≥ L∗ > L ′ = TC ′ + P ′ ≥ TC(P ′) + P ′.

However, this is a contradiction since P∗ minimizes TC(P) + P by definition. Therefore,
thresholds η∗ must be optimal.

It remains to show that Algorithm 2 finds an optimal damage bound P∗. To this end,
we show that P∗ can be found using an exhaustive search over a set, whose cardinality is
polynomial in the size of the problem instance. Consider the set of damage values resulting
from all possible attack scenarios ka ∈ T , δ ∈ Δ, λ ∈ Λ, that is, the set

⎧
⎨

⎩

ka+δ∑

k=ka

D(λ, k)

∣∣∣∣∣∣
∃ ka ∈ {1, . . . , T }, δ ∈ Δ, λ ∈ Λ

⎫
⎬

⎭ . (22)

Let the elements of this set be denoted by P1, P2, . . . in increasing order. It is easy to see that
for any i , the set of thresholds that satisfy the damage constraint is the same for every damage
value P ∈ [Pi , Pi+1). Hence, for any i , the cost TC(P) is the same for every P ∈ [Pi , Pi+1).
Therefore, the optimal P∗ must be a damage value Pi from the above set, which we can find
by simply iterating over the set. ��
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A.4 Proof of Proposition 1

Proof In the dynamic-programming algorithm (Algorithm 1), we first compute Cost(n,m,

δn−1) for every n ∈ {1, . . . , T }, m ∈ Δ|Λ|, and ηprev ∈ E , and each computation takes
O(|E | · |Λ|) time. Then, we recover the optimal detection delay for all timesteps {1, . . . , T },
and the computation for each timestep takes a constant time. Consequently, the running time
of the dynamic-programming algorithm is O(T · |Δ||Λ|+1 · |Λ| · |E |).

In the exhaustive search, we first enumerate all possible damage values by iterating over all
possible attacks (ka, δ, λ), where ka ∈ {1, . . . , T }, δ ∈ Δ, and λ ∈ Λ. Then, for each possible
damage value, we execute the dynamic-programming algorithm, which takesO(T ·|Δ||Λ|+1 ·
|Λ| · |E |) time. Consequently, the running time of Algorithm 2 isO(T 2 · |Δ||Λ|+2 · |Λ|2 · |E |).

��

A.5 Algorithm 3 and Proof of Proposition 2

Algorithm 3 Optimal Fixed Threshold
Input: D(k, λ), T , C f
Initialize: L∗ ← ∞

1: for all η ∈ E do
2: P ′ ← 0
3: for all λ ∈ Λ do
4: for all ka ∈ {1, . . . , T } do
5: P(η, ka , λ) ← ∑ka+δ(η,λ)

ka
D(k, λ)

6: if P(η, ka , λ) > P ′ then
7: P ′ ← P(η, ka , λ)

8: L ′ ← P ′ + C f · FP(η) · T
9: if L ′ < L∗ then
10: L∗ ← L ′
11: η∗ ← η

Proof The obtained threshold is optimal since the algorithm evaluates all possible solutions
through exhaustive search. Given a tuple (η, ka, λ), when computing the attacker’s payoff
P(η, ka, λ), we use the payoff computed in previous iteration, which takes constant time. We
repeat these steps for each attack type λ ∈ Λ. Therefore, the running time of the algorithm
is O(T · |E | · |Λ|). ��
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