
Detection of Dataset Shifts in Learning-Enabled
Cyber-Physical Systems using Variational

Autoencoder for Regression
Feiyang Cai

Vanderbilt University
Nashville, TN

feiyang.cai@vanderbilt.edu

Ali I. Ozdagli
Vanderbilt University

Nashville, TN
ali.i.ozdagli@vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University

Nashville, TN
xenofon.koutsoukos@vanderbilt.edu

Abstract—Cyber-physical systems (CPSs) use learning-enabled
components (LECs) extensively to cope with various complex
tasks under high-uncertainty environments. However, the dataset
shifts between the training and testing phase may lead the LECs
to become ineffective to make large-error predictions, and fur-
ther, compromise the safety of the overall system. In our paper, we
first provide the formal definitions for different types of dataset
shifts in learning-enabled CPS. Then, we propose an approach
to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly
detection and utilizes a variational autoencoder for regression
model which enables the approach to take into consideration both
LEC input and output for detecting dataset shifts. Additionally,
in order to improve the robustness of detection, layer-wise
relevance propagation (LRP) is incorporated into our approach.
We demonstrate our approach by using an advanced emergency
braking system implemented in an open-source simulator for self-
driving cars. The evaluation results show that our approach can
detect different types of dataset shifts with a small number of
false alarms while the execution time is smaller than the sampling
period of the system.

Index Terms—dataset shift detection, variational autoencoder
for regression, layer-wise relevance propagation, self-driving
vehicles.

I. INTRODUCTION

Recently, machine learning techniques, such as deep neural
networks (DNNs), are extensively used in a wide variety of
domains since they can handle complex tasks that cannot
be easily solved by conventional techniques. On the other
hand, cyber-physical systems (CPSs) are generally deployed
in environments with high uncertainty and variability, which
requires a high level of autonomy of the systems. There is
no surprise that machine learning methods are increasingly
used in CPSs to perform different difficult tasks, such as per-
ception [1], planning [2], and control [3]. Although learning-
enabled components (LECs) have demonstrated promising
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performance in such tasks in CPSs, the safety and reliability
of LECs should be analyzed and ensured before deploying
them to real-world systems, especially safety-critical systems.
Unfortunately, the complex characteristics of the LECs can
impede the analysis. Furthermore, LECs are typically trained
using learning techniques such as supervised and reinforce-
ment learning, and the implicit assumption for such learning
techniques is the training and testing distribution are identical.
However, although an LEC is trained extensively during the
design time, the dataset shifts may still happen when it is
applied to the real world. Dataset shifts may lead the LEC
to be ineffective to predict large-error outputs, and further
compromise the safety of the overall system. Therefore, the
runtime detection method is very significant and necessary to
guarantee the system safety and reliability of the system. The
objective of the dataset shifts detection method is to quantify
the degree of difference between the new test inputs and the
training data and raise the alarm indicating the LEC may
predict an erroneous output due to the dataset shifts.

Although many efforts have been made to detect the dataset
shifts or out-of-distribution examples in neural networks, es-
pecially regarding classification tasks [4], [5], such techniques
perform detection only using a single targeted example and
may result in a large number of false alarms when they are
directly applied to CPS due to the dynamical nature of CPS.
Only recently, a new method based on inductive conformal
anomaly detection (ICAD) [6] is proposed in [7], where the
robostness of the detection is improved by using multiple
examples sampled from the VAE model. In addition, most
out-of-distribution detection methods utilize only the inputs
but ignore the outputs of LECs. However, these methods may
fail to detect some types of dataset shift, in particular, where
the change in the distribution is observed for the output. In [8],
extending the method in [7], an adversarial examples detection
method for learning-enabled CPS is proposed by utilizing the
VAE for regression model. By using such model, a VAE and
a regression model can be trained jointly, which enables the
detector to take the LEC output into account. In this paper,
the VAE for regression model is also used, but we focus
on the detection of a variety of dataset shifts. Moreover, we



incorporate layer-wise relevance propagation (LRP) into the
nonconformity measure to improve the robustness of detection.

The first contribution of this paper is formal definitions of a
variety of dataset shifts in learning-enabled CPS. We introduce
three different types of dataset shifts in this paper, and provide
typical examples for each type of dataset shift aiming at a
realistic CPS – advanced emergency braking system (AEBS).

Our second contribution is an approach for detecting a
variety of dataset shifts in learning-enabled CPS. A VAE
for regression model is employed in our approach in order
to take into consideration both the input and output of the
the regression LEC. Additionally, the layer-wise relevance
(LRP) algorithm is incorporated into the detection algorithm
to further improve the robustness of the detection. The main
benefit of this method is to treat the input features differently
depending on their influence on the output of LEC.

The final contribution is the comprehensive evaluation using
a simulation case study – AEBS, which is implemented in
CARLA [9], an open-source self-driving simulator. In AEBS,
our evaluation focuses on the perception LEC, which estimates
the distance from the host vehicle to the obstacle. For different
types of dataset shifts, we design different experiments to
evaluate our approach. The experimental results demonstrate
the proposed approach can detect different types of dataset
shifts with a very small number of false alarms.

II. DATASET SHIFTS IN LEARNING-ENABLED
CYBER-PHYSICAL SYSTEMS

Supervised learning algorithms are deployed with the as-
sumption that the training and testing samples are drawn from
the same distribution. However, when a change happens in
the distribution of the testing data, the learning model most
likely becomes ineffective for predicting the outcome for the
new test data. A change in the distribution of features for the
unseen data is described as dataset shift. It is crucial to analyze
and formalize this phenomenon such that the learning-enabled
models can be improved.

This study focuses on the detection of a variety of dataset
shifts. Therefore, in this section, we first introduce the formal
definitions of datashift sets we selected for this study. Next, we
discuss the AEBS architecture briefly. We also presented some
and provided palpable datashift examples relevant to AEBS.
Lastly, we presented the problem formulation explaining the
dataset shifts detection problem.

A. Formal Definitions of Dataset Shifts
1) Covariate shift: Covariate shift is one of the most basic

and common dataset shifts observed in real-life [10]. Suppose
that, we have a supervised learning model that is trained with
an input-output pair such that T = {(xi, yi}ni=1. The general
assumption for this model is that the input, x is IID and
drawn from Ptrain(x). This model can be used for making
predictions based on the conditional probability, P (y|x) for
some y given new x. Covariate shift usually occurs when the
distribution of the input, P (x) changes after training while
the conditional probability P (y|x) remains the same. More
formally, Ptrain(x) 6= Ptest(x) and Ptrain(y|x) = Ptest(y|x).

2) Target shift: Target shift is the reverse covariate shift
where the distribution over y, P (y) changes but the output-
conditional distribution, P (x|y) remains the same. A target
shift can affect the prediction accuracy significantly [11]. The
formal definition is that the training and testing distribution for
output variables changes such that Ptrain(y) 6= Ptest(y) whereas
the conditional probability of x given y remains unchanged,
i.e. Ptrain(x|y) = Ptest(x|y).

3) Label concept shift: A concept shift is simply a con-
textual shift where the underlying relationship between input
and output changes while the distribution over input is pre-
served [12]. In concept shift, we assume Ptrain(x) = Ptest(x)
while Ptrain(y|x) 6= Ptest(y|x). For label concept shift, instead
of input variables, the distribution over output stays the same
such that Ptrain(y) = Ptest(y).

B. AEBS Architecture

The use of LECs becomes a popular choice in many classes
of CPS for increasing the level of autonomy of the system. A
quintessential example of learning-enabled CPS – advanced
emergency braking system (AEBS), is proposed in [7], which
is an automobile system designed to detect the approaching
obstacle and stop the host vehicle safely. A simplified system
architecture is presented in Fig. 1. There are two LECs in this
architecture: a perception LEC tries to estimate the distance
to the approaching obstacle using the images captured by a
camera, which is trained by supervised learning; a control
LEC consumes the estimated distance and the velocity of the
host vehicle, and generates a braking force to safely stop the
host vehicle, which is trained by reinforcement learning. More
details about the AEBS can be found in [7].

Perception RL
Control Vehicle

Camera Distance Brake

Velocity

Fig. 1. Advanced emergency braking system architecture [7].

C. Examples to Dataset Shifts in AEBS

Braking systems are occasionally subjected to dataset shifts,
in particular, covariate shifts. Suppose that we have a learning-
enabled system that predicts the braking distance, y for a
given camera input, x. An AEBS trained with camera images
taken during the daylight may predict the braking distance
incorrectly for night time. For this system, the probability
distribution of the daylight images, Pday(x) diverges from the
night time images, Pnight(x). However, in reality, the braking
distance should be independent of the time of the day and
the resulting light conditions. Thus, the conditional probability
P (y|x) should not change.

AEBS may be also susceptible to the target shift. For typical
training scenarios, we assume the probability distribution for
the braking distance, Ptrain(y) is uniform. In real-life situations,



unique traffic patterns may impose a distribution, Ptest(y) that
does not match this assumption. We hypothesize that the shift
in P (y) may be critical for proper operations of AEBS and
requires attention.

For AEBS, the braking distance prediction model, P (y|x)
assumes that the vehicle types and shapes conform to the
specifications imposed by the Department of Transportation.
In the future, the specifications may change drastically as
a response to the safety criteria of progressively developing
autonomous vehicle technologies. While the braking distance
distribution, P (y) remains the same, due to the safety-related
specification changes, the prediction model may not be able to
correctly estimate the safe braking distance. This can be solved
by retraining the model. The scope of this paper focuses on
the detection of the label concept shift.

D. Problem Formulation

Learning techniques, such as supervised and reinforcement
learning, are generally used to design the LECs. The implicit
assumption for such learning techniques is that the training
and testing distribution are identical. Although the LECs are
successfully trained and the training errors are satisfactory
during design time, the LECs may still become ineffective
due to the dataset shifts, where the joint distribution of inputs
and outputs differs between training and test stages. Dataset
shifts may lead the LEC to make erroneous predictions and
undermine the safety of the system.

The problem considered in our paper is to robustly detect
a variety of dataset shifts in learning-enabled CPS in real-
time. The LEC receives the inputs one by one and predicts
the outputs during the system operation. The objective is to
compute a measure quantifying the degree to which a dataset
shift has happened.

Online detection algorithms must be robust with a small
number of false alarms. Detection of dataset shifts should take
not only input but also output into consideration since change
of the distribution of output can also lead to dataset shifts.

III. VARIATIONAL AUTOENCODER FOR REGRESSION

A variational autoencoder (VAE) is a generative model
whose objective is to learn an underlying probability distri-
bution over the high-dimensional input data points. Similar
to an autoencoder, a VAE models a relationship between the
high-dimensional input data point and its low-dimensional
latent representation. In addition, the latent space is regularized
during the training using a probabilistic manner, which make
the latent encodings to have capacity of generating of new
data [13]. Furthermore, a VAE for regression model is pro-
posed in [14] trying to learn a conditional latent representation
on a specific regression target variable. Fig. 2 presents the
architecture of this VAE for regression model.

The core idea of the VAE for regression model is, the
latent representation z is conditioned on the target variable
c predicted by a regression network, and therefore, the latent
distribution is represented by a conditional Gaussian distri-
bution p(z|c) in lieu of a single Gaussian prior p(z) used
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Fig. 2. VAE for regression model [14].

in traditional VAE. There are two additional components in
VAE for regression model comparing with VAE: regressor and
latent generator. The regressor employs a regular regression
network q(c|x) with an additional output to infer the target
variable c and its uncertainty, and the latent generator feeds
the target variable c into the latent space trying to condition the
latent distribution on this predicted variable. The loss function
of the VAE for regression model can be expressed as

L(θ, φc, φz;x) =−DKL(qφc(c|x)||p(c))
+ Ez∼qφz (z|x)[log pθ(x|z)]
− Ec∼qφc (c|x)[DKL(qφz (z|x)||p(z|c))].

The first term corresponds to the regressor whose objective
is to regularize the distribution of prediction variable c with
the ground-truth prior p(c). Similar to a traditional VAE, the
second term encourages the decoder to reconstruct the input
from the latent representations with a small reconstruction
error. The third term tries to minimize the KL divergence
between the approximate posterior and the regression specific
prior p(z|c). Using such model and loss function, we can train
the VAE and the regression model in a single network.

IV. DETECTION OF DATASET SHIFTS

A. Inductive Conformal Anomaly Detection

Our approach uses the inductive conformal anomaly detec-
tion (ICAD) as the basic framework which requires a suitable
nonconformity measure defined to quantify how different a test
data is relative to the training dataset. The ICAD algorithm
can be split into offline and online phases. During the offline
phase, given a training dataset {(x1, y1), . . . , (xl, yl)}, where
each example (xi, yi) : i = 1, . . . , l consists of observations
x ∈ X and labels y ∈ Y , the first step is to split this training
dataset into a proper training set {(x1, y1), . . . , (xm, ym)} and
a calibration set {(xm+1, ym+1), . . . , (xl, yl)}. Then, for each
calibration data, we compute the nonconformity score with
respect to the proper training set by

αi = A
(
{(x1, y1), . . . , (xm, ym)}, (xi, yi)

)
, i = m+1, . . . , l.

All calibration nonconformity scores are sorted for the online
detection phase. At runtime, for a test example (xl+1, yl+1),
we compute its nonconformity score αl+1 using the noncon-
formity measure A with respect to the proper training set.
Then, the p-value for the test example is defined as the fraction



of calibration examples that equally or more nonconforming
than this test example, and can be computed as

pl+1 =
|{i = m+ 1, . . . , l} |αi ≥ αl+1|

l −m
. (1)

In ICAD method, for a test example, if the p-value is smaller
than a threshold ε ∈ (0, 1), it will be recognized as a conformal
anomaly. However, it is not robust to detect the anomaly
only using a single example. In [15], it is pointed that, if
a sequence of data points are in the same distribution as the
proper training set, the corresponding p-values are independent
and uniformly distributed between 0 to 1. Therefore, out-
of-distribution detection can be performed by testing the
hypothesis that the sequence of p-values are independent and
uniformly distributed between 0 to 1. Furthermore, we can
use martingale to test this hypothesis [16]. Simple mixture
martingale is a typical martingale and is defined as

MN =

∫ 1

0

N∏
i=1

εpε−1
i dε,

where N is the size of the sequence. Such martingale will grow
only if there are many p-values in the sequence indicating there
are unusual examples.

B. Nonconformity Measure with Layer-wise Relevance Prop-
agation

In order to scale the ICAD method to the high-dimensional
inputs, variational autoencoder (VAE) is proposed to compute
the nonconformity scores efficiently [7]. The mean square
error between the input x and the reconstructed output x̂ is
utilized as the nonconformity measure.Although the evaluation
in [7] shows a promising result, there are still some defects of
VAE-based nonconformity measure. It is possible that some
nonconformal features of the input rarely or do not contribute
to the LEC prediction. As an illustrative example, if the VAE
has difficulty generating fine-granularity details of the original
input image, the VAE-based nonconformity measure will result
in a large nonconformity score. Therefore, it is unfair to
treat all features equally for nonconformity measure when the
features contribute to the LEC prediction differently. We incor-
porate the layer-wise relevance propagation (LRP) algorithm
into the VAE-based nonconformity measure to compensate for
such defects and improve the robustness of the detector.

LRP is normally used as a tool for interpreting neural
networks by identifying which input features contribute most
to the LEC predictions [17]. We focus on neural networks with
image input in this paper. Considering an input image x is of
size H×W×C where H , W , and C denote the height, width,
and channel respectively. We denote each input element or
pixel as xh,w,c where h ∈ {0, . . . ,H−1}, w ∈ {0, . . . ,W−1}
and c ∈ {0, . . . , C−1}. LRP computes the relevance rc which
has the same size as the input x by running a backward pass in
the monitored LEC. In addition, we convert rc to a grayscale
relevance map r to use the relevance in the nonconformity
measure. To be brief, a function r = G(x0; f) is defined to

represent the LRP procedure generating a grayscale relevance
map r for the monitored LEC f and a given input x0.

In our approach, we use this relevance to weight the
contribution to the nonconformity score, and further, we can
define the nonconformity measure with LRP by weighting the
reconstruction error of VAE using the relevance map r

α = AVAE-LRP(x, x̂, r)

=
1

H ×W × C

H−1∑
h=0

W−1∑
w=0

C−1∑
c=0

rh,w(xh,w,c − x̂h,w,c)2.
(2)

Therefore, the nonconformity measure treats input features
differently based on their relevance or influence on the output
of the monitored LEC.

C. Detection Method

The main idea of the VAE-based approach is to generate
multiple IID examples similar to the input from the learned
probability distribution of the latent space. The computed
p-values for these generated samples are independent and
uniformly distributed in [0, 1]. Then, as described before,
the martingale test can be employed to test if any dataset
shifts happen in the distribution of the testing data relative
to the training dataset. In this paper, the VAE for regression
model is used to generate multiple IID examples in order
to take the output into account for detecting dataset shifts.
Besides, the nonconformity scores are computed by the VAE-
based nonconformity measure with LRP (Eq. 2). The relevance
between the input features and the output can be computed
using the LRP algorithm by propagating the prediction output
through the regressor of the VAE for regression model. The
detailed procedures of the algorithm are described below.

1) Offline training: Our approach is based on
ICAD, therefore, the first step is to split the training
set {(x1, y1), . . . , (xl, yl)} into a proper training
set {(x1, y1), . . . , (xm, ym)} and a calibration set
{(xm+1, ym+1), . . . , (xl, yl)}. Then, we train a VAE for
regression model (y, x̂) = f(x) using the proper training
set. The model performs two tasks: regression task which
is defined by a mapping from the input x to the target
variable y; generation task which is defined by a mapping
from the input x to the reconstructed output x̂. For each
example xj : j ∈ {m + 1, . . . , l} in the calibration set, a
single reconstructed input x̂j is sampled and generated from
the latent space, and the relevance rj between the input
features and the prediction output can be computed by the
LRP algorithm (rj = G(xj ; f)). Incorporating the relevance
rj , the nonconformity score αj can be computed by the
nonconfromity measure AVAE-LRP defined in Eq. (2). The
precomputed nonconformity scores for data in calibration set
are sorted and stored to be used for online detection.

2) Online detection: During runtime, the test inputs
(x′1, . . . , x

′
t, . . .) arrives to the LEC one-by-one. Based on the

idea in [7], for each test input x′t, N examples x̂′t,1, . . . , x̂
′
t,N

are generated from the learned posterior distribution in the
latent space. In addition, a relevance map r′t is computed



by G(x′; f). Then, for each generated example x̂′t,k, the
nonconformity score α′t,k and its p-value pt,k are computed
using Eq. (2) and Eq. (1). Since the generated examples
are IID, the p-values (pt,1, . . . , pt,N ) are independent and
uniformly distributed in [0, 1]. A martingale test can be applied
for every new input example x′t at time t

Mt =

∫ 1

0

M ε
t dε =

∫ 1

0

N∏
k=1

εpε−1
t,k dε. (3)

If the dataset shift happens, the martingale Mt will grow up
due to many small p-values in the sequence. In addition, as
described in [7], a stateful CUSUM detector S is employed
to generate alarms when the martingale becomes consistently
large. Algorithm 1 summarizes the proposed method.

Algorithm 1 Dataset shifts detection using VAE for regression
with LRP
Input: Input training set {(x1, y1), . . . , (xl, yl)}, input se-

quence (x′1, . . . , x
′
t, . . .), number of calibration examples

l − m, number of examples N generated by the VAE,
threshold τ and parameter δ of CUSUM detector

Output: Output boolean variable Anomt

Offline:
1: Split the training set {(x1, y1), . . . , (xl, yl)} into the

proper training set {(x1, y1), . . . , (xm, ym)} and calibra-
tion set {(xm+1, ym+1), . . . , (xl, yl)}

2: Train a VAE for regression f using the proper training set
3: for j = m+ 1 to l do
4: Generate x̂j using the trained VAE for regression
5: Compute the relevance map rj = G(xj ; f)
6: αΓ

j = AVAE-LRP(xj , x̂j , rj)
7: end for
8: {αm+1, . . . , αl} = sort({αΓ

m+1, . . . , α
Γ
l })

Online:
9: for t = 1, 2, . . . do

10: Compute the relevance map r′t = G(x′t; f)
11: for k = 1 to N do
12: Generate x̂′t,k using the trained VAE for regression
13: α′t,k = AVAE-LRP(x

′
t, x̂
′
t,k, r

′
t)

14: pt,k =
|{i=m+1,...,l} |αi≥α′

t,k|
l−m

15: end for
16: Mt =

∫ 1

0

∏N
k=1 εp

ε−1
t,k dε

17: if t = 1 then
18: St = 0
19: else
20: St = max(0, St−1 +Mt−1 − δ)
21: end if
22: Anomt ← St > τ
23: end for

V. EVALUATION

We demonstrate our approach using a simulation case study
– advanced emergency braking system (AEBS), which is
implemented in CARLA [9]. We conduct all experiments on
a 6-core Ryzen 5 desktop with a single GTX 1080Ti GPU.

A. Experimental setup

As mentioned in Sec.II-B, our evaluation focuses on the
perception LEC whose task is to estimate the distance to the
nearest front obstacle using the images captured by the on-
board camera. For collecting the training dataset, we vary
the initial distance to the obstacle d0 and initial velocity v0

of the host vehicle. In addition, we control the precipitation
parameter for the training dataset which is randomly sampled
from the interval [0, 20]. The proper training set for the
VAE for regression model training consists of 15920 images.
Furthermore, using the simulations with the same settings, we
collect additional 3980 images for the calibration dataset. We
should note that the probability distribution of the ground-truth
distance, Ptrain(y) is nearly uniformly distributed in the range
[0m, 50m] so that the training dataset is almost balanced.

The VAE for regression model can be implemented by a
convolutional neural network (CNN), and we use the same net-
work architecture and training settings as [8]. After the training
phase, the training and testing errors (mean absolute error) of
the regressor are 0.04m and 0.06m respectively. In addition,
by applying t-distributed stochastic neighbor embedding (t-
SNE) [18], the encodings in the latent space are projected into
low-dimensional representations which are plotted in Fig. 3.
The plot shows that the model is able to disentangle the
distance-related dimension from the latent space.

0

20

40

Ground truth distance(m)

Fig. 3. 2-dimensional latent representations estimated by VAE for regression.

The nonconformity scores for data in the calibration set
are precomputed and sorted for the online detection. For each
test example during the online phase, the VAE for regression
model generates N = 10 examples used for detection. We
illustrate our approach using an in-distribution episode firstly
and plot the absolute prediction error between the ground-
truth and predicted distance to the obstacle, the p-value, and
the output of the detector S computed using the logarithm
of martingale Mt and δ = 4 in Fig. 4. The results using
nonconformity measures with and without the LRP algorithms
are both plotted for comparing, which are denoted by (VAE-R)
and (VAE-R, LRP) respectively in the plots. The results of the
in-distribution episode show that, for nonconformity measure
without the LRP algorithm, the p-values are almost randomly
distributed in [0, 1], and thus, the detector stays in a low



value indicating there is no dataset shift happens. As for the
nonconformity measure with the LRP algorithm, the p-values
are randomly distributed between 0 to 1 at first, but decrease at
the end of the episode. The reason for this phenomenon is, near
the end of the episode, the lead vehicle occupies more pixels
in the image, more pixels are very relevant to the LEC output,
and the nonconformity scores are computed by taking more
pixels into account. Although the p-values decrease a little,
the detector S is still smaller than the threshold 40 indicating
there is no dataset shift during the episode.
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Fig. 4. Episode with in-distribution inputs.

B. Covariate shift

In AEBS, we can control the precipitation parameter to en-
force a testing distribution for input different from the training
dataset. In the training dataset, the precipitation parameter is
randomly sampled from 0 to 20. As for testing, we generate
50 episodes where the precipitation parameter is randomly
sampled from 30 to 100.

A covariate shift episode is shown in Fig. 5. The error
of the perception LEC is palpably larger than the error for
in-distribution data and it can exceed 15m. The p-values
come down to almost 0 and the detector indicates the dataset
shift happens. We also evaluate our approach using the 50
in-distribution episodes (precipitation parameter: [0, 20]) and
50 covariate shift episodes (precipitation parameter: [30, 100])
by considering different values of N . Table I reports the
false alarms for detection covariate shift using the VAE-based
nonconformity measure with and without the LRP algorithm.
The results show that our approach can detect covariate shift
with a very small number of false alarms.

C. Target shift

For this shift, we consider a casual scenario, where unique
traffic patterns impose specific braking distance distributions.
More specifically, we assume all data between 15m to 45m
are not included in the training dataset. An episode for the
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Fig. 5. Episode with dataset shift (covariate shift).

TABLE I
FALSE ALARMS FOR THE ADVANCED EMERGENCY BRAKING SYSTEM.

Types Methods Parameters
(N, σ, τ)/(N, τ)

False
positive

False
nega-
tive

Covariate
shift

VAE-R
5, 2, 50 0/50 0/50
10, 4, 40 0/50 0/50
20, 8, 110 0/50 0/50

VAE-R
+LRP

5, 2, 50 4/50 0/50
10, 4, 40 3/50 0/50
20, 8, 110 4/50 0/50

Target
shift

VAE-R
5, 2, 50

N/A
13/50

10, 4, 40 11/50
20, 8, 110 14/50

VAE-R
+LRP

5, 2, 50
N/A

3/50
10, 4, 40 2/50
20, 8, 110 2/50

Label concept
shift

VAE-R
5, 2, 50 0/50 0/50
10, 4, 40 0/50 0/50
20, 8, 110 0/50 0/50

VAE-R
+LRP

5, 2, 50 4/50 0/50
10, 4, 40 3/50 0/50
20, 8, 110 4/50 0/50

target shift is shown in Fig. 6, which contains the data between
0m to 50m. In this case, the neural network does not work
properly, and the results show the neural network predicts the
outputs with large errors. The p-values come to nearly zero
and the detector grows up, which indicates the dataset shift
happens during the episode. Besides, Table I also reports the
false alarms for detection such target shift, and the results
demonstrate our approach can detect the target shift with a
very small number of false alarms.

D. Label concept shift

For the label concept shift, we can use a different size
of the lead vehicle which never appeared in the training
dataset. For testing, we collect 100 episodes with double-
size leading vehicle, and one episode is shown in Fig. 7.
It is reasonable to see that the predicted distance is much
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Fig. 6. Episode with dataset shift (target shift).

smaller than the ground-truth distance at the beginning of the
episode since the double-size car occupies more pixels in the
image than the normal-size car. The p-value becomes small
and the detector indicates the dataset shift happens in the test
episode. The method with LRP can detect such dataset shift
earlier than the method without LRP since the LRP algorithm
make the nonconformity measure focusing on the area which
contributes more to the LEC output. Table I reports the false
alarms for detection label concept shift using the VAE-based
nonconformity measure with and without the LRP algorithm.
The results show that our approach can detect label concept
shift with a very small number of false alarms.
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Fig. 7. Episode with dataset shift (label concept shift).

E. Computational Efficiency

The VAE for regression model can be used for both
perception and detection tasks. In order to show the real-

time nature of our approach, Table II reports the minimum
(min), first quartile (Q1), second quartile or median (Q2),
third quartile (Q3), and maximum (max) of the execution
times of the detectors with and without the LRP algorithm for
different values of N . From the results, see that the execution
time increases as N grows since the VAE for regression
model needs to be run N times to generate N examples. The
method with LRP takes a slightly longer time (about 5.5ms)
than the approach without LRP due to LRP computations.
The execution times of the detectors are shorter than the
sampling time of AEBS (50ms), and therefore, our approach
is applicable for real-time dataset shifts detection.

TABLE II
EXECUTION TIMES.

N
min
(ms)

Q1

(ms)
Q2

(ms)
Q3

(ms)
max
(ms)

VAE-R
5 10.76 10.96 11.96 11.98 12.22
10 20.83 20.91 20.97 21.25 21.83
20 41.96 42.28 42.77 43.16 49.13

VAE-R+LRP
5 16.10 16.16 16.25 16.62 26.33
10 26.49 26.61 26.65 26.77 34.28
20 47.80 47.92 47.98 49.04 54.81

VI. RELATED WORK

In the last decade, dataset shift has received a growing
amount of interest in the computer science community. The
effects of the dataset shift on the performance of models
were first studied by [19]. They proposed re-weighting the
observed testing samples based on the empirical training and
testing probability distributions to maximize the maximum
weighted log-likelihood estimate (MWLE) and to increase
model performance in the presence of covariate shift. A
more robust reweighing method called kernel mean matching
(KMM) to treat the covariate shift was studied in [20]. Another
frequently occurring shift called target shift was mentioned
first by [21]. The KMM approach was adopted to target shift
in classification problems, also known as label shift [22]. In
[11] and [23], the label shift was analyzed in depth, and state-
of-the-art approaches are proposed to minimize the impact of
the shift. Label concept shift is one of the areas that is studied
least since it occurs rarely and extremely difficult to solve. In
literature, this shift was formalized in [24] first time.

Several anomaly detection approaches based on the con-
formal anomaly detection are raised, but the nonconformity
measures are defined differently. Kernel density estimation
(KDE) [25] and k-nearest neighbor [26] nonconformity mea-
sures are used for anomaly detection of the single point. For
sequential anomaly detection of time trajectories, the noncon-
formity measures can be the sum of Hausdorff distances to k
nearest neighbors [27], the average of Mahalanobis distances
to the k nearest neighbors [28], and the sub-sequence local
outlier factor [6]. However, such nonconformity measures can-
not scale to the high-dimensional inputs. Recently, variational
autoencoder (VAE) and deep support vector data description
(deep SVDD) are used to compute the nonconformity scores
for high-dimensional inputs in [7].



The purpose of LRP is to identify parts of the input that
contribute most to the LEC prediction [17], and it is normally
used as a tool for interpreting neural networks to help to un-
derstand if the LECs focus on the reasonable cues in the input.
The propagation rules of the LRP algorithm can be applied to
various neural network architectures, including convolutional
networks [17], LSTMs [29], and different applications, such
as text [30], image [17], and video [31]. In [32], the LRP
algorithm is firstly collaborated with an anomaly detection
model trying to explain the outliers in the dataset. In our
approach, we incorporate the relevance computed by LRP into
the nonconformity measure to improve the robustness of the
detector.

VII. CONCLUSIONS

In this paper, we discuss formal definitions and provide
some practical examples for a variety of dataset shifts in
learning-enabled CPS. Focusing on these dataset shifts, we
propose a detection approach based on inductive conformal
anomaly detection. A VAE for regression model is trained to
compute the nonconformity of new test inputs with respect
to the training data, which enables the detection to take both
inputs and outputs into consideration. Moreover, the layer-wise
relevance propagation (LRP) algorithm is incorporated to im-
prove the robustness of the detection. A simulation case study
of an advanced emergency braking system (AEBS) is utilized
to evaluate our approach. Experimental results demonstrate
our approach can detect different types of dataset shifts with
small false alarms, and the execution time is relatively short
enabling real-time detection. Although our approach takes the
output into account, the results do not show any significant
improvements compared to the methods which only use the
input. Extending to this work, we should design another
experiment to demonstrate the benefit of taking the output into
consideration. Incorporating the attention techniques into the
detector is another possible direction for future work.
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