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ABSTRACT
Analysis and design of cyber physical systems (CPS) relies
typically on detailed dynamical models. Identifying para-
metric models of complex CPS such as smart buildings is
very hard because of the heterogeneity and complexity of
components as well as uncertainty and variability.
Alternatively, data availability can potentially support the
use of machine learning techniques to develop nonpara-
metric models, which can be used for prediction, analysis,
and control. In this paper, we present a data-driven metho-
dology to learn a nonparametric stochastic hybrid system
from the observed data in an online fashion. The model uses
Gaussian processes and periodic Markov chains to represent
the coupled continuous and discrete dynamics respectively.
Moreover, we propose a reachability analysis algorithm that
represents the reachable states for a receding finite horizon
using mixtures of Gaussian processes. The reachability ana-
lysis algorithm provides an efficient multi-step prediction for
SHS, which can be used to analyse the system’s control
policy, and/or its safety. Finally, we demonstrate the pro-
posed approach to predict the thermal behaviour of smart
buildings. The results show that the model can adapt to the
system uncertainty and variability and predict the reachable
states efficiently.
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1. Introduction

Identifying parametric models of complex cyber physical systems (CPS) such as
smart buildings is very hard because of the heterogeneity and complexity of
components as well as uncertainty and variability. On the other hand, recent
technological advances enable the utilisation of sensory data to build robust
and detailed models. Such models can represent the complex interactions
between the cyber and the physical parts and can be used for developing
methods for advanced analysis and control. Therefore, developing data-driven
methodologies for learning nonparametric models of CPS is a promising alter-
native. Nonparametric modelling necessitates the use of machine learning
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techniques because of their ability to extract information about systems and
the environment from sensory data.

Smart buildings are a practical example of modern CPS where the integra-
tion of sensing and control systems is used for energy efficiency and user
comfort. Buildings have complex stochastic nonlinear thermal dynamics, which
depend on several factors such as the environment and the applied thermal
load. Forecasting models of the environments such as the ambient tempera-
ture can be used to increase the prediction accuracy.

On the other hand, modelling the behaviour of the thermal load is very
challenging especially if it cannot be measured in a cost effective manner. For
example, the sensory data does not necessary provide the occupancy level in
office buildings. Moreover, building parameters may change over time as the
buildings age or may change abruptly due to events (e.g. opening/closing
windows). Such challenges can be addressed using nonparametric modelling
approaches based on online model learning.

Stochastic hybrid systems (SHS) are models that include coupled continuous
and discrete dynamics and can be used to represent complex stochastic
systems [1]. SHS can be used to model many CPS with multi-modal behaviours.
Additionally, SHS provide an efficient modelling paradigm for complex CPS
such as smart buildings. However, there are many research challenges that
arise for using machine learning techniques to learn data-driven SHS models.
Model learning for SHS aims to identify the continuous and the discrete
dynamics from sensory data. However, the sensory data in many CPS do not
necessary include explicit information about the discrete dynamics. For
instance, thermal dynamics of data-centre buildings depend on the thermal
load because of the utilisation of the servers and the IT equipment. However,
measuring the utilisation level of the equipment explicitly may be expensive
and not feasible.

Reachability analysis for SHS aims to predict the probability of the coupled
continuous/discrete states to stay within a certain target region (e.g. the zone
air temperature in buildings staying within the user comfort thresholds). This
analysis is essential in many applications for designing the control policy.
However, such prediction presents a major challenge because of the coupled
stochastic discrete/continuous dynamics. Typical reachability analysis algo-
rithms are based on Monte Carlo simulation to predict the system trajectories
for a finite receding horizon [2]. However, algorithms based on Monte Carlo
simulation are computationally demanding, and therefore, they may not be
suitable for many modern CPS.

In our previous work, we developed online model learning framework for
SHS with latent discrete state [3]. The developed framework supports one-step
ahead prediction of the continuous state within the current estimated discrete
state of the system. The main limitation of the learning framework is that it
cannot be used to develop multi-step prediction algorithms because it does
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not learn the switching dynamics of the discrete state (i.e. the discrete
dynamics). Furthermore, we developed a preliminary reachability analysis
method based on a mixture of Gaussian processes; however, the developed
approach assumes SHS with deterministic and known discrete dynamics [4]. In
this paper, we propose a new learning framework which additionally learn the
discrete dynamics for SHS. Such addition facilitates the development of the
proposed multi-step prediction algorithm, which we use to solve the reach-
ability analysis problem for SHS with stochastic and unknown discrete
dynamics. The contributions of this paper are as follows:

(1) We present a non-parametric SHS model based on coupled Gaussian
processes and periodic Markov chains. Gaussian processes capture the
stochastic nonlinear continuous dynamics for different discrete states
and the periodic Markov chain captures the periodic transitions of the
discrete states.

(2) We propose an online clustering-based learning methodology, which
can be used to learn SHS when the discrete states are not measured
explicitly. In the proposed methodology, we use the K-means cluster-
ing algorithm to identify the discrete states and label the training
data. Thus, we can learn the transition probabilities of the Markov
chain and segment the data for each corresponding discrete state.
Each segment is used to learn the continuous dynamics using a
distinct GP. The proposed learning methodology is efficient and can
run in an online fashion, so that the model adapts to the system
variability.

(3) We propose an algorithm for finite horizon reachability analysis, which
estimates the probability distribution of the reachable states based on
mixtures of Gaussian processes.

(4) Finally, we demonstrate the proposed approach to learn a detailed
model for smart buildings when the buildings thermal load is not
measured (e.g. occupancy). We learn a model of a multi-zone office
building using data generated by EnergyPlus (high-fidelity building
simulator) and a stochastic occupancy simulator [5,6]. Also, we evaluate
the multi-step prediction of the building’s zones temperature and the
thermal load behaviour.

This paper is organised as follows: Section 2 presents a brief background for
model learning and prediction of Gaussian processes (GPs). Section 3 formalises
the nonparametric SHS model. Section 4 discusses the model learning and the
reachability analysis problem for SHS. Section 5 illustrates the proposed data-
driven online learning and reachability analysis approach to approximate the
reachable states for a finite horizon. Section 6 discusses the implementation and
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the evaluation of the proposed approach in the context of smart buildings
applications. Finally, Section 7 presents a brief review of the related work.

2. Background

Gaussian processes (GPs) are nonparametric probabilistic models that utilise
observed data to represent the behaviour of the underlying system [7]. GPs are
identified by a mean mðxÞ and a covariance kðx; xÞ functions. The function
modelled by a GP can be written as: f ðxÞ,GPðmðxÞ; kðx; xÞÞ. Typically, a zero
mean function and squared exponential (SE) covariance function are used for
their expressiveness [7].

We can learn GP models by identifying their hyperparameters Θ to best
represent the training data (D ¼ fðxi; yiÞji ¼ 1; :::; ng). The learning process can
be expressed as an optimisation problem, where the optimal hyperparameters

(Θ̂) maximise the marginal likelihood, that is:

Θ̂ ¼ argmax
Θ

log pðyjΘ;DÞ

Optimisation algorithms based-on conjugate gradients can be utilised to
optimise the hyperparameters [7,8].

Typically, we are interested in the GP posterior distribution given some test
inputs and observations (training data D). We define the set of test inputs for
which we want to predict the function value as X�. Hence, the posterior
distribution pðy�jX�;X; yÞ is a conditional Gaussian distribution with a mean
and a covariance defined as:

E½y�jy;X;X�� ¼ KT
�β

Var½y�jy;X;X�� ¼ K�� � KT
�ðKþ σ2ωIÞ�1K� (1)

where K� :¼ kðX;X�Þ, K�� :¼ kðX�;X�Þ, K :¼ kðX;XÞ and β :¼ ðKþ σ2
ωIÞ�1y.

The posterior distribution shown in (1) is a prediction model for a given
deterministic test input X�. In multi-step prediction, the X� can be defined by a
probability distribution (i.e. pðX�Þ,Nðμ�;

P
�Þ), therefore, in this case, the GP

posterior distribution is obtained by:

pðy�Þ ¼ � � pððy�jX�ÞpðX�Þdy�dX�: (2)

Equation (2) is analytically intractable [9] and several approximation algorithms
have been developed to represent the posterior distribution in (2) as Gaussian
(i.e. pðy�Þ,Nðμy;

P
yÞ) [9,10]. In this paper, we approximate the posterior

distribution in (2) by linearising the posterior GP mean function [11]. Hence,
the mean and variance of the predictive distribution is obtained by:
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μy ¼ E½y�jμ��P
y ¼ Var½y�jμ�� þ V

P
�V

T (3)

where E½y�jμ�� and var½y�jμ�� is the mean and the covariance of the GP
posterior calculated at the mean μ� of the input distribution as shown in (1),
and V is defined as:

V ¼ @μy
@μ�
¼ βT

@kðX;μ�Þ
@μ�

3. Stochastic hybrid systems

Let’s denote Q the set of discrete states and R
D the continuous state space.

The system hybrid state space is defined as S ¼ Q� R
D. The continuous

dynamics evolves according to a stochastic process modelled by a GP which
depends on the current discrete mode (q 2 Q). The discrete state also
evolves based on a stochastic process δ : Q�Q ! 0; 1½ � represented by a
periodic Markov chain (MC). Periodic MCs can represent periodic system
behaviour (e.g. based on hour-of-day, day-of-week, or seasonal effects in
buildings applications). In this paper, we consider systems with two inputs:
Control inputs and external uncontrolled inputs (disturbances) from the
environment. The control inputs govern the transitions between the discrete
states using a control policy (πðSÞ : S ! U) which maps the hybrid state
space (S) into the control input space (U). The external inputs (v 2 V) affect
the system dynamics and are modelled using a time-series
model (E : N ! V).

The SHS model is formalised as follows:

Definition 3.1. (Non-parametric SHS). A nonparametric SHS model is defined
as a tuple H ¼ Q; X; Init;U;V;A; δð Þ:

● Q :¼ q1; q2; � � � ; qmf g, for some m 2 N , represents the discrete state
space.

● X is a set of continuous variables in the Euclidean space R
D.

● Init: BðSÞ ! 0; 1½ � is an initial probability measure on the Borel space BðSÞ
where S :¼ Q� R

D.
● U � R

E , for some E 2 N , represents the control input space.
● V � R

F , for some F 2 N , represents the external uncontrolled input space.
● A assigns to each discrete state q 2 Q a function ðxkþ1 ¼ fqðxk; uk; vkÞÞ

modelled by a GP which represents the evolution of the continuous state

given the predecessor continuous state xk 2 R
D, a control input uk 2 U

and an external uncontrolled input vk 2 V .
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● δ is a stochastic process of the discrete state qk : k � 0; qk 2 Qf g repre-
sented by a periodic MC such that pðqk qk�1; qk�2; � � � q0Þj
¼ pðqk ¼ ijqk�1 ¼ jÞ ¼ pijðkÞ;"i; j 2 Q.

For a finite time horizon ½0;N�, an execution of H is a trajectory denoted by
sðkÞ ¼ ðqðkÞ; xðkÞÞ; k 2 ½0;N�f g, with a control policy πðSÞ and a time-series
disturbance model EðkÞ. A trajectory can be easily obtained by simulating the
model (i.e. calculate the control input, forecast the external input, and evaluate
the continuous/discrete states) for the required horizon.

In this paper, we use H to model the thermal behaviour of smart buildings
when the thermal load is not measured. In the context of smart buildings, the

continuous state (x 2 R
D) represents the building’s zones air temperatures, the

discrete state q represents the thermal load level, the uncontrolled input
(v 2 R ) represents the ambient temperature, the control input (u 2 R ) repre-
sents the HVAC cooling/heating rate, and δ models the periodic behaviour of
the thermal load levels. Therefore, the predictive distribution of the building’s
zone air temperature can be represented as

xkþ1,
X
i

pðqk ¼ ijqk�1Þfiðxk; uk; vkÞ

4. Problem formulation

Online learning and reachability analysis necessitate updating the system
model H and predicting the system states iteratively and efficiently after
receiving new measurements.

Learning the SHS model H requires identifying the discrete dynamics (i.e.
the discrete state space Q :¼ q1; q2; � � � ; qmf g and the discrete transition func-
tion δ), and the continuous dynamics (i.e. GPð:Þ for all q 2 Q) from the
observed data (D) collected from the physical system and the environment.
At each time step k, the observed data include measurements of the contin-
uous state xk , the control inputs uk , and the external disturbances vk . Thus, the
training dataset is defined as:

D :¼ ðx̂k; ykÞ : k ¼ Ts; � � � ; Tef g
where yk is the successor continuous state (i.e. yk ¼ xkþ1), x̂k is the tuple
ðxk; uk; vkÞ, and ½Ts; Te� is the time period at which the data are collected. In
general, learning H using D is a challenging task because the sensory data do
not necessary include explicit measurements of the discrete state (e.g. thermal
load). Moreover, the model must capture the uncertainty and the variability of
the system and the environmental disturbances.

Reachability analysis aims at predicting the probabilities of the reachable
states for a finite time horizon given an initial state sð0Þ. This multi-step
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prediction is usefully in many applications to analyse the system design. For
instance, prediction the zone air temperature in buildings is important to
ensure the user comfort for a given control policy. Therefore, our objective is
to calculate PðsðkÞjsð0ÞÞ;"k 2 ½1; T � for the finite receding horizon ½1; T �, given
the SHS model H, the control policy πðSÞ and the time-series disturbance
model EðkÞ. Prediction of reachable states can be performed as an iterative
process since sðkÞ depends on sðk � 1Þ. However, this is a challenging task
because: (1) Predicting the continuous state xðkÞ distribution requires predic-
tion at an uncertain input because xðkÞ depends on the distribution of xðk � 1Þ
and it also evolves differently for each discrete state qðkÞ; (2) the discrete mode
qðkÞ is a discrete random distribution given the probability distribution of
qðk � 1Þ; and (3) the system trajectory depends on the switching times
between the discrete states.

5. Online learning and reachability analysis

To overcome these challenges, we propose a novel online learning and reach-
ability analysis framework depicted in Figure 1 . The proposed framework
comprises the following steps: (1) Collect data from the system and update
the training data, (2) learn both the continuous and the discrete dynamics of
the SHS model H, as well as the time-series disturbance model EðkÞ; and (3)
solve the reachability analysis problem for a finite horizon based on Mixture of
Gaussian processes. These steps are repeated iteratively in an online fashion to
adapt to the system variability.

Initially, we collect training dataset (D) which consists of the continuous
state, the control input, and the external disturbance. This dataset is used to
initialise the system model. As new measurements are collected, we update
the training dataset using a moving window technique based on first-in-
first-out (FIFO) policy. The FIFO policy maintains a fixed size of the training
dataset that is then used to learn the system model as described in the next
section.

5.1. Model learning

We first identify the discrete modes of the SHS model using a clustering
algorithm. Then, we segment and label the training data based on the identi-
fied modes. This allows us to learn the continuous dynamics for each discrete
state using a distinct GP model and learn the discrete dynamics using a
periodic MC model.

5.1.1. Feature extraction
Feature extraction is a technique used to transform the training data into a set
of features. A set of features contains the useful data needed for the clustering

CYBER-PHYSICAL SYSTEMS 47



Fi
gu

re
1.

Bl
oc
k
di
ag
ra
m

of
th
e
pr
op

os
ed

ap
pr
oa
ch
.

48 H. ABDEL-AZIZ AND X. KOUTSOUKOS



stage. Generally, the feature vector can be computed based on time domain
features or frequency domain analysis. In our work, we compute the feature
vector based on time-domain features (e.g. mean, root-mean-square), such
that:

z ¼ gðxÞ

where x 2 R
c is a vector of the raw data with dimension c, z 2 R

d is the
feature vector with dimension d, and gð:Þ is a function that calculate the time-
domain features. For thermal models of buildings, the time-domain features
are the average cooling rate (i.e. uðkÞ) and the zone air temperature difference
(i.e. Δx ¼ xk � xk�1).

5.1.2. Data clustering for discrete mode identification
The goal of data clustering is to associate each data point with a discrete state.
Various clustering algorithms can be used such as K-means, Gaussian Mixture
Model (GMM), or hierarchical clustering [12,13]. The choice of the algorithm
depends on the application and the collected data. We use the K-means

clustering algorithm which calculates the cluster centroids (Ĉ) for K clusters,

so that Ĉ minimises the following potential function:

Ĉ ¼ argmin
C

P
gðxÞ2χ

min
c2C
k gðx̂Þ � ck2 (4)

where χ 2 R
n�d is the feature matrix extracted from the training data (D) with

size n and feature dimension d, gðx̂Þ 2 R
d is the feature vector for the data

point x̂ 2 D, and Ĉ 2 R
K�d represents the K cluster centroids.

The approach requires the number of clusters (i.e. the number of discrete
states m 2 N) to be known a priori. We identify the number of discrete states m
using a heuristic algorithm known as Silhouette analysis method [13]. Silhouette

analysis determines the number of clusters (K̂) which results in the best clustering
consistency. The clustering consistency for a given K is represented by a
Silhouette scoring coefficient for each clustered data point. The Silhouette scor-
ing coefficient has a range of ½�1; 1� where scores near þ 1 are assigned to data
points that lie far from the neighbouring clusters. On the other hand, scores near
zero are assigned to data points that lie very close to the boundary between their
cluster and a neighbouring one. Negative scores are assigned to data points,
which might have been allocated to the wrong cluster. Therefore, clusters with a
higher average Silhouette score have a better consistency than clusters with a
lower average Silhouette score. Formally, the Silhouette score sðiÞ for a given
data point i can be obtained using the following formula:

sðiÞ ¼ bðiÞ�aðiÞ
max aðiÞ;bðiÞf g (5)
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where aðiÞ is the average distance from the data point i and the other points in
its cluster, and bðiÞ is the minimum, minimised over clusters, average distance
between the data point i and other points in a different cluster. Silhouette
analysis maximises the average Silhouette score:

m ¼ K̂ ¼ argmax
K

�sðiÞ; K 2 G (6)

where G is a finite set of potential value of m.

5.1.3. Learning discrete dynamics
The discrete dynamics (i.e. δð:Þ) represents the stochastic transitions between
the discrete modes. We represent δð:Þ using a periodic MC and we consider
SHS whose discrete state transitions are independent of the control signals
and the continuous state. A typical MC has a stationary matrix that does not
capture any periodic or time-dependent behaviours explicitly. However, the
discrete dynamics of SHS models for buildings exhibit periodic behaviour (e.g.
occupancy patterns depend on the time of the day). Therefore, we represent
the discrete dynamics using a periodic MC with non-stationary transition
probabilities. The transition matrix is used to calculate the probability of the
discrete modes as follows:

pðqkþ1Þ ¼ δðqkÞ ¼ pðqkÞAhðkÞ

where hðkÞ : k ! 1; 2; � � � ;Hf g maps the time-step k to the time of the day
(e.g. hour of the day 1; 2; � � � ; 24f g), and AhðkÞ is the associated transition

matrix. A graphical representation of the periodic MC with 24 transition
matrices (i.e. H ¼ 24) and two states is depicted in Figure 2.

We learn the periodic MC by identifying the parameters of the transition
matrices (i.e. transition probabilities). We use the sequence of labels of the
training dataset Dq from the previous step (clustering):

Dq :¼ fqk : qk ¼ argmin
q02Q

k gðx̂kÞ � cq0k2;
"ðx̂; yÞi 2 D; k ¼ f0; 1; � � � ;Mgg

where cq0 is the cluster centroid of the discrete mode q0, gðx̂Þ is the feature
vector of the data point x and M is the size of the training dataset. Dq is used

Figure 2. State-transitions diagram of a two-state periodic MC model.
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to learn/update the model parameters (i.e. the transition probabilities) for each
transition matrix Ai; i 2 1; 2; � � �Hf g. Each transition matrix Ai is identified inde-
pendently by counting all the distinct sequences ðqk; qkþ1Þ 2 Dq such that
hðkÞ ¼ i. So, its transition probabilities can be computed by:

aab ¼ total number of qðaÞ qðbÞ occurrence
total number of qðaÞ occurrence (7)

5.1.4. Data segmentation and learning GP models
Data clustering enables us to identify the discrete states ( q1; q2; � � � ; qmf g) and
to label each data point in D with the corresponding discrete state. The
labelled data are used to segment the training data into m datasets:

"j 2 Q;Dj :¼ fðx̂; yÞi : j ¼ argmin
q02Q

k gðx̂kÞ � cq0 k2;"ðx̂; yÞi 2 Dg

where cq0 is the cluster centroid of the discrete mode q0 and gðx̂Þ is the feature
vector of the data point x̂. We use each data segment Dj to learn a distinct GP
model for the continuous dynamics. As discussed in Section 2, learning a GP
model is an optimisation process that calculates the optimal hyperparameters

Θ̂j of the GP in order to maximise the log likelihood function:

Θ̂j ¼ argmax
Θj

log pðyjΘj;DjÞ (8)

Finally, we model the uncontrolled external input v (i.e. ambient temperature)
using a time-series model EðkÞ. We learn this model using a single Gaussian
processes model independently from the SHS model-learning algorithm.
Formally, the time-series model EðkÞ of an observed time-dependent variable
vk is defined as: vk ¼ f ðkÞ,GOðmðkÞ; Kðk; k0ÞÞ.

5.2. Reachability analysis

We represent the reachable states of H using mixtures of Gaussian processes
(MGP) [14]. An MGP consists of a latent discrete variable, typically called gating
network, and a set of GP functions, called the experts. The state of the discrete
variable specifies the GP function used to calculate the system output at a
given input. The MGP model is expressed as:

PðyjxÞ¼
Xz
i¼1

Pðz ¼ i j xÞGPiðmiðxÞ; kiðx; xÞÞ (9)

where y is the output, x is the input, z is the discrete latent variable with Z
states and GPi is the GP function corresponding to the discrete state z ¼ i. Our
goal is to predict the probability of the continuous state xðk þ 1Þ given the
probability of the hybrid state sðkÞ ¼ ðxðkÞ; qðkÞÞ. Thus, the one-step state
prediction of the SHS can be defined as:
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Pðxðk þ 1Þ sðkÞÞ ¼Pm
i¼1

Pðqðk þ 1Þ ¼ i

����
����qðkÞÞfiðx̂ðkÞÞ (10)

where fi x̂ Kð Þð Þ,GPi mi x̂ð Þ; Ki x̂; x̂ð Þð Þ with x̂ defined as the tuple ðx; u; vÞ and
Pðqðk þ 1Þ ¼ ijqðkÞÞ,δðqðkÞÞ is the probability distribution of the discrete
state at time-step k þ 1. In order to predict the probability distribution of
sðkÞ;"k 2 ½1; T � for the finite-horizon T , we can apply (10) iteratively.
However, this equation depends on pðxðkÞÞ which is represented by a
Gaussian mixture model from the previous iteration (i.e. pðxðkÞjsðk � 1ÞÞ).
Formally, let’s define pðxðkÞÞ as:

pðxðkÞÞ ¼PC
j¼1

wjNðμj;
P

jÞ (11)

where C is the number of Gaussian distribution components in the mixture, wi

is the weight of ith Gaussian component with
PC

i¼1 wi ¼ 1, and μi;
P

i is the

mean and the variance of ith Gaussian component respectively. Calculating
Pðxðk þ 1ÞjsðkÞÞ iteratively from Equations (10) and (11) is analytically intract-
able because the input of the MGP model in (10) is uncertain (represented by a
mixture of Gaussian probability distributions as illustrated in Equation (11)). To
overcome this limitation, we approximate the predictive distribution by pro-
pagating every Gaussian component in (11) independently. Therefore, the
predictive distribution can be obtained as:

Pðxðk þ 1ÞÞ ¼PQ
i¼1

PC
j¼1

wj Pðqðk þ 1Þ ¼ ijqjðkÞÞ~f iðxjðkÞ; ujðkÞ; vðkÞÞ (12)

where xj is the jth Gaussian component of pðxðkÞÞ with weight wj, mean μj and

variance
P

j, qjðkÞ is the discrete mode of the jth Gaussian component and ~f ð:Þ
is the approximation of GP posterior fi defined in Equation (3). Algorithm 1
illustrates the prediction of the reachable states of the SHS iteratively based on
Equation (12).

Algorithm 1 Discrete-time SHS state prediction

Input: sð0Þ, T
Output: pðsðkÞÞ for k 2 ½1; T �

Load GP function fqð0Þ ,GPqð0Þ
k = 0
while k< T do

▹ Forecast the external input at time k
vðkÞ  EðkÞ
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for each scðkÞ 2 sðkÞ do
for each q 2 Q do

▹ Calculate the probability of the discrete state q
pðqcðk þ 1Þ ¼ qjqcðkÞÞ  δðqcðkÞÞ
▹ Calculate the new weight
wcðk þ 1Þ  pðqðk þ 1Þ ¼ qcðk þ 1ÞjqcðkÞÞ � wcðkÞ
if wcðk þ 1Þ > δw then ▹ ignore components with small

probabilities
▹ Calculate the control input
ucðkÞ  πðxcðkÞ; qcðk þ 1ÞÞ
▹ Predict the continuous state
xcðk þ 1Þ  ~fqcðkþ1ÞðxcðkÞ; ucðkÞ; vðkÞÞ
scðk þ 1Þ  [xcðk þ 1Þ, wcðk þ 1Þ, qcðk þ 1Þ]
add scðk þ 1Þ to sðk þ 1Þ

end if
end for

end for
end while

The prediction algorithm approximates the probability distribution of the
discrete state by ignoring the discrete transitions which have probabilities
less than δw . Moreover, it approximates the prediction of the continuous
state by linearising the posterior GP mean function. The accuracy of the
prediction algorithm can be increased by tuning the threshold δw and/or by
approximating the GP posterior using the exact moments [11]. The prediction
algorithm is efficient and can run in an online fashion. The most expensive part
is computing the inverse covariance matrix which requires Oðn3Þ time where n
is the size of the data. Many studies have been conducted to improve GP
complexity using different approximation algorithms. For instance, sparse
Gaussian processes are developed to approximate the inverse of the covar-
iance matrix K with a low rank matrix approximation of dimension m�m,
(where m< < n) [15].

6. Evaluation

In this section, we demonstrate the efficacy of the proposed method on multi-
zone buildings. We have implemented the approach using MATLAB® and the
Statistics and Machine Learning Toolbox Release 2017a [16]. We evaluate the
approach for an office building with five zones. The physical system is simulated
using EnergyPlus [5]. EnergyPlus is an open-source cross-platform building energy
simulator funded by the U.S. Department of Energy, and Building Technologies
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Office, and managed by the National Renewable Energy Laboratory. EnergyPlus is
used for high-fidelity simulation of buildings using ð1Þ the ambient temperature
and the environment data and ð2Þ the building description. The building descrip-
tion defines its structure and layout, the construction materials, the thermal zones
with their dimensions and area, the HVAC system, the control strategies and so
on. It also defines the building thermal loads with their schedules such as
occupancy, lights, and electrical equipment. These detailed descriptions are
used to construct several models (e.g. airflow network model, pollution model,
on-site power model) based on which EnergyPlus simulates the thermal beha-
viour. Although such models can be used for high-fidelity simulation, multi-step
prediction is only possible using Monte Carlo techniques.

We generate a dataset for a single-story office building with five zones.
We simulate the office building based on a realistic occupant schedule for
office spaces to evaluate the ability of our model to capture the stochastic
discrete dynamics. The occupancy schedule is generated using the occu-
pancy simulator developed at Lawrence Berkeley National Laboratory
[6,17]. This stochastic occupancy schedule is then used by EnergyPlus to
simulate the thermal behaviour of the office building and generate data for
training. The major thermal sources for all the five zones are the HVAC unit
heating and cooling supply air, the office lights and equipment, and the
office occupancy. The dataset measures the building thermal behaviour
hourly for one year using weather data from San Francisco, CA. The
measurements consist of the ambient temperature, zone air temperatures,
cooling/heating rate from the HVAC unit, and heating rate from the ther-
mal load (lights, occupancy, and office equipment) aggregated and aver-
aged for every hour.

We set the window size of the training data to four Weeks (i.e. 672 data
points). The goal is to predict the system behaviour for the next day (i.e. horizon
T ¼ 24). Initially, we train the model using the first four weeks of the simulation
data, then apply the proposed online approach to predict the system behaviour
for the next day. We collect new data for the predicted day and update the
training dataset to re-learn/update the model and we repeat these steps.

For learning the SHS model, we identify the model discrete states using the
K-mean clustering algorithm. Data clustering starts by extracting the time-
domain features which are the average heating/cooling rate (i.e. uðkÞ) and the
zone air temperature difference (i.e. Δx ¼ xk � xk�1). The number of the dis-
crete states is estimated using the Silhouette analysis method such that, the
number of the discrete states for the core-zone, south-zone and east-zone is
three, for the north-zone is two, and for the west-zone is five. Furthermore, we
clustered the training dataset to label each data point with its corresponding
discrete mode and used the labels sequence to learn the periodic MC for the
discrete dynamics. Finally, we segment the data for each discrete mode and
use them to learn distinct GP models for each mode. For reachability analysis,

54 H. ABDEL-AZIZ AND X. KOUTSOUKOS



we use the proposed algorithm to generate a distribution of the reachable
states. The prediction distribution for both the discrete mode (i.e. estimated
thermal load level) and the continuous state (i.e. zone air temperature) of three
days are shown in Figure 3 for the west zone.

6.1. Performance

We evaluate the performance of the reachability analysis using weighted root
mean square error (RMSE) and mean relative square error (MRSE) error metrics,
defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
k¼1 eðkÞ2

q
;

MRSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 eðkÞ
2PN

k¼1 yðkÞ
2

s
(13)

where yðkÞ is the system output and eðkÞ ¼P
c
wcðkÞðŷcðkÞ � yðkÞÞ is the

weighted prediction error of the ith time step, evaluated for each Gaussian
components using the component mean ŷc and the component weight wc.
Moreover, we evaluate the predicted distribution of the reachable states using
negative log predictive density ðLDÞ, defined as:

LD ¼
X
k¼1:T
� log pðyðkÞÞ (14)

where pðyðkÞÞ is the prediction density function (i.e. mixture of Gaussian) of
the system state, and T is the prediction horizon (i.e. 24).

GP models have been proposed in the literature to provide thermal models
for buildings [18]. We compare the prediction of our SHS approach against the
prediction obtained using two typical GP models: a unimodal single GP model
and a full GP model. The unimodal GP model does not have discrete states
associated with the thermal load level and it is defined by: xkþ1 ¼ fðxk; uk; vkÞ
where xk is the zone air temperature, uk is the heating/cooling rate from the
HVAC unit, and vk is the ambient temperature. The full GP model assumes that
thermal load is measured and it is defined by: xkþ1 ¼ fðxk; uk; lk; vkÞ where lk is
the thermal load.

Reachability analysis using the unimodal model is a typical multi-step pre-
diction for a single GP model as illustrated in section (2). The same approach
can also be used for the full GP model, however additional time-series model
should be learned to predict the thermal load for the finite-receding horizon.
In this experiment, we use a time-series GP such that: lk ,GPðmðkÞ; Kðk; k0ÞÞ.
Figures 4 and 5 show one day prediction of the west-zone using the unimodal
GP and the full GP model; respectively.

The performance statistics for the SHS model compared against the unim-
odal GP and the full GP models are shown in Table 1. These results indicate
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that the developed approach outperforms both typical GP models since it
takes into consideration the prediction of the thermal load level and its
periodic patterns. In comparison to the SHS prediction, the unimodal GP
lacks the prediction of the thermal load pattern, and therefore, the prediction
distribution averages over the thermal load levels with high uncertainty,
measured by the predictive density ðLDÞ metric as shown in Table 2. The full
GP model has a better performance than the unimodal GP since it considers
the applied thermal load, assuming that we can measure it. However, the

Figure 3. Prediction distribution of the hybrid states for the west-zone using the proposed
approach.
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predictive density of the full GP is lower than the proposed SHS model since
the uncertainties in the predicted thermal load increase the uncertainty in the
prediction of the zone air temperature.

Further, we compare the proposed online-learned model against an offline
model, which is learned once, in order to evaluate the improvement of the online
learning approach. In this experiment, we consider changes in the ambient tem-
perature due to seasons as an example to represent the variability in the system.
One year of weather data from San Francisco, CA is used to represent real ambient

Figure 4. Prediction distribution of the west-zone air temperature using a unimodal GP
model.

Figure 5. Prediction distribution of the west-zone air temperature using the full GP model.

Table 1. Performance statistics of the reachability analysis prediction with a comparison
against the full GP and the unimodal GP models.

RMSE (MRSE)

Full GP SHS Unimodal GP

Core zone 1.10 (0.05) 0.92 (0.04) 2.28 (0.10)
South zone 1.93 (0.09) 1.09 (0.07) 2.35 (0.10)
East zone 4.08 (0.18) 1.17 (0.05) 3.82 (0.16)
North zone 1.46 (0.07) 1.02 (0.04) 3.00 (0.13)
West zone 1.95 (0.09) 1.28 (0.05) 2.15 (0.09)
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temperature. Additionally, we use a stochastic occupancy schedule to add uncer-
tainty in the system behaviour. Figure 6 shows the RMSE statistics for both models
calculated for each day of the year. The results indicate that online learning allows
our model to adapt to the variation in the systemwith a good performance. On the
other hand, the offline model fails to adapt to these variations.

6.2. Efficiency

Despite the computation demand of machine learning algorithms, specifically GPs,
the proposed methodology is computationally efficient and can run in an online
fashion with acceptable performance. The most expensive part is computing the
inverse covariance matrix of GPs which requires Oðn3Þ time where n is the size of
the training data for each GP model. GP learning becomes more computationally
expensive when the dimension of the model and/or the training dataset increases.
The computation time because of the GP is evaluated using different experiments
of the proposed approach with different sizes of the training dataset. Figure 7
shows the variation of the model learning and the reachability analysis average
running time for five-zone and two-zone buildings with different dataset sizes. As
indicated from these results, the running time becomes a major factor in the GP

Table 2. Average negative log predictive density of the proposed approach, the unimodal GP,
and the full GP.

SHS Unimodal GP Full GP

Core zone 44.6 78.6 78.5
South zone 41.9 51.5 52.2
East zone 37.6 63.2 48.2
North zone 36.5 66.1 51.4
West zone 53.3 48.6 43.7
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Figure 6. Error metric (RMSE) of the air temperature prediction for both the online and the
offline learned SHS model, averaged over all zones.
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performance as we increase the training dataset size. However, the performance of
the model prediction is still adequate for the relatively small dataset sizes since we
segment this data and distribute the computation for each discrete mode indepen-
dently. On the other hand, the single GPmodels (i.e. unimodal GP and Full GP) lacks
the advanced of segmenting the dataset, and therefore, they are more computa-
tionally expensive as shown in Figure 8.

Furthermore, we evaluate the proposed methodology performance for differ-
ent sampling periods of 15, 30, 45, and 60 min. For all cases, we fixed the duration
of the window size for the training data (2 weeks). However, the dataset sizes
increase as the sampling periods decreases. In addition, the prediction horizon is
fixed as one day ahead for all sampling periods and therefore the number of
time-steps increase as we decrease the sampling periods. Figure 9 shows the
running times of the model learning and the reachability analysis, respectively,
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Figure 7. Average running time of the proposed framework using different sizes of the
training dataset sizes for two buildings examples.
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Figure 8. Average running time of different training dataset sizes for the five-zone office
building.
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using different sampling periods. The results show an exponential increase of the
running time as the sampling period is decreased. The proposed approach runs
efficiently with an accepted performance for sampling periods between 30 to
60 min. The RMSE, averaged over all zones, performance metrics depicted in
Figure 10 show that, the reachability analysis performance increases as we
increase the sample rate. This is expected since the prediction time-steps
increases as we decrease the sampling rate, and therefore, the prediction uncer-
tainty increases. We conducted the above experiments in Intel core i5 PC with 8
GB memory. The results indicate that the proposed approach is applicable for
smart buildings applications in real time.
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Figure 9. Average running times using different time-step size and training dataset sizes for
model learning and reachability analysis.
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Figure 10. Error metric (RMSE) of the predicted zone-air temperature with various time-step
size, the RMSE metric is averaged over all zones for the five-zone office building.
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7. Related work

GPs have shown a great success in learning many nonlinear and stochastic systems
because of its attractive features [19]. Recently, many studies usedGPs to learn time-
series models for short-term and multi-step forecasting [9,20]. Additionally, GPs
shown a great success in developing data-efficient learning framework for systems
represented by state-space model with control inputs [11,21].

Multi-step prediction for stochastic system modelled by GPs is a challenging
task because it requires propagating the uncertainty of the predicted state at
each step. Monte-Carlo simulation is used to predict the system trajectory and
represent the predicted trajectories by samples (particles) [22]. In spite of that,
Monte Carlo simulation is limited to particle-based control and analysis meth-
odologies. Moreover, it can be computationally demanding, especially when a
large amount of samples are used to obtain good accuracy. To overcome these
limitations, other methods are developed to approximate the predictive dis-
tribution analytically. For instance, methods based on moment-matching and
linearisation of the predictive distribution approximate the predictive distribu-
tion as Gaussian distribution [11,23]. To gain more approximation accuracy,
authors in [24] propose a multi-step prediction algorithm which uses the
kurtosis metric to measure the non-Gaussianity of the predictive distribution,
and based on these measurement, the algorithm adaptively split the input
distribution into a sum of Gaussian and approximate the predictive (output)
distribution by a Gaussian mixture model.

GPs have been used in many recent studies to learn and to predict stochas-
tic nonlinear systems. However, they typically do not consider systems with
coupled discrete/continuous dynamics as the case in SHS. Learning SHS is
more challenging because of the uncertainty in the model behaviour along
with the coupled continuous/discrete dynamics. Simulation-based learning
methods use simulated trajectories for parameters identification based on
randomised optimisation techniques (e.g. Genetic Algorithm) [25].
Expectation-maximisation(EM) algorithm is also used to identify the para-
meters of SHS [26]. Additionally, a kernel-based approach is developed for a
popular class of hybrid systems, known as piecewise affine systems, where GPs
are used to model the impulse response of each sub-model of the model [27].

Typically, reachability analysis is a problem in SHS, which necessitates to
predict the reachable states for a finite-receding horizon. Several methods have
been proposed in the literature to estimate the reachable states for SHS [2].
Analytical estimations methods have been used to solve the reachability problem
for SHS via quadratic forms known as Dirichlet forms [28]. Other approximation
methods based on numerical estimations are also used such as Markov Chain
approximations [29,30], and dynamic programming [31]. Probabilistic methods
have been considered to solve the reachability problem based on randomising
algorithms such as Monte-Carlo methods [32] and multilevel splitting (MLS)
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variance reduction [33]. Finally, statistical methods are an area of active research,
which aim to leverage available data to approximate the reachable state [2]. In
this context, a data-driven Bayesian framework is developed to learn and to verify
complex physical systems via reachability analysis [34].

8. Conclusions

In this paper, we propose an online data-driven approach for learning and
reachability analysis of SHS model. The proposed approach can be applied to
many modern CPS with a multi-modal behaviour when a parametric model is
hard to obtain. As a practical example, we illustrate the efficacy of the
approach on smart buildings. The results indicate that our approach runs
efficiently in an online fashion and provides a statistical distribution of the
reachable state with a good performance.
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