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Abstract
Cyber–physical systems (CPS) such as automotive control systems consist of various interacting cyber and physical com-
ponents. Heterogeneous domains, composition of multiple components, complex dynamics, and nonlinearities result in
significant challenges for design, modeling, and simulation of CPS. Model-based design can be used to address such chal-
lenges, but it is very important to use physically accurate heterogeneous models that can be composed to represent the overall
system behavior. Further, it is important to preserve the properties derived from analyses based on the mathematical models
in the control system implementation in order to reduce costly testing and design changes late in the development cycle. This
paper proposes a model-based design methodology for automotive control software using port-Hamiltonian systems (PHS).
PHS are used to model the vehicle dynamics, speed and steering control systems, and the interactions between physical and
cyber components. Passivity analysis is used to design the controllers and ensure system stability. More importantly, the
proposed approach guarantees that passivity is preserved after time-discretization and quantization of the controllers. The
models are then used for code generation and compilation, scheduling, and software deployment, ensuring that passivity is
preserved by the control system implementation. We evaluate the methodology using an automotive control design case study
implemented on a hardware-in-the-loop simulation platform and present simulation results to demonstrate its effectiveness.

Keywords Cyber–physical systems · Model-based design · Port-Hamiltonian systems · Passivity · Automotive control
software

1 Introduction

Cyber–physical systems (CPS) are engineering systems char-
acterized by complex integrations of physical and computa-
tional domains over communication networks [34]. Automo-
tive control systems are examples of CPS in which various
physical components are controlled by electronic control
units (ECUs) communicating over networks. As the num-
ber of components increases in modern vehicles, challenges
inevitably arise as a result of system complexity. Rigorous
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engineering methods are essential for designing control sys-
tems that can be integrated with the vehicle dynamics to
achieve predictable and correct behavior [22]. Designing
these systems requires the use of well-defined software tools
and processes in order to model, simulate, analyze, and iden-
tify design flaws.

In our previous work, we developed amodel-based design
tool-chain for automotive control systems which integrates
control design, software implementation, and deployment
on a hardware-in-the-loop (HIL) simulation platform [12].
This tool-chain provides a means to design and implement
control software on a realistic platform while focusing on
the interactions that manifest during the integration stage of
development. Although this model-based design tool-chain
enables simulation and rapid prototyping of CPS, it does
not address significant challenges caused by interactions
between components, complex dynamics, and nonlinearities
of the system models. Many methods rely on idea of “mak-
ing it work,” and the control system implementation does not
take full advantage of mathematical analyses using control
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theoretic methods. Such model-based design methods have
worked well in the past; however, the increased complex-
ity of modern automotive systems has made these methods
implausible. Problems from the integration of components
are often discovered late in the development cycle, leading to
costly ramifications of the designs. As modern CPS become
more complex, amodel-based design framework is needed to
effectively generate composable models which can be used
not only for theoretic analysis, but also for software design
and implementation while preserving the desirable system
properties.

This paper presents a model-based design methodology
based on port-Hamiltonian systems (PHS) for the modeling
and design of CPS. The methodology begins with the phys-
ical system which is modeled as a PHS [11]. The system
model is constructed by modeling both physical and cyber
components (controllers) as PHS interacting through power
ports modeled using Dirac structures. Passivity-based con-
trol methods are used to design the controllers and analyze
system stability [26]. The modeling framework is applica-
ble to complex systems that contain nonlinear and hybrid
dynamics. In order to implement the controllers on a real-
istic platform, implementation effects such as discretization
and quantization are analyzed to ensure that passivity is pre-
served. Code is generated from the discrete-time quantized
PHS, which in turn, is analyzed for timing and scheduling,
and finally deployed on the hardware platform. The proposed
model-based design approach guarantees that system passiv-
ity and stability are preserved after time-discretization and
quantization of the controllers. Further, the models are used
for code generation and compilation, scheduling, and soft-
ware deployment, ensuring that passivity is preserved by the
control system implementation.

We present a case study where the model-based design
methodology is applied to an automotive control system that
integrates speed and steering control. The physical dynamics
of a vehicle is decomposed into its longitudinal and lateral
dynamics interacting through a Dirac structure and mod-
eled as PHS. We model the speed and steering controllers
also as PHS that interact with the vehicle dynamics and
with each other to achieve autonomous driving. We com-
pose the closed-loop system, and we provide conditions that
guarantee stability based on the hybrid nonlinear models of
the components. Next, we ensure that the control systems
remain passive after discretization and quantization that is
required for the control system implementation. The discrete-
time quantized models are used for code generation using
MATLAB/Simulink [23]. The generated code is deployed
on a HIL simulation platform consisting of multiple ECUs
communicating with a real-time simulation of the vehicle
dynamics using CarSim [2]. The communication is realized
using the time-triggered network TTEthernet [35]. Simula-
tion results generated using the HIL platform show how the

system behavior is affected by varying the sampling rate and
the quantization levels and demonstrate the stability of the
system under various driving conditions.

The rest of the paper is organized as follows: Sect. 2
presents the related work of this paper including domain-
specific modeling languages, PHS theory, and model-based
design. Section 3 describes the model-based design pro-
cess starting from the modeling of physical systems to
the implementation of the closed-loop system on a HIL
simulation platform. Section 4 presents the physical sys-
tem modeling framework using a domain-specific modeling
language (DSML) based on PHS. Section 5 presents the con-
trol portion of the automotive system implemented using
continuous-time PHS. Section 6 describes the control sys-
tem implementation and includes the constraints imposed
on the design by discretization and quantization as well as
the processes of code generation and compilation from the
Simulink models. In addition, this section presents the com-
putation of theWCETand the scheduling of the control tasks.
Section 7 presents the deployment of the control software on
the HIL simulation platform and the simulation results that
demonstrate control design and implementation. The paper
is concluded in Sect. 8.

2 Related work

Component-based modeling of CPS is a challenging prob-
lem because of the inherent heterogeneity within CPS [33].
Components are implemented as well-defined models of
computation, and abstract semantics are used to define inter-
actions between them [8]. The intricacies of both acausal
and causal modeling can be captured using a DSML [31].
Software tools typically formalize interactions between the
physical and computational components through unidirec-
tional physical signals and computational signals. Research
in recent years has focused on using the exchange of energy to
merge the abstractions between the computational and phys-
ical domains [22].

The theory of PHS is presented in detail in [11]. PHS
are formulated through generalized bond graphs, which
are domain-independent graphical representations based on
energy exchange. Nodes in a bond graph represent physical
phenomena, and edges (bonds) represent idealized energy
connections. Different physical domains such as electrical,
mechanical rotational, hydraulic, and thermodynamics are
all described in the same way through a physical exchange
of energy. Its major distinction from representations such as
signal-flow graphs is that every arc (bond) represents a bidi-
rectional exchange of energy, rather than a unidirectional
flow of information. PHS have significant implications for
passivity, which has been studied extensively for control
design and analysis of nonlinear systems [20]. Background
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on the control of PHS is presented in detail in [25]. An
important property of PHS is compositionality, where com-
ponent PHS compose with each other through the interaction
ports of their respective Dirac structures [42]. The result
of composing two PHS is another PHS, which provides a
compositional framework for modeling complex physical
lumped-parameter systems [3].

Automotive Open System Architecture (AUTOSAR) is
a worldwide development partnership with the goal of
establishing an open-source and standardized software archi-
tecture for automotive ECUs. AUTOSAR contains details
which describe standardized software modules, define how
application software components interface with one another,
and build a universal design approach using a standardized
exchange format. These details allow AUTOSAR to help
innovate automotive electronic systems to further improve
the performance, safety, and efficiencies of modern vehicles.
The scalability of different software and hardware compo-
nents over the vehicle product life cycle is also facilitated
by AUTOSAR. AUTOSAR strives to assist in the design
and development of future vehicles and to improve the cost-
efficiency of integrating new technologies [21].

Model-based design of CPS is an active research area
where a large amount of work is being done to address
the various challenges caused by the heterogeneity of the
different layers of CPS [34]. We created a tool-chain to
integrate the components of control design from MAT-
LAB/Simulink with the aspects of software deployment such
as scheduling, discretization, and quantization with a pri-
mary application to automotive control systems [12]. The
tool-chain is designed using an embedded software design
environment called Embedded Systems Modeling Language
(ESMoL) [27] which enables a software development pro-
cess unifying the control design stage of development with
code generation and deployment. The tool-chain is evalu-
ated over a hardware-in-the-loop experimental platform over
a time-triggered communication network which guarantees
that the whole process is reliable, predictable, and robust to
disturbances [41].

The first step of the model-based design tool-chain is
designing and modeling the controller for a particular func-
tion in MATLAB/Simulink and using simulations to test and
verify the correctness of the system. The methodology we
developed in this paper focuses on this step of the model-
based design process by modeling both the controller and
plant as PHS, and using passivity-based design methods to
ensure correct behavior of the overall system. PHS provide
an effective way of characterizing the interactions presented
in the CPS and are also able to model nonlinearities and
hybrid dynamics. The resulting control design model from
this approach can then be imported into ESMoL and used
for subsequent phases of the model-based design process.
The remaining design steps consist of importing the control

Fig. 1 Diagram of the processes and artifacts

designs into ESMoL, specifying the logical software archi-
tecture, defining the hardware platform, deploying themodel,
specifying the timing behavior of the system, flattening the
model for analysis, scheduling the tasks, and implementing
on the platform for testing [12].

In our previous work, we developed a PHS modeling
framework which addresses the challenges of implementing
components and interactions formodel-based design [6]. The
work presented in this paper is an extension of the work on
the PHS modeling framework by focusing on an end-to-end
methodology for the modeling and design of CPS. Finally,
we have developed an approach for safety analysis of PHS
and apply the approach for ensuring safety of automotive
control systems [7].

3 Model-based design process

Figure 1 shows a diagram of the flow of processes of the
model-based design process and the corresponding flow of
models/artifacts. The left branch of each diagram focuses
on design steps using models, while the right branch of each
diagram focuses on implementation steps on a hardware plat-
form. The model and software artifact generated from each
step of the process must be analyzed in order to validate
correctness and the effect that each process step has on the
overall systemproperties. For example, the discretization and
quantization of a continuous-time controller affects the sta-
bility of the closed-loop system. Therefore, it is necessary to
analyze (1) how close is the discrete-time quantized model
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to the original controller and (2) the stability of the system
composed of the physical dynamics and the controller. Fur-
ther, there are several dependencies between the left and right
branches of the processes and models/artifacts. For example,
schedulability analysis may impose constraints on the sam-
pling rate that is feasible in the hardware platform, which in
turn affects the discretization of the controller and its stability
analysis.

The main goal of the proposed model-based design
approach is to develop a framework that allows to analyze
the effects of the design steps on system properties such as
stability. We employ a modeling framework based on PHS
using GME, a software developed at Vanderbilt University,
which allows us to compose complex systems model from
components [11]. We design the continuous-time controllers
also as PHS using Simulink and analyze stability using pas-
sivity methods [26]. We generate discrete-time quantized
controller models using Simulink’s code generation tool that
ensure passivity, and we use them to generate the control
code. We estimate the worst-case execution time (WCET) of
the control code running on an ECU, which is used to gener-
ate static schedules for the ECUs and the network. We select
control parameters, sampling rate, and quantization levels so
that passivity and system stability are guaranteed. Finally, we
test the control design using a HIL simulation platform. The
main advantage of the proposed method is that it guarantees
passivity and stability through the design steps. The rest of
the paper is organized based on the flow of the diagram in
Fig. 1.

4 Physical systemmodeling

The use of models as an initial step in the development of
complex systems is prevalent in all fields of science and
engineering. A model is an abstraction of occurrences in
the physical world. In engineering, models provide a way
of representing systems using a specific set of mathematical
constructs. The objective of physical system modeling is to
represent the free-body diagram of a physical system as a
PHS model implemented in Simulink. The Simulink model
is then used for control design. This necessitates the devel-
opment of a DSML which contains the rules and constraints
of PHS.

4.1 Background on port-Hamiltonian systems

Physical systems are generally described as a set of differ-
ential and algebraic equations, since algebraic constraints
between state variables are possible [30]. Though implicit
equations create problems in simulation, they generally have
no effect on mathematical formulations. In particular, PHS
model both implicit and explicit systems through the Dirac

structure [37]. An important component of PHS is the char-
acterization of power. Power consists of a pair of conjugated
variables, the effort e and the flow f , whose product is the
instantaneous power. For example, in the electrical circuit
domain, the effort is the voltage, while the flow is the cur-
rent.

Definition 1 [11] A Dirac structure on F × F∗ with efforts
e ∈ F and flows f ∈ F∗ is a subspace D ⊂ F × F∗ if the
following two conditions are true:

1. 〈e, f 〉 = 0, for all (e, f ) ∈ D,
2. dim[D] = dim[F].

There are various ways to represent Dirac structures,
with each representation using different structural matrices.
Regardless of the representation, Dirac structures establish
the power-balancing equation which is fundamental to PHS:

d

dt
H = eTR fR + eTC fC + eTI f I . (1)

The function H in (1) denotes theHamiltonian of the PHS.
The Hamiltonian function represents the energy stored in the
system. The flows of the energy storage are given by the rate
ẋ of the energy state variables x ; the efforts are given by the
co-energy variables ∂H

∂x [16]. The variables eR and fR are the
effort and flow values for the energy dissipation of the sys-
tem, which shows that a PHS extends beyond a conservative
Hamiltonian system by including energy loss as well [11].
The variables eC and fC describe how the system interacts
with controllers, while the variables eI and f I describe how
the system interacts with the environment. A PHS with a
Hamiltonian function H , energy storage ports S, resistive
ports R, control portsC , interconnection ports I , and a Dirac
structure D can be written in a formal model in (2),

Σ = (H , R,C, I , D), (2)

which leads to the implicitly defined PHS dynamics:

Σ :
(

−x ′(t), ∂H

∂x
, fR(t), eR(t), fC (t), eC (t), f I (t), eI (t)

)
∈ D.

(3)

When there are no algebraic constraints on the state
variables, representation (3) can be simplified to an input–
state–output PHS [10]:

Σ :

⎧⎪⎨
⎪⎩
ẋ = [J (x) − R(x)] ∂H

∂x + G(x)u + K (x)d

y = GT(x) ∂H
∂x

z = K T(x) ∂H
∂x ,

(4)
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Fig. 2 Free-body diagram of the vehicle dynamics

and its Dirac structure is represented as the following skew-
symmetric matrix:

D :

⎡
⎢⎢⎢⎢⎣

−J (x) −GR(x) −G(x) −K (x)

GT
R(x) 0 0 0

GT(x) 0 0 0

K T(x) 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

where the term GR(x) denotes the resistive structure of the
system.

A PHS obeys the laws of conservation of energy. The
canonical coordinate transform method is used extensively
in classical mechanics for analyzing the dynamical equations
of physical systems [13]. These transformations preserve the
Hamiltonian structure of the system and preserves important
system properties such as losslessness and passivity. Con-
sider a generic PHS written in the form of (4). We then
consider a time-invariant coordinate transformation defined
by the expression x = Φ(x) and apply it to (4). The dynam-
ical equations transform into the following form

ẋ = ∂Φ

∂x

T

ẋ

= ∂Φ

∂x

T

[J (x) − R(x)]∂H
∂x

+ ∂Φ

∂x

T

G(x)u

= ∂Φ

∂x

T

[J (x) − R(x)]∂Φ

∂x

∂H(Φ−1(x))

∂x
+ ∂Φ

∂x

T

G(x)u,

and the output equation transforms into the following form

y = GT(x)
∂Φ

∂x

∂H(Φ−1(x))

∂x
.

The newHamiltonian function becomes H(Φ−1(x)). The

matrices ∂Φ
∂x

T
J (x) ∂Φ

∂x and ∂Φ
∂x

T
R(x) ∂Φ

∂x are skew-symmetric
and positive symmetric, respectively, which means that the
coordinate-transformed system is also a PHS [36]. Gener-
ally, the coordinate transform is used whenever two PHS are
composed [14].

Fig. 3 PHS representation of the vehicle dynamics

4.2 Vehicle dynamics modeling

In this paper, we demonstrate the model-based design
methodology using an automotive systemas an example. Fig-
ure 2 shows a free-bodydiagramof the vehicle dynamics. The
vehicle is front-wheel drive, resulting in the input forces from
throttle and brake being applied to the front wheels as shown
in the diagram. The longitudinal input force from the throttle,
Ta = Caθa , is a function of the throttle valve angle θa and
the experimental throttle constantCa . The longitudinal input
force from the brakes, Tb = CbPb, is a function of the braking
pressure Pb and the experimental braking constant Cb. The
lateral input force from the steering, Tl = 2C f δ, is a func-
tion of the steering angle δ and the cornering stiffness of the
front wheels C f . The longitudinal velocity, lateral velocity,
and yaw rate are represented by Vx , Vy , and r , respectively.
Interactions between the longitudinal and lateral dynamics
can be derived by analysis of the free-body diagram [29].

A PHS representation of the longitudinal dynamics, the
lateral dynamics, and their interactions is shown in Fig. 3.
The vehicle dynamics model is decomposed into a longitu-
dinal dynamics component, a lateral dynamics component,
and an interaction structure. The longitudinal dynamics con-
tain two control ports (Ta, y1) and (Tb, y2) and an interaction
port (dx , zx ). The state variables are the longitudinalmomen-
tum px and the longitudinal displacement qx . The outputs of
the control ports y1 and y2 are Vx and −Vx , respectively.
The x-component of the lateral force affecting longitudinal
motion is represented by dx , and its power-conjugate is rep-
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resented by zx . The lateral dynamics contain a control port
(Tl , yl) and an interaction port (dl , zl). The state variables

are ql = [
qy qr

]T
and pl = [

py pr
]T
, where py is the lateral

momentum, pr is the angular momentum, qy is the lateral
displacement, and qr is the angular displacement. The out-
put of the control port yl is Vy + l f r . The y-component of the
longitudinal force applied to the center ofmass is represented
by dl , and its power-conjugate is represented by zl .

4.2.1 Longitudinal dynamics

The longitudinal dynamics has the following Hamiltonian
function:

Hx (qx , px ) = 1

2m
p2x +Ux (qx ),

where m represents the mass of the vehicle and Ux (qx ) rep-
resents the potential energy. The longitudinal dynamics is
modeled in the form of (4):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
q̇x

ṗx

]
=

[
0 1

−1 −Rx

] [
∂Hx
∂qx
∂Hx
∂ px

]
+

[
0

Gx

]
ux +

[
0

1

]
dx

yx = [
0 GT

x

] [
∂Hx
∂qx

∂Hx
∂ px

]T

zx = [
0 1

] [
∂Hx
∂qx

∂Hx
∂ px

]T
,

(5)

where ux = [
Ta Tb

]T
,Gx = [

1 −1
]
, Rx = am+bpx + cm2

px
,

a represents the tire rolling friction constant, b represents the
air resistance constant, and c represents the static friction
force.

4.2.2 Lateral dynamics

The lateral dynamics has the followingHamiltonian function:

Hl(qy, qr , py, pr ) = 1

2m
p2y + 1

2I
p2r +Ul(qy, qr ),

where I represents the moment of inertia of the vehicle and
Ul(qy, qr ) represents the potential energy.The lateral dynam-
ics is modeled in the form of (4):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
q̇l
ṗl

]
=

[
0 E

−E −Rl

][
∂Hl
∂ql
∂Hl
∂ pl

]
+

[
0

Gl

]
Tl +

[
0

Kl

]
dl

yl = [
0 GT

l

] [
∂Hl
∂ql

∂Hl
∂ pl

]T

zl = [
0 K T

l

] [
∂Hl
∂ql

∂Hl
∂ pl

]T
,

(6)

Rl =
[W1

Vx
W2
Vx

W2
Vx

W3
Vx

]
,

where E is the identity matrix, Gl = [
1 l f

]T
, and Kl =[

1 0
]T
. The parameter constants of Rl areW1 = 2C f +2Cr ,

W2 = 2C f l f − 2Crlr , and W3 = 2C f l2f + 2Crl2r , where Cr

is the cornering stiffness of the rear wheels.

4.2.3 Vehicle dynamics interactions

Compositionof the longitudinal and lateral dynamics through
the interaction structure results in a nonlinear Dirac struc-
ture for the composed dynamics. The interaction between the
longitudinal and lateral dynamics is a mapping of velocity
to force, which indicates a gyrator relationship. The gyra-
tor ratio must have units of kg/s which is represented by
multiplying the mass of the vehicle with the yaw rate. The
interaction structure is modeled as a Dirac structure modu-
lated by the angular momentum pr :

[
dx
dl

]
=

[
0 −mpr

I

−mpr
I 0

] [
zx

zl

]
. (7)

The Hamiltonian function of the composed longitudinal
and lateral dynamics is H(q, p) = Hx + Hl . Composition
of (5) and (6) through (7) results in the following nonlinear
PHS:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
q̇

ṗ

]
=

[
0 E

−E −R

] [
∂H
∂q
∂H
∂ p

]
+

[
0

G

]
u

y = [
0 GT

] [
∂H
∂ p
∂H
∂ p

]
,

(8)

R =

⎡
⎢⎢⎣

Rx
mpr
I 0

mpr
I

mW1
px

mW2
px

0 mW2
px

mW3
px

⎤
⎥⎥⎦ , G =

[
Gx 0

0 Gl

]
,

where q = [
qx ql

]T
, p = [

px pl
]T
, u = [

ux Tl
]T
, and y =[

yx yl
]T
. Interactions between the longitudinal and lateral

dynamics are captured in R.

4.3 Port-Hamiltonian systemmodeling language

This section presents a domain-specific modeling language
(DSML) based on PHS and uses principles of model-
integrated computing [19]. In order to accurately model the
interactions of different components in the systems, ports
are used as interfaces between different elements and sub-
models [38]. Figure 4 depicts a PHS, where a set of ports
(control, interaction, resistive, and storage) are intercon-
nected through a Dirac structure [11]. PHSML is developed
using Generic Modeling Environment (GME), based on
the model-integrated computing tool suite developed at
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Fig. 4 Port-Hamiltonian system [11]

Institute for Software Integrated Systems at Vanderbilt Uni-
versity [15]. GME provides a meta-modeling environment
to create a DSML and allows for the construction of domain
models through a collectionof objects and connectors defined
for a specific domain. Hierarchical composition is supported
through model elements.

PHSML encodes all modeling and connection rules spe-
cific for PHS. The model is developed in GME as a PHSML
model. A model translator, i.e., interpreter, processes the
structural information of the PHSML model and creates a
PHSmodel characterized by Dirac structures and constituent
equations of ports. The top-level hierarchy of PHSML is
called component assembly that consists of components,
which serve as the objects, and bonds, which serve as the
connections. A component is defined as an object consist-
ing of a Dirac structure, a set of internal ports, and a set of
external ports. The most important modeling element to each
component is the Dirac structure, which describes the power-
conserving interconnection structure of each component. The
ports (which are also denoted as atoms) have dynamicswhich
relates their power-conjugate variables through constituent
equations. The equation attribute allows the user to spec-
ify the constituent equations of the port with respect to the
power-conjugate variables, effort and flow.

Once a model is created out of PHSML, an interpreter is
used to generate the equations of the model. The first part
of the interpreter is Algorithm 1 which transforms the PHS
system into a set of acausal equations describing the Dirac
structure.

Algorithm 1 Dirac Structure Generation
-for all Components
- for all Power-conserving elements
- Find E and F based on pattern;
- while Interconnections left
- Substitute Dirac structure equations to form combined Dirac
structure;

However, acausal equations are not conducive to simula-
tion, which is why we need to generate the causal equations,
using Algorithms 2:

Algorithm 2 Equation Generation
-for all Components
- Swap all source of flow columns;
- Remove all resistive columns;
- while There are still unassigned interactions
- Find component with greatest interaction to constraint ratio;
- Propagate interaction assignment;
- Put back all resistive columns;
- Determine which resistive columns to interchange;
- Swap said resistive columns to obtain full ranked F ;
- J ← −F−1E ;

The most important goal of PHSML is to ensure that
models are valid PHS. Constraints are implemented in the
PHSML meta-model to ensure that certain interconnections
between PHSML modeling elements, which will violate the
underlying property of PHS, are not allowed. There are two
types of constraints: (a) directional connections and connec-
tions betweenmodeling types and (b) amodel transformation
software component defines a set of rules, which require a
specific number of connections for each object. A valid PHS
is required in order forAlgorithms 1 and 2 to run and generate
the equations of the model. Once the equations are gener-
ated, we can use MATLAB/Simulink to simulate the system.
Additional information about PHSML can be found in [5].

4.4 Model validation

Validation of the analytical vehicle dynamics model is
important for subsequent steps of the model-based design
methodology. We use the CarSim S-function of a mid-size
sedan for the HIL platform as the actual model [2]. Passivity
indexes allow a way to characterize a system by determining
its excess or shortage of passivity [40]. By selecting param-
eters so that the passivity indexes of the analytical models
are similar to that of the CarSim model, we can conclude
that the analytical models are reasonable approximations of
the actual vehicle dynamics. The CarSimmodel has inherent
bounds on its inputs [2]. The throttle angle valve (θ f ) has a
lower bound of 0 and an upper bound of 1.5. The brake pres-
sure (Pb) has a lower bound of 0 and upper bound of 10. The
steering angle (δ) has a lower bound of −480 and an upper
bound of 480 [2]. Using these CarSim variable bound values
we mathematically determine that Ta has a lower bound of
0 N and an upper bound of 3104 N, Tb has a lower bound of
0 N and an upper bound of 3715 N, and Tl has a lower bound
of −1200 N and an upper bound of 1200 N.

We experimentally selected values for the vehicle model
(Table 1) so that the passivity indexes of the analytical model
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Table 1 Table of vehicle parameter values

a b c Cr lr C f l f

0.1 0.006 10 200 1.4 300 1.4

closely match that of the CarSim model by running both
models through twenty scenarios and optimizing the passiv-
ity index values using the method in [17]. The CarSimmodel
gives themass (m = 1650) and the inertia (I = 3234). Using
the techniques demonstrated in [39], we determine that the
passivity indexes of the CarSimmodel (νc, ρc) are (181, 0.6).
We determined that the passivity indexes of the analytical
model (νa , ρa) are (177, 0.6), indicating that the analytical
model is a reasonable approximation of the CarSim model.

5 Continuous-time control design

Given themodel of a physical system implemented as a PHS,
we can design controllers which enable the closed-loop sys-
tem to behave correctly. Our objective is to design controllers
modeled as PHS which interface with the physical sys-
tem through designated power ports, thereby regulating the
behavior of the closed-loop system.We use passivity analysis
in order to ensure that the closed-loop system remains stable,
is minimum-phased, and has a low relative degree [20]. The
Simulink model generated from the controller PHS is used
as the initial control design for the HIL platform.

A high-level system model of the vehicle dynamics inter-
acting with the controllers (consisting of a speed control
and steering control) is shown in Fig. 5. The controllers
are implemented as PHS, and they interact with the vehi-
cle dynamics through the power ports of Ta , Tb, and Tl ,
which were previously defined in the beginning of Sect. 4.
Transformation of PHS into Simulink is a relatively simple
procedure because the PHS equations are written in a format
similar to state-space representation. State variables and sub-
sequent computations are linked together through integrators
and adders.

5.1 Automotive control design

The objective of the controllers is to maintain a desired speed
Vd and lateral displacementqd . The controllermodel consists
of a speed control component, a steering control component,
and an interaction structure. The speed control shares the two
control portswith the longitudinal dynamics and contains two
interaction ports (da1, za1) and (da2, za2). Its state variables

xa = [
xat xab

]T
are derived using the desired speed, where

xat = ∫ t
t0
(Vx − Vd)dτ and xab = ∫ t

t0
(Vd − Vx )dτ . The steer-

ing control shares the control port with the lateral dynamics

Fig. 5 PHS representation of the controllers interacting with vehicle
dynamics

Fig. 6 Lead vehicle and host vehicle on a straight road

and contains two interaction ports (db1, zb1) and (db2, zb2).
Its state variable xb = qy − qd is derived using the desired
lateral displacement.
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5.1.1 Speed control

The control objective of the speed control system is to prevent
the host car from colliding into the lead car by maintaining a
safe distance between the vehicles and a desired speed. For
simplicity we consider the case shown in Fig. 6 in which the
vehicles are driving on a straight road, which allows us to
disregard the lateral dynamics. We design the speed control
to have the following Hamiltonian function:

Ha(xa, s) = 1

2

(
st kti x

2
at + sbkbi x

2
ab

)
,

where kti and kbi are the gains of the Hamiltonian. The dis-
crete variables s = (st , sb) ∈ {0, 1} are used to model the
hybrid dynamics of throttling and braking. The switching
dynamics are defined in (9), where h+ and h− are hystere-
sis constants introduced to prevent the system from rapidly
alternating between accelerating and decelerating, and Xr

and Xd are the relative distance between the two vehicles
and the desired distance, respectively:

{
(st , sb) = (1, 0) for Vd − y1 ≥ 0, Xr ≥ h+Xd ,

(st , sb) = (0, 1) for Vd − y1 < 0, Xr < h−Xd .
(9)

We design the speed control as an input–state–output
PHS with direct-feed-through which is a modified version
of (4) [38]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = [J (x) − R(x)] ∂H
∂x + G(x)u + K1(x)d1

y = GT(x) ∂H
∂x + [M(x) + S(x)]u + K2(x)d2

z =
[
K1(x)T 0

0 K2(x)T

] [
∂H
∂x
u

]
,

(10)

where M(x) ∈ R
m×m is a skew-symmetric interconnection

matrix and S(x) ∈ R
m×m is a symmetric positive semi-

definite damping matrix. We design the speed control in the
form of (10) because the feed-through term helps to ensure
zero steady-state error [11]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋa = −Ra
∂Ha
∂xa

+ Ga yx + Ka1da1

ux = GT
a

∂Ha
∂xa

+ Sa yx + Ka2da2[
za1
za2

]
=

[
K T
a1 0
0 K T

a2

] [
∂Ha
∂xa

yx

]
,

(11)

where Ka1 = [
1 0

]T
and Ka2 = [

1 0
]T
. The parameter

matrices are denoted as:

Ra =
[
st kt 0
0 sbkb

]
, Ga =

[
st P 0
0 sb

]
,

Sa =
[
st ktd 0
0 sbkbd

]
,

Fig. 7 Nonlinear function P

Fig. 8 Diagram of lead vehicle and host vehicle on a curved road

where kt and ktd are throttle control gains. kb and kbd are
brake control gains. P is derived from the inverse engine
map for the vehicle and is a mapping of the ratio of the
acceleration force to Vx (Fig. 7) [12].

5.1.2 Steering control

In this section we consider the control objectives of a vehicle
with both speed and steering control. In addition to main-
taining a safe distance between it and the lead vehicle, the
host car must also maintain a reasonable lateral acceleration
as to not spin off the road (see Fig. 8). This is a result of
interactions between the lateral and longitudinal dynamics,
characterized in (7). We consider the case shown in Fig. 8
in which the lead vehicle and host vehicle are driving on a
curved road. We design the steering control to have the fol-
lowing Hamiltonian function:

Hb(xb) = 1

2
ksi x

2
b ,
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where ksi is the gain of the Hamiltonian.We design the steer-
ing control in the form of (10):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋb = yl + db1

Tl = ∂Hb
∂xb

+ ksd yl + db2[
zb1

zb2

]
=

[
1 0
0 1

] [
∂Hb
∂xb

yl

]
,

(12)

where ksd is the steering control gain.

5.1.3 Controller interactions

It can be seen from (8) that the inputs to the longitudinal
dynamics (Ta and Tb) affect the lateral dynamics. Similarly,
the input to the lateral dynamics (Tl ) affects the longitudinal
dynamics. This can create problems such that at high speeds,
actions by the speed control may interfere with the objective
of the steering control. In order to alleviate this problem, we
introduce an interaction structure so that the state variables
and outputs of the speed control are affected by the state
variable of the steering control, and vice versa. Similar to (7),
the interaction structure of the control system is represented
with the following Dirac structure:

⎡
⎢⎢⎣
da1
da2
db1
db2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 Jc 0
0 0 0 Mc

−J Tc 0 0 0
0 −MT

c 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
za1
za2
zb1
zb2

⎤
⎥⎥⎦ . (13)

The parameters Jc and Mc define how the speed control
and the steering control interact. The Hamiltonian function
of the composed control system is denoted as Hc = Ha +
Hb. Composition of (11) and (12) through (13) results in the
following PHS representation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ =
[
−Ra Js

−J Ts 0

]
∂Hc
∂x +

[
Ga 0
0 1

]
y

u =
[
GT

a 0

0 1

]
∂Hc
∂x +

[
Sa Ms

−MT
s ksd

]
y,

(14)

where Js = [
Jc 0

]T
, Ms = [

Mc 0
]T
, and x = [

xat xab xb
]T
.

5.2 Passivity analysis

The passivity property of a system is defined in terms of its
inputs and outputs. For a passive system, the energy stored
in the system is equal to the external energy coming into
the system subtracting the energy leaving the system and the
energy dissipated in the system [20]. Regardless of the rep-
resentation, Dirac structures establish the power-balancing
equation which is fundamental to PHS.

t∫
t0

eTI f Idτ +
t∫

t0

eTC fCdτ = H(x) −
t∫

t0

eTR fRdτ. (15)

Equation (15) implies that the component is passive with
respect to a supply energy of

∫ t
t0
eTI f Idτ + ∫ t

t0
eTC fCdτ and

dissipated energy of
∫ t
t0
eTR fRdτ as long as the storage func-

tion is positive definite.

Theorem 1 The closed-loop system (14) is passive with
respect to inputs y, outputs u, and Hamiltonian function
Hc = Ha + Hb if kti , kbi , kt , ktd , kb, kbd , ksi , ksd ≥ 0.
Additionally, (14) will asymptotically stabilize the velocity
Vx and the lateral position qy to the desired velocity Vd and
lateral position qd , respectively.

Proof Passivity of the composed control system is proven
using the energy-balancing equation:

dHc

dt
= ∂Hc

∂x

T
[
−Ra Jc

−J Tc Jl

]
∂Hc

∂x
+ ∂Hc

∂x

T
[
Ga 0

0 Gl

]
y

≤ uT y − yT
[
Sa 0

0T Sl

]
y.

Passivity of the system is shown by the inequality dHc
dt ≤

uT y. Asymptotic stability of the closed-loop system is shown
by combining (8) with (14). The PHS representation of the
closed-loop system is:

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣q̇
ṗ
ẋ

⎤
⎦ =

⎡
⎣ −M̃ M̃ 0

−M̃T J̃ K̃
0 −K̃ T −Q̃

⎤
⎦

⎡
⎢⎢⎣

∂ H̃
∂q
∂ H̃
∂ p
∂ H̃
∂x

⎤
⎥⎥⎦ ,

where M̃ , J̃ , K̃ , and Q̃ are defined as:

M̃ = diag

(
1

m
,
1

m
,
1

I

)
, J̃ =

⎡
⎢⎣

0 Mc
m 0

−Mc
m

T
0 0

0 0 0

⎤
⎥⎦ ,

K̃ =
⎡
⎢⎣
st kti P 0 0

0 sbkbi 0
0 0 ksi

l f

⎤
⎥⎦ , Q̃ =

⎡
⎢⎣
st kt − Jc

m 0
Jc
m

T
sbkb 0

0 0 0

⎤
⎥⎦ ,

with a modified Hamiltonian function, H̃(q, p, z):

H̃ = st ktd
2m

(mVd − px )
2 + sbkbd

2m
(px − mVd)

2

+ 1

2m
p2y + 1

2I
p2r + ksd

2
(qy − qd)

2

+ st kti
2

x2at + sbkbi
2

x2ab + ksi
2
x2b ,
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which we can use to verify that ˙̃H is always less than or equal
to zero and that px = mVd and qy = qd at the boundary. ��

The proposed approach has established a compositional
framework formodeling systems as interacting PHS. Further,
passivity analysis is used to select the control parameters and
prove stability of the closed-loop system. Next, our goal is
to implement the continuous-time control design. First, we
discretize and quantize the controllers while ensuring that
passivity and, therefore, system stability are preserved. Then,
we generate and deploy the control software, and we sched-
ule the execution to ensure that passivity is preserved in the
control system implementation.

6 Control system implementation

6.1 Discretization

Although the continuous-time control system models are
useful for early stages of design and validation, they can-
not be directly used in the HIL simulation platform. Given
a continuous-time controller PHS, discretization is required
to generate the C code for deployment on the ECUs in the
platform. The objective of discretization is to convert the
controllers from continuous-time PHS to discrete-time PHS.
Prior to discretization, the continuous-time PHS is repre-
sented using block diagrams in a continuous-time Simulink
model. Transformation of a continuous-time Simulinkmodel
into a discrete-time Simulink model is a procedure involving
bilinear transformations, up-samplers, and down-samplers.
State variables and subsequent computations inside the con-
trollers are linked together through delays and adders. In this
step we discretize the PHS controllers using sampling peri-
ods of 10, 30, and 50 ms. We employ discrete-time passivity
in order to ensure that the closed-loop system will remain
passive.

Discretization does not affect the high-level systemmodel
of the vehicle dynamics interacting with the controllers.
However, passivity is a property that degrades under dis-
cretization [1,24]. Intuitively, the larger the sampling period,
the greater the degradation. Figure 9 shows a visual repre-
sentation of the parameter space for the control system being
progressively restricted as the system has continuous-time
passivity then discrete-time passivity imposed on itself as
constraints. The standard discretization relates the discrete-
time input ud(k) to the continuous-time input u(t) using
zero-order holds in that the continuous time t is bounded
by kts and (k + 1)ts , where k is a nonnegative integer and
ts is the sampling period. The discrete-time output yd(k)
relates to the continuous-time output y(t) by a sampler
yd(k) = y(kts). A crucial information here is that even if
the original continuous-time system is a passive PHS, its

Fig. 9 Constraints on the control parameter space

discretization is not necessarily passive [32]. To circumvent
this problem, a different discretization approach is developed
in [4] in which the discrete-time output is modified as

yd(k) = 1

ts

(k+1)ts∫
kts

y(t)dt .

This discretization approach guarantees that the resulting
discrete-time system is passive and thus able to be ana-
lyzed using passivity-based control methods. However, the
approach has a shortcoming in that it requires a future out-
put value of y(t) at (k + 1)ts which may not be possible
to obtain if the system is highly nonlinear. Given this fact,
we discretize (14) using the standard method and choose a
sampling period so that the system satisfies the discrete-time
passivity inequality:

ts

N∑
k=0

ud(k)
T yd(k)≥μd ts

N∑
k=0

∥∥ud(k)∥∥2+ρd ts

N∑
k=0

∥∥yd(k)∥∥2 ,

(16)

where N is a positive integer, μd is a real number, and ρd
is a real number. In order to guarantee that the inequality in
(16) is satisfied, we have to ensure that the sampling period is
chosen so that the discrete-time passivity indexes are larger
than zero given μd = μ − tsγ − tsγ

∣∣ρ∣∣ − t2s γ 2
∣∣ρ∣∣ and

ρd = ρ − tsγ
∣∣ρ∣∣ [4]. Using the experimental passivity index

methods and the experimental data of the controllers from
Sect. 4, we compute the passivity indexes and finite L2 gain
of the controllers as μ = 0.8, ρ = 5.6, and γ = 2. We find
that the discretized system will be passive given a sampling
period smaller than ts ≈ 55 ms.

6.2 Quantization

Quantization is the mathematical process in which a large set
of input values is rounded and truncated down to a smaller
set and is needed as a result of hardware limitations on the
ECUs, leading to the fact that floating-point data cannot be
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processed. The objective of quantization is to convert the
floating-point discrete-time PHS into fixed-point discrete-
time PHS. This procedure involves using the MATLAB data
command fixedt() and data conversion blocks between the
CarSimS-functions and controllers. State variables and other
variables are rounded and truncated into fixed-point data val-
ues.

The ECUs that we use to implement the control sys-
tem require either 16- or 32-bit fixed-point data types in its
operation and computation, which necessitates a concern for
passive quantization. In Simulink the quantization process is
done using MATLAB’s Fixed-Point Toolbox, in which the
word lengths for all data are set as fixdt(1, 16, 8) and fixdt(1,
32, 16) for 16- and 32-bit data types, respectively [23].
Simulink’s quantizer is a uniform mid-tread quantizer and
is considered to be a passive quantizer, which is a concept
introduced in [43] where the input v and output u mappings
are bounded by two lines of slopes a and b, av2 ≤ uv ≤ bv2.
However, even though the quantizer is passive it does not nec-
essarily mean that the quantized system is passive. In order
to ensure passivity for the quantized systemwe implemented
the transformation block M from [43] using the values of
m11 = 2,m12 = −0.36,m21 = 0, and m22 = 1, which are
computed using the passivity indexes of the controllers.

6.3 Code generation and compilation

The objective of the code generation is to convert the dis-
cretized and quantized Simulink models into C code that
will be executed in theHIL platform. This procedure involves
the SimulinkCoder (previously calledReal-TimeWorkshop)
which automatically generates the necessary C code. In our
case, the control tasks execute in the kernel space ofRT-Linux
(under which floating-point computation is not supported),
and each variable is of integral type. According to the avail-
able bits in a word and the value ranges, this can be achieved
using Q format [18]. For example, in the case of a 32-bit
word size, the data type of all signals in the Simulink model
is set as fixdt(1, 32, 16), which means that there are 1 sign
bit, 15 integer bits, and 16 fractional bits in this Q format.
The Simulink Coder generates codewith proper computation
according to the chosen fixdt.

The code generated from the Simulink models is in C,
which is compiled in order for deployment on the platform.
The objective of the compilation is to deploy the control
software C code onto the ECUs. In this procedure, we use
gcc-4.2.4 together with the TTEthernet configuration file
generated by the TTTech tool-chain to compile the gener-
ated C code, which is linked with the provided TTEthernet
driver to become a kernel module. This kernel module does
the computation and drives the Ethernet port of the ECU in a
time-triggered fashion, namely that there is a static schedule

Fig. 10 Histogram of worst-case execution time

table specifying when to compute and communicate based
on a synchronized global time.

6.4 Timing analysis

The objective of timing analysis is to compute the WCET of
the control tasks. In our case, the procedure involves empir-
ically measuring the execution times of the designed control
task (i.e., recording the time difference between each start
and end of the execution of the task) through multiple runs
under multiple circumstances. In our experiment, there are
12,000 measurements recorded, and we can plot them to
observe the distribution, as shown in Fig. 10. (In order to
show the frequencies of the execution times clearly, we use
log10(number of times + 1) on the y-axis.)

From the figure, we can observe that the majority of the
execution times fall in the range of 3500–4100 ns. However,
there are several times in which the execution times become
bigger than 8000 ns. According to our measurements, we
can obtain the observed best-case execution time (BCET)
as 3317 ns and the observed WCET as 10,005 ns. Since
the measurement-based WCET estimation approach cannot
achieve an exhaustive analysis, it is common in industry that
the observed WCET is augmented by an ad hoc “scale fac-
tor.” In our case, we set the scale factor to 3, so that theWCET
of the control task is 30,015 ns.

6.5 Scheduling

The underlying execution model of our test bed platform is
a time-triggered architecture (TTA) which maintains a syn-
chronized global time base and requires a static schedule
table for both computation and communication. The objec-
tive of scheduling is to generate a feasible static schedule for
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Fig. 11 Trajectory of the test track

the control tasks and messages. In general, there are many
scheduling approaches for TTA combining computation and
communication [28]. In our case, we have one control task
whose WCET is almost negligible, thus needing only two
time-triggered messages. (One is for sensing, and the other
is for actuation.) The measured WCET reveals that the com-
putation is almost negligible (only about 30 µs) compared
to the sampling period (which is on the millisecond level);
therefore, the schedulability problem becomes trivial in our
experiments.

As mentioned above, the static schedule table is located in
the TTEthernet configuration file generated by the TTTech
tool-chain [35]. The main input to the tool-chain is a Python
script which specifies the topology of the system as well

as the hyper-period, the synchronization, and each message
configuration. According to the input script, the tool-chain
can generate corresponding configuration files in C for the
ECUs (and binary files for other components in the system).
The generated C files are compiled into a kernel module as
mentioned above. The static schedule table in a generated
C file only specifies how the messages are transmitted and
received in a time-triggered fashion. Therefore, we need to
manually add control tasks into the table with the appropriate
time offsets according to the created feasible schedule. In this
case, a control task becomes a kernel-space application task
that is invoked periodically by the timer interrupt service
routine with respect to the schedule.

7 Testing using a HIL simulation platform

The objective of the testing is to verify the correctness of the
design and to record simulation results that demonstrate its
effectiveness. Our HIL simulation of the closed-loop system
consists of two minutes of running time in which the host
vehicle follows a lead vehicle on a road with a trajectory as
shown in Fig. 11. This trajectory is comprehensive because
it contains many curves and straight segments which will
test the effectiveness of the control design. Information from
the trajectory is encoded into the vehicle model provided
by CarSim, which is then given to the controllers via the
communication network.

This procedure involves the implementation of the archi-
tecture shown in Fig. 12. The physical dynamics modeled in
CarSim is deployed as a real-time (RT)-Target so that it acts as
a real vehicle. TheRT-Target is also integratedwith a TTTech

Fig. 12 HIL simulator
architecture
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Table 2 Table of controller gains

kti kbi kt ktd kb kbd ksi ksd Jc Mc

0.05 0.01 0.1 0.02 0.2 0.02 40 15 0.2 − 0.5

PCIe-XMC card which enables the seamless integration and
communication with the ECUs on a time-triggered network.
The HIL simulator has three ECUs which are connected to
an 8-port 100 Mbps TTEthernet development switch from
TTTech [35]. Each ECU is an IBX-530W box with an Intel
Atom processor running a RT-Linux operating system and
is integrated with a TTEthernet Linux driver, which is a
software-based implementation of the TTEthernet protocol
in order to enable communication with the other systems in a
TTEthernet network. The automotive control software is dis-
tributed over the ECUs, and the tasks execute in the kernel
space of RT-Linux which can utilize the synchronized time
base off of the TTEthernet communication. The controllers
are deployed on ECU1 and communicate with the RT-Target
via the TTEthernet network which provides a synchronized
time base for computation and communication.

Using the constraints provided by passivity, we select con-
trol parameters so that the overall system remains passive.
Table 2 shows the gain values of the controllers, which are
computed using power-shaping stabilization. Power-shaping
stabilization is a technique which originated from the control
of passive RLC circuits; the method shapes the energy of the
system by equating the storage function with the difference
between the total energy in the system and the energy pro-
vided by the controller [9]. We experimentally verified that
the power-shaped closed-loop system retains passivity given
the sampling periods of 10, 30, and 50 ms using (16).

In order to ensure that the system remains passive during
quantization, we must implement a transformation matrix
M , in addition to using a passive quantization scheme. For-
tunately, the quantization scheme which Simulink uses is a
passive quantization. The transformation matrix M ensures
the passivity of a quantized system by offsetting the effects
of quantization on the inputs and outputs of the system [43].
The choice of M is not unique, which indicates that there is
more than one valid transformation; as long as the matrix is
invertible and satisfies the equations, it can be used to pre-
serve passivity. Using the transformation matrix M , we are
able to guarantee that the control system retains passivity
given a quantization of 16 bits or 32 bits.

By ensuring that the system remains passive given dis-
cretization and quantization, we validate the control design
using the HIL simulation results to show that the vehicle
behaves correctly given changes in lead vehicle speed, road
curvature, and slope of the road. The lead vehicle starts at a
speed of 60 km/h and runs for forty seconds, before speeding
up linearly to 85 km/h for twenty seconds. The lead vehicle

Fig. 13 Vehicle velocities and relative distances at 32-bit quantization

Fig. 14 Vehicle lateral accelerations and displacements at 32-bit quan-
tization

maintains 85 km/h for ten seconds, before linearly slowing
down to 50 km/h. Given the six combinations of quantiza-
tion and discretization, we ran six HIL simulations in which
the discrete-time controllers are implemented using a com-
bination of sampling periods of 10, 30, and 50 ms with a
quantization of 16 bits or 32 bits. After generating the C
code from the six controllers, we computed the worst-case
execution time to being 12 µs.

Figure 13 shows the velocity of the lead vehicle and
the host vehicle under various sampling periods on the top
subplot and the relative distance between the two vehicles
under various sampling periods on the bottom subplot for
the case of 32-bit quantization. Figure 14 shows the lat-
eral displacement under various sampling periods on the
top subplot and the lateral acceleration under various sam-
pling periods on the bottom subplot for the case of 32-bit
quantization. The simulation results show that despite keep-
ing the objectives of speed and steering control, there is a
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Fig. 15 Vehicle velocities and relative distances at 16-bit quantization

Fig. 16 Vehicle lateral accelerations and displacements at 16-bit quan-
tization

noticeable difference between the different sampling peri-
ods. As the sampling period increases the controller reacts
more slowly to the behavior of the lead vehicle. Passivity
also degrades with greater sampling periods. We experimen-
tally computed the passivity indexes for the 10-ms case as
(0.7, 5.6), the 30-ms case as (0.4, 5.4), and the 50-ms case as
(0.1, 5.4).

Figure 15 shows the velocity of the lead vehicle and the
host vehicle under various sampling periods on the top sub-
plot and the relative distance between the two vehicles under
various sampling periods on the bottom subplot for the case
of 16-bit quantization. Figure 16 shows the lateral displace-
ment under various sampling periods on the top subplot and
the lateral acceleration under various sampling periods on
the bottom subplot for the case of 16-bit quantization. We
experimentally computed the passivity indexes for the 10-
ms case as (0.7, 5.5), the 30-ms case as (0.3, 5.3), and the
50-ms case as (0.1, 5.2). The simulation results show that

Table 3 Table of simulation scenarios

Scenario Time (s) Vl (km/h) Slope (◦) Turns

1 0–40 65 0 3

2 40–52 65–77 0 1

3 52–60 77–85 − 15 0

4 60–70 85 − 15 1

5 70–90 85–50 − 15 1

6 90–94 50 − 15 0

7 94–103 50 0 1

8 103–120 50 15 1

the transformation block managed to prevent any significant
degradation in passivity. Table 3 shows the various scenarios
that appear during the simulation.

The simulation results indicate that the system is able to
keep to the objectives of speed control and steering con-
trol despite changes in the lead vehicle speed, slopes, and
turns encountered by the host vehicle. By using a passive
PHS control framework, we are able to design the system to
safely avoid collisions and navigate roads by moving energy
between the steering control and the speed control depending
on the curvature of the road. For the design and implemen-
tation of controllers onto ECUs, an important objective is
ensuring that the control tasks satisfy both the execution time
and performance. Finding the appropriate sampling period is
important, because as the sampling rate increases, the sys-
tem performance decreases. From the results of this paper,
we can conclude that passivity is a good way to ensure the
performance of the controller by minimizing the passivity
loss from discretization.

8 Conclusion

The proposedmodel-based designmethodology in this paper
addresses the complexity challenges presented by the inter-
actions of components in CPS. The main advantage of the
proposed approach is that it guarantees that system passivity
and stability are preserved after the control design and imple-
mentation steps. The methodology creates an end-to-end
process in which physical systems are modeled, controllers
are designed and implemented, and the closed-loop system
is tested using a HIL simulation platform. The methodol-
ogy handles the interactions and facilitates the integration
of passive components to form a passive closed-loop sys-
tem. Passivity-based control is used ensure stable behavior
of the closed-loop system. We apply the model-based design
methodology to an automotive system to model the interac-
tions between the longitudinal and lateral dynamics before
integrating the vehicle with a speed and steering control. The
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closed-loop system is implemented on aHIL simulation plat-
form, and the results are recorded and show the effectiveness
of the methodology.
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