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Abstract. For power distribution networks with connected smart
meters, current advances in machine learning enable the service provider
to utilize data flows from smart meters for load forecasting using deep
neural networks. However, recent research shows that current machine
learning algorithms for power systems can be vulnerable to adversar-
ial attacks, which are small designed perturbations crafted on normal
inputs that can greatly affect the overall performance of the predictor.
Even with only a partial compromise of the network, an attacker could
intercept and adversarially modify data from some smart meters in a
limited range to make the load predictor deviate from normal prediction
results. In this paper, we leverage the dynamic data-driven applications
systems (DDDAS) paradigm and propose a novel data repair framework
to defend against these kinds of adversarial attacks. This framework
complements the predictor with a self-representative auto-encoder and
works in an iterative manner. The auto-encoder is used to detect and
reconstruct the likely adversarial part in the input data. Different recon-
struction results come up given different sensitivity levels in detection.
As new data flows in each iterative time step, the service provider contin-
uously checks the error of the previous prediction step and dynamically
trades off between different detection sensitivity levels to seek an over-
all stable data reconstruction. Case studies on power network load fore-
cast regression demonstrate the vulnerability of current machine learning
algorithms and correspondingly the effectiveness of our defense frame-
work.
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1 Introduction

In modern smart grids, accurate load forecasting is critical for managing the
infrastructure through targeted pricing and predictive maintenance. Advances
in machine learning enable the service provider to utilize data flows from smart
meters to perform load forecasting [9] using a deep learning model. However,
recent research [6] reveals that current machine learning algorithms proposed for
power system application scenarios can be vulnerable to adversarial attacks [11],
which are inputs with small designed perturbations added to normal ones that
can adversely affect the overall performance of the predictor [7,10]. In partially
compromised hierarchical power networks, an attacker could intercept and mali-
ciously modify data from some smart meters with small perturbations that can
still make the load predictor deviate from normal prediction results.

To address these issues, we adopt the dynamic data-driven applications sys-
tems (DDDAS) paradigm [3] in providing a novel data repair framework to defend
against such kind of adversarial attacks as shown in Fig. 1. This framework extends
our prior work [13] of a cloud-supported platform for sensor networks (e.g., smart
grid networks) to formalize general resilience testing procedures under adversar-
ial settings using the model-driven approach [4]. To the best of our knowledge, this
work is the first to introduce such a kind of dynamic data repair against adversarial
attacks [5], and make the following contributions in this paper.

– We present a framework that can formalize the security and resilience testing
in distributed sensor networks under adversarial settings;

– We design an iterative dynamic data repair scheme of Dropout-Detect-
Reconstruct-Tradeoff to boost the robustness of data using the DDDAS
paradigm for ongoing predictions; and

– We conduct a case study for distributed power network load forecasting to
demonstrate potential risks for machine learning predictors and the efficiency
of our defensive data repair framework.

The rest of the paper is organized as follows. Section 2 illustrates the the-
oretical background of our adversarial attack setting and dynamic data repair
framework in a step-by-step manner. Section 3 presents a case study to demon-
strate the capabilities of our framework on a power distribution network. Finally,
Sect. 4 concludes the paper and presents opportunities for future research.

Fig. 1. Overall workflow for dynamic data repair under adversarial attack
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2 Methodology

In this section we provide details of our approach. The techniques will be intro-
duced following the execution order of attack and defense. Our predictor is based
on deep learning. Specifically, the model absorbs data from distributed sensors
and fetches their values from current and some time steps back to predict the
total system load for the next time step.

2.1 Model of Stealthy Adversarial Attacks

To compromise the prediction system, an attacker intercepts and adds designed
perturbations to the normal data flow. Without loss of generality, we assume
that the attacker’s goal is to maximize the load prediction deviation. For this
scenario, larger ranges of input and output numerical value data space as well as
the adoption of anomaly detectors leads to higher complexity in attack settings.
To illustrate the vulnerabilities of the prediction system, we propose an attack
method adapted from the most popular adversarial attack called FGSM (Fast
Gradient Sign Method) [7], which generates adversarial perturbations using only
one single equation: η = ε · sign(∇xJ(θ, x, y)). Here θ represents the parameters
of the model, x represents inputs to the model, y refers to the targets associated
with x (for tasks with targets) and J(θ, x, y) is the goal loss function for deviating
the neural network. The magnitude constraint added to the original sample is
represented by ε.

With the presence of an anomaly detector, we reformulate an adversarial
attack [13] as an optimization problem which attempts to find the best synthetic
perturbations that maximize the prediction loss while keeping the modification
magnitude at a small enough level so as to go undetected. Compared to the
FGSM attack, we implement an iterative attack that allows each meter (value in
input data array) to have its unique modification value because the input range
may not be fixed. Our approach performs a number of iterations with small
step ratio and updates the gradient sign method from the output of the previ-
ous iteration. Intermediate results are first checked with the detector to remove
exposed parts and then sent into the next iteration for further exploration. This
procedure eventually generates an adversarial but undetected data sample.

2.2 Resilient Detection and Reconstruction

To detect compromised sensors, we use an auto-encoder as the self-representation
to build an anomaly detector. Auto-encoder models learn internal representa-
tions with the objective AE(x) = x mapping to the input distribution itself.
For the sensor network in our case study, we set individual detection thresholds
for each meter reading. After training the auto-encoder using the training data,
we use the training data to compute the fitting error (l2 Norm) for all sensors
and using maximum fitting deviation of each sensor as the error threshold for
anomaly detection. During the prediction phase, the auto-encoder takes inputs
and compares output residuals with the pre-computed thresholds and generates
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a list of sensors with the potential for adversarial attacks. In this way the detector
judges whether specific sensors in the network are likely to be compromised.

Such a static detection is still vulnerable to stealthy attacks and can be made
resilient when the input test sample first goes through a randomized dropout
step [2]. The detection runs with controllable sensitivity levels. With dctIter
dropout iterations, if no less than dctThres times the sensor has been marked
as anomaly if would be returned as a high likely adversarial sensor. Different
reconstruction results come up given different sensitivity levels in such a detec-
tion phase. In each detection iteration, a portion of the input data is randomly
dropped out and a reconstruction is conducted using the remaining data. The
residual between the original and the reconstructed data can be used to detect
the likely adversarial part of data. Based on the detection results, the likely
adversarial data part can be erased and reconstructed using the auto-encoder.

2.3 Iterative Dynamic Repair

The resilient detection and reconstruction procedure is configurable and sensitive
to measurements. One key property for prediction tasks like load forecasting is
that as new data flows in continuously, the system can utilize new data to validate
the quality of previous predictions for which the DDDAS paradigm [3] is best
suited to provide adaptive data repair against adversarial attacks as shown in
Algorithm 1.

For the resilient detection and reconstruction, given a fixed dropout rate, the
sensitivity can be adjusted with the number of detection iteration (dctIter)
and the detection iteration threshold (dctThres). Given the infinite number
of combination settings for the resilient detection, we consider three settings
with the least computation burden (sensitivity from high to low): (1) x1in2t ←
resCor(x, dctIter = 2, dctThres = 1) and (2) x1in1t ← resCor(x, dctIter =
1, dctThres = 1) and (3) x2in2t ← resCor(x, dctIter = 2, dctThres = 2).
We implement adjustments in iterative time steps to seek a balanced trade-off
between sensitivity levels. The overall prediction result with dynamic repair is
computed as a weighted sum of these three resilient reconstructions [12]. For
each time step, the system checks the previous prediction deviations from these
three levels and allocates higher weights for the least deviated reconstruction
level.

3 Empirical Validation of the Claims

3.1 Power System Setting

For data collection, we conduct a detailed simulation of an electric distribution
system using GridLAB-D provided by the Pacific Northwest National Laboratory
(PNNL) [8]. We selected the prototypical feeder of a moderately populated area
R1-12.47-3, and included representative residential loads like heating, ventilation
and air conditioning (HVAC) systems to the distribution network model [1]. In
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Algorithm 1. Dynamic Repair (dynRepair)
Require: x: original observation data flow; f : predictor; NumTime: number of exe-

cution time steps; resCor: resilient correction function; ErrThres: ideal prediction
error threshold; return: return function for each time step; y: ground truth value.

1: α = [1.0, 0.0, 0.0], αbias = 0.05, x ← x[0],t ← 1
2: pred, pred1in1, pred1in2, pred2in2 ← EmptyList
3: x1in1t ← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
4: x1in2t ← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
5: x2in2t ← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
6: pred[0] ← pred1in1t ∗ α[0] + pred1in2t ∗ α[1] + pred2in2t ∗ α[2]
7: while t < NumTime do
8: resPre1 ← abs(pred[t − 1] − y[t − 1], resPre2 ← abs(pred[t − 2] − y[t − 2]
9: if t > 1 and resPre1 > ErrThres and resPre1 > resPre2 then

10: res1in1 ← abs(pred1in1[t − 1] − y[t − 1])
11: res1in2 ← abs(pred1in2[t − 1] − y[t − 1])
12: res2in2 ← abs(pred2in2[t − 1] − y[t − 1])
13: idx = argmin([res1in1, res1in2, res2in2])
14: α ← α − αbias, α[idx] ← α[idx] + 3 ∗ αbias

15: end if
16: x ← x[t]
17: x1in1t ← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
18: x1in2t ← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
19: x2in2t ← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
20: pred[t] ← f(x1in1t) ∗ α[0] + f(x1in2t) ∗ α[1] + f(x2in2t) ∗ α[2],
21: return(pred[t]),t ← t + 1
22: end while

summary, our distribution model has a total of 109 commercial and residential
user loads. Smart meters are connected to end users and their usage data reports
are transmitted to the upper-level control center in a hierarchical manner. For
each hourly time step, the prediction model takes load data from distributed
meter readings in the past 24 h and also takes into account the temperature
data for the same period of time. We build a load forecasting model for this
power distribution network using a relatively large LSTM deep neural network
(with 3 LSTM layers of 150 units and 2 fully-connected layers of 200 units). The
predictor on the clean data generates a mean squared error (MSE) of 0.1255
(Mega Volt Amp) on the test data set for a total of 216 time steps.

The attack scenario is a manipulation of sensor data under reasonable con-
straints with full knowledge of the prediction and detection model. In each time
step, the attacker can manipulate a fixed number of meters in the network (10%–
50% in our experiments). Moreover, for each meter, the attacker is allowed to
deviate the meter reading by a limited level of 20%. Under these constraints, we
generate stealthy adversarial examples using the iterative attack method.
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3.2 Evaluating Reconstruction and Repair

We evaluate our dynamic data repair framework on various settings under strong
attacks with a maximum modification ratio of 20% for compromised sensors.
Figure 2 shows the prediction results when 40% of sensors in the network are
compromised in two ways: (a) shows absolute prediction deviations from normal
prediction results, and (b) shows mean absolute prediction deviations from nor-
mal prediction results of current prediction and all the ones prior to the current
time step. Even with a large portion of 40% sensors compromised, the adversar-
ial impact can still be mitigated to an overall practical level of 0.3 (Mega Volt
Amp).

(a) Absolute Prediction Deviation from Original Prediction

(b) Cumulative Mean Absolute Deviation from Original Prediction

Fig. 2. Predictions under 40% compromise and 5% detection dropout rate

We present experimental results under more flexible settings in Table 1, which
shows results under four levels of detection dropout rate: 5%, 10%, 20%, 30%
with 20, 40, 60, 80 reconstruction cycles. The error metric we chose is the most
commonly used mean squared error (MSE) over the test dataset. For different
attack rates, the best defense settings are marked in dark black. We can see
that low detection dropout rates with more detection cycles usually show more
stable prediction performances. From the figures we can also see that adversarial
impacts in this load forecast case usually occurs at peak points. Further, the data
repair framework successfully decreases prediction deviations at these vulnerable
points without much impact on other locations.
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The experimental results also clearly show the trade-off caused by the iter-
ative data repair. With a large number of detection iterations, the chance of
being totally stealthy for an adversarial sensor is reduced to a negligible level.
Meanwhile, low threshold settings lead to obvious negative impacts caused by
false alarms. From our experiments, the upper bound of this repair is deter-
mined by the performance of this self-representation model (auto-encoder here)
and therefore we can see that dynamic repair does not always show best perfor-
mance when the compromised sensor ratio is relatively low. This sensitive repair
might lead to an unstable prediction performance over detection iterations in
each time step. As shown in our experiments, this potential risk is most obvious
when the detection dropout rate is high. As a result, the combination of a rel-
ative low detection dropout rate along with more iterations would usually lead
to smoother and more stable performance.

Table 1. Prediction Mean Squared Error (MSE) under different settings

Drop/% adv/% natErr advErr resRec/numCycle resRec+dynRepair/numCycle

20 40 60 80 20 40 60 80

5 10 0.126 0.173 0.152 0.144 0.142 0.141 0.146 0.147 0.150 0.149

20 0.126 0.311 0.211 0.163 0.148 0.143 0.170 0.159 0.155 0.149

30 0.126 0.538 0.380 0.300 0.257 0.232 0.281 0.216 0.197 0.188

40 0.126 0.921 0.729 0.626 0.559 0.523 0.566 0.442 0.345 0.301

50 0.126 1.329 1.090 0.979 0.909 0.862 0.876 0.719 0.581 0.500

10 10 0.126 0.171 0.139 0.137 0.138 0.139 0.152 0.148 0.146 0.147

20 0.126 0.311 0.174 0.144 0.139 0.139 0.158 0.150 0.152 0.168

30 0.126 0.538 0.310 0.236 0.211 0.200 0.224 0.183 0.179 0.179

40 0.126 0.921 0.632 0.524 0.481 0.464 0.406 0.293 0.270 0.267

50 0.126 1.329 0.984 0.859 0.808 0.784 0.688 0.526 0.477 0.455

20 10 0.126 0.173 0.139 0.146 0.145 0.145 0.140 0.153 0.150 0.151

20 0.126 0.311 0.142 0.139 0.138 0.171 0.160 0.300 0.308 0.286

30 0.126 0.538 0.229 0.201 0.216 0.218 0.182 0.192 0.229 0.273

40 0.126 0.921 0.541 0.473 0.459 0.457 0.912 0.994 0.803 0.760

50 0.126 1.329 0.850 0.777 0.767 0.759 0.567 0.527 0.559 0.579

30 10 0.126 0.173 0.139 0.140 0.139 0.139 0.147 0.140 0.138 0.142

20 0.126 0.311 0.138 0.138 0.139 0.139 0.150 0.148 0.139 0.139

30 0.126 0.538 0.219 0.201 0.202 0.201 0.197 0.184 0.197 0.213

40 0.126 0.921 0.521 0.491 0.488 0.485 0.378 0.388 0.429 0.462

50 0.126 1.329 0.876 0.842 0.840 0.838 0.598 0.644 0.699 0.786

An important property of our approach is that it takes advantage of exist-
ing pre-trained models in a resilient way, which means it can be combined with
other defense techniques with no constraints. It is a generalized model deploy-
ment strategy to improve robustness that is easily transferable to other learning
settings.
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4 Conclusion

This paper demonstrated how to analyze and improve the robustness of learning-
based prediction models in power distribution networks using the DDDAS
paradigm. Given the existence of threats from stealthy adversarial attacks, we
first designed a resilient detection and reconstruction strategy using random-
ization elements. We then proposed a practical, iterative dynamic data repair
strategy to seek an optimal trade-off between reconstruction results from differ-
ent sensitivity levels. Our work not only shows the importance of introducing
randomization elements to increase robustness in learning-based systems but also
the effectiveness of deviation feedback for predictions on-the-fly. Even though
our defense framework has shown promising results, the computation cost for an
optimal defense efficiency can be very high thereby requiring new approaches to
simplify and accelerate computations for real time applications.
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