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Abstract—In this article, we study the problem of computing a
tight lower bound on the dimension of the strong structurally con-
trollable subspace (SSCS) in networks with Laplacian dynamics.
The bound is based on a sequence of vectors containing the dis-
tances between leaders (nodes with external inputs) and followers
(remaining nodes) in the underlying network graph. Such vectors
are referred to as the distance-to-leaders vectors. We give exact
and approximate algorithms to compute the longest sequences of
distance-to-leaders vectors, which directly provide distance-based
bounds on the dimension of SSCS. The distance-based bound
is known to outperform the other known bounds (for instance,
based on zero-forcing sets), especially when the network is par-
tially strong structurally controllable. Using these results, we dis-
cuss an application of the distance-based bound in solving the
leader selection problem for strong structural controllability. Fur-
ther, we characterize strong structural controllability in path and
cycle graphs with a given set of leader nodes using sequences
of distance-to-leaders vectors. Finally, we numerically evaluate our
results on various graphs.

Index Terms—Dynamic programming, graph algorithms, net-
work topology, strong structural controllability.

I. INTRODUCTION

Network controllability has been an important research topic in net-
work science and control. The notion of strong structural controllability
accounts for the controllability of all such networks that have the same
structure of an underlying network graph, that is, networks having
the same vertex and edge sets but possibly different (nonzero) edge
weights. A network is strong structurally controllable (SSC) with a
given set of input (leader) nodes if it is controllable for any choice
of (nonzero) edge weights in the underlying network graph. There
exist efficient algorithms to verify the strong structural controllability
of networks [2]–[5]. If a network is not SSC with a given set of
leader nodes, it is of interest to determine how far the network is from
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becoming SSC, or roughly speaking, how much of the network is always
controllable. More formally, this issue is concerned with computing the
dimension of the strong structurally controllable subspace (SSCS) (see
Section II-A). The complexity of this problem is unknown to the best
of our knowledge. However, we suspect that the problem is NP-hard
considering the size and generality of search space and similarity to
known NP-hard problems involving minimum rank computation, for
instance, [6]–[8].

In this article, we study the problem of computing a tight lower bound
on the dimension of SSCS of networks with Laplacian dynamics. Since
the exact computation of it is challenging, various bounds have been
proposed in the literature [5], [9]–[12]. Here, we consider a tight lower
bound proposed in [10], which relates the notion of strong structural
controllability to the distances between nodes in the underlying network
graph. In [13], we compare this distance-based bound with another
widely used bound based on the notion of zero-forcing sets [5], [12],
[14], [15]. Our analysis in [13] shows that the distance-based bound is
typically better than the zero-forcing-based bound, especially when the
network is not completely strong structurally controllable. Additionally,
the distance-based bound can be applied in exploring the tradeoff
between controllability and robustness in networks with Laplacian
dynamics [16], edge augmentation in networks while preserving their
strong structural controllability [17], and designing a leader selection
algorithm [10]. It also has applications for target controllability in linear
networks, where the goal is to control a subset of agents (targets) instead
of the entire network by injecting input through leader nodes [11], [14].
Despite these advantages, efficient computation of the distance-based
bound has been an issue, especially in large networks.

To compute the distance-based bound on the dimension of SSCS,
an algorithm has been presented in [10] that takes O(mn) time, where
n is the total number of nodes in the network and m is the number of
leader nodes. Here, we present an algorithm that takes O(m(n logn+
nm)) time to compute the distance-based bound, which is a significant
improvement. We note that for a fixed number of leaders, the algorithm
is polynomial in the number of nodes. For instance, in the case of two
leaders, our algorithm takes O(n2) time as compared to the O(2n)
runtime of the algorithm in [10]. When the number of leaders is on the
order of n, the algorithm will take exponential time. For such cases, we
also present a greedy algorithm that approximates the distance-based
bound and runs in O(mn logn) time. In our experiments, we observe
that the bound returned by the greedy algorithm is very close to the
optimal in almost all cases.

The main idea of the distance-based bound is to obtain distances
between leaders and other nodes, arrange them in vectors called
distance-to-leaders vectors, and then construct a sequence of such vec-
tors, called as pseudomonotonically increasing (PMI) sequence, which
satisfies some monotonicity conditions (as explained in Section II-B).
Computing distances between nodes is straightforward; however, con-
structing an appropriate PMI sequence, whose length provides a bound
on the dimension of SSCS, is computationally challenging. We provide
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efficient algorithms with performance guarantees to compute such
sequences.

Contributions: We provide dynamic programming-based exact al-
gorithm that runs in O(m(n logn+ nm)) time to compute an optimal
PMI sequence of distance-to-leaders vectors consisting of distances
between leaders and other nodes. Here, m and n denote the number
of leaders and nodes, respectively. The length of the sequence directly
gives a tight lower bound on the dimension of SSCS of networks with
Laplacian dynamics. We also propose an approximation algorithm that
computes a near-optimal PMI sequence of distance-to-leaders vectors
in practice and takes O(mn logn) time. If there exists a PMI sequence
of distance-to-leaders vectors of length n, then the network is strong
structurally controllable and the greedy algorithm always returns such
a sequence. Further, we analyze PMI sequences of distance-to-leaders
vectors in paths and cycles with arbitrary leaders. We also discuss
the application of distance-based bound in solving the leader selec-
tion problem for strong structural controllability and also provide a
numerical evaluation of results.

The rest of this article is organized as follows. Section II intro-
duces notations and preliminary concepts. Section III provides dynamic
programming-based exact algorithm to compute a distance-based
bound on the dimension of SSCS. Section IV presents and analyzes
a greedy approximation algorithm. Section V discusses application of
the bound to the leader selection problem. Section VI discusses cases
of path and cycle graphs. Section VII provides a numerical evaluation
of results. Finally, Section VIII concludes this article.

II. PRELIMINARIES

We consider a network ofndynamical agents represented by a simple
(loop-free) undirected graph G = (V,E), where the node set V =
{v1, v2, . . . , vn} represents agents, and the edge set E represents inter-
connections between agents.1 An edge between vi, vj ∈ V is denoted
by eij . The neighborhood of node vi isNi � {vj ∈ V : eij ∈ E}. The
distance between vi and vj , denoted by d(vi, vj), is simply the number
of edges on the shortest path between vi and vj . R+ is the set of positive
real numbers. The weight function

w : E → R+ (1)

assigns positive weight w(eij) to the edge eij . These weights define
the coupling strength between nodes.

Each agent vi ∈ V has a statexi(t) ∈ R at time t and the overall state
of the system is x(t) = [x1(t) x2(t) · · · xn(t) ]

T ∈ Rn. The agents
update states following the Laplacian dynamics:

ẋ(t) = −Lwx(t) +Bu(t) (2)

whereLw ∈ Rn×n is the weighted Laplacian matrix ofG and is defined
asLw = Δ−Aw. Here,Aw ∈ Rn×n is the weighted adjacency matrix
defined as

[Aw]ij =

{
w(eij) if eij ∈ E

0 otherwise
(3)

and Δ ∈ Rn×n is the degree matrix whose entries are

[Δ]ij =

{∑n
k=1 [Aw]ik if i = j

0 otherwise.
(4)

The matrix B ∈ Rn×m in (2) is an input matrix, where m is the
number of leaders (inputs), which are the nodes to which external

1The results presented can be extended to directed networks in a straightfor-
ward manner as the distance-based bound on the dimension of SSCS holds true
for directed networks also [10, Remark 3.1].

control signals are applied. Let V� = {�1, �2, . . . , �m} ⊆ V be the set
of leaders, then

[B]ij =

{
1 if vi = �j
0 otherwise.

(5)

A. Strong Structural Controllability

A state xf ∈ Rn is a reachable state if there exists an input u
that can drive the network in (2) from any initial state xi to xf

in a finite amount of time. A network G = (V,E) in which edges
are assigned weights according to the weight function w in (1), and
contains V� ⊆ V leaders is called completely controllable if every
point in Rn is reachable. Complete controllability can be checked
by computing the rank of the controllability matrix, Γ(Lw, B) =
[B (−Lw)B (−Lw)

2B · · · (−Lw)
n−1B ]. The network is com-

pletely controllable if and only if the rank of Γ(Lw, B) is n, and
in such case (Lw, B) is called a controllable pair. The range space
of Γ(Lw, B) describes the set of all reachable states, also called the
controllable subspace. Thus, the rank of Γ(Lw, B) is the dimension of
the controllable subspace. Note that edges in G define the structure—
location of zero and nonzero entries in the Laplacian matrix—of the
underlying graph. The rank of resulting controllability matrix depends
on the weights assigned to edges. For a given graph G = (V,E) and
leaders V�, rank(Γ(Lw, B)) could be different from rank(Γ(Lw′ , B)),
where w and w′ are two different choices of weight functions.

A network G = (V,E) with V� leaders is strong structurally con-
trollable if and only if (Lw, B) is a controllable pair for any choice
of weight function w, or in other words, rank(Γ(Lw, B)) = n for all
weight functions w. At the same time, the dimension of SSCS, denoted
by γ(G,V�), is

γ(G,V�) = min
w

(rank Γ(Lw, B)) . (6)

The minimum is taken over all weight functions w in (1). Thus,
γ(G,V�) is the minimum dimension of the controllable subspace that
can be attained from G with V� leaders and any choice of feasible edge
weights.

B. Distance-Based Lower Bound on the Dimension of SSCS

We use a tight lower bound on the dimension of SSCS as proposed
in [10]. The bound is based on the distances between nodes in a
graph. Assuming m leaders V� = {�1, . . . , �m}, we define a vector
of nonnegative integers called as the distance-to-leaders vector for a
node vi ∈ V as

Di =
[
d(�1, vi) d(�2, vi) · · · d(�m, vi)

]T
.

The jth component ofDi, denoted by [Di]j , is d(�j , vi), the distance
between leader �j and the node vi. Next, we define a sequence of
distance-to-leaders vectors, called as PMI sequence below.

Definition (PMI sequence): Let D be a sequence of distance-to-
leaders vectors andDi be the ith vector in the sequence. We denote the
jth component of the vector Di by [Di]j . Then, D is PMI if for every
Di in the sequence, there exists some π(i) ∈ {1, 2, . . . ,m} such that

[Di]π(i) < [Dj ]π(i) ∀j > i (7)

i.e., the above condition needs to be satisfied for all the subsequent
distance-to-leader vectorsDj appearing afterDi in the sequence. Here,
m is the number of leaders. We say that Di satisfies the PMI property
at coordinate π(i) whenever [Di]π(i) < [Dj ]π(i) ∀j > i.
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Fig. 1. Network with two leaders V� = {�1, �2} = {v1, v6}, along with
the distance-to-leaders vectors of nodes. A PMI sequence of length five
is D = [D1 D2 · · · D5] = [D6 D5 D1 D4 D2].

An example of distance-to-leaders vectors is illustrated in Fig. 1. A
PMI sequence of length five is

D =

[[
3
0©
]
,

[
2
1©
]
,

[
0©
3

]
,

[
2
2©
]
,

[
1©
3

]]
. (8)

Indices of circled values in (8) are the coordinates at which the cor-
responding distance-to-leaders vectors are satisfying the PMI property.
The length of the longest PMI sequence of distance-to-leaders vectors
is related to the dimension of SSCS as stated in the following result.

Theorem 2.1 [10]: If δ(G,V�) is the length of the longest PMI
sequence of distance-to-leaders vectors in a network G = (V,E) with
leaders V�, then

δ(G,V�) ≤ γ(G,V�). (9)

We note that for a given graphG = (V,E) and leader nodesV� ⊆ V ,
the length of the longest PMI sequence describes the minimum dimen-
sion of the controllable subspace for any feasible edge weights. In other
words, if the length of the longest PMI is k ≤ n, then the dimension
of the controllable subspace of the system is at least k, regardless of
the edge weights. Moreover, the bound in (9) is tight, as discussed
in [10]. For instance, for path graphs in which one of the end nodes is
a leader, and for cycle graphs in which two adjacent nodes are leaders,
we have δ(G,V�) = γ(G,V�). The dimension of SSCS and the length
of the longest PMI sequence of distance-to-leaders vectors are equal,
and hence, δ(G,V�) = γ(G,V�). We discuss the length of the longest
PMI sequences of distance-to-leaders vectors in path and cycle graphs
with arbitrary leaders in Section VI.

Our main goal is to compute a PMI sequence of maximum length,
and consequently, a lower bound on the dimension of SSCS. We provide
an exact algorithm in Section III and a greedy approximation algorithm
in Section IV.

III. EXACT ALGORITHM FOR THE DISTANCE BOUND

In this section, we provide a dynamic programming-based exact
algorithm to compute a longest PMI sequence of distance-to-leaders
vectors and, as a result, a distance-based lower bound on the dimension
of SSCS.

We note that each distance-to-leaders vector Di can be viewed as a
point in Zm, and without loss of generality, we may assume that points
Di are distinct. Otherwise, we can throw away multiple copies of the
same point since duplicate points can not satisfy the PMI property on
any coordinate. The following observation is crucial to our algorithms.

Observation 3.1: Given a set of points D1,D2, . . . ,Dn, if there
exists a point Di and an index j such that [Di]j < [Di′ ]j for all
Di 	= Di′ , then Di is a unique minimum point in the direction (co-
ordinate) j and there is a longest PMI sequence which starts with Di.
However, it is possible that there is no unique minimum in any direction.
This leads us to the definition of a conflict and conflict-partition.

Fig. 2. Graph with two leaders and a plot of distance-to-leaders vec-
tors as points in a plane. Point set X = {D1,D2,D3,D4,D5} consti-
tutes a conflict, where Xi = {D3,D4,D5} and Xj = {D1,D2}.

Definition (Conflict-partition): A conflict is a set of points X that
can be partitioned into X1,X2, . . . ,Xm such that all points Dp ∈ Xj

have [Dp]j = [Dq]j if Dq ∈ Xj , and [Dp]j ≤ [Dq]j if Dq /∈ Xj . Fur-
ther, |Xj | > 1 for all j. Such a partition is called conflict-partition or
c-partition for short.2

An example of conflict is illustrated in Fig. 2.
It is easy to see that a PMI sequence can not contain all points in

a conflict. In fact, we can strictly bound the number of points from a
conflict that can be included in a PMI sequence.

Lemma 3.2: Let X1,X2, . . . ,Xm be a c-partition of a conflict X
for a given set of points. Then any PMI sequence contains at most
|X | −min(|X1|, |X2|, . . . , |Xm|) + 1 points from X .

Proof: Let kj = |Xj | for all 1 ≤ j ≤ m for the partition defined in
the statement, then for the sake of contradiction, let us assume that there
is a sequence D′ that contains more points from X . Let Dp ∈ Xj be a
point that appears first in D′. If Dp satisfies PMI property on the jth
coordinate, then the remaining kj − 1 points with the same minimum
jth coordinate in Xj cannot be included in D′. So Dp must satisfy
PMI property on some j ′th coordinate for the following points in the
sequence, where j ′ 	= j. But then D′ must miss at least kj′ points that
have smaller or equal j ′ coordinate by the definition of conflict, which
is a contradiction. Thus, the claim follows. �

As an example, consider a set of pointsX = {D1,D2,D3,D4,D5}
in Fig. 2. There are two points with the minimum jth coordinate and
three points with the minimum j ′th coordinate (where j ′ = i). If D1

is picked as first point (among this set), we must either drop D2 or all
D3,D4,D5 for future consideration in the PMI sequence. Similarly, if
D3 is picked before everyone else, we can not pick either of D4,D5, or
any of D1,D2 for future consideration regardless of the other points.
Note that the bound in Lemma 3.2 is tight: if we remove |Xj | − 1 points
from the smallest part of a c-partition, all remaining points can satisfy
the PMI property on coordinate j unless some of these remaining points
are included in any other conflict.

In the following, we use the following notations.
1) Łj denotes a list of points ordered by the nondecreasing jth coor-

dinate.
2) Łj

i denotes the ith point in the list Łj .
3) Łji,k is the (integer) value of the kth coordinate of Łj

i .3

Let D be a set of n points in Zm. We can sort all points with respect
to all coordinates beforehand, so our algorithm will get m lists { Ł1,
Ł2, . . . , Łm} of n points each as input. Next, we design an algorithm
that is based on dynamic programming to compute the lower bound

2In general, parts of a partition do not intersect. For the lack of a better term,
we are slightly abusing this term in the sense that parts (Xi) intersect at most
one element.

3We recommend to use linked priority queues or similar data structure for
these lists so that one could easily delete a point from lists while maintaining
respective orders in logarithmic time.
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Algorithm 1: PMI - Dynamic Program.

1: procedure PMI-DP Ł1,Ł2, . . . ,Łm

2: zj be number of unique values of jth coordinate among all
points.

3: z = max(z1, z2, . . . , zm)
4: Define a m-dimensional array A with dimensions

(z + 1)× (z + 1)× . . . (z + 1)
5: Let Ac1,c2,...,cm , i.e. value of A at index set c1, c2, . . . , cm

represents α[c1,c2,...,cm] as in (10).
6: for k from 1 to m do
7: Ac1,c2,...,cm ← 0 for ck = z, ck′ ≤ z, k′ 	= k.
8: end for
9: for j from z − 1 to 0 do

10: for k from 1 to m do
11: Compute Ac1,c2,...,cm for ck = j, ck′ ≤ j, k′ 	= k

using (10).
12: end for
13: end for
14: return A0,0,...,0

15: end procedure

δ(G,V�) in polynomial runtime when the number of leaders is fixed.
Let {c1, c2, . . . , cm} be a set of nonnegative integers andD[c1,c2,...,cm]

be a longest PMI sequence in which the value at the jth coordinate of any
point is at least cj . Let α[c1,c2,...,cm] be the length of such a sequence.
Our algorithm will memoize on α[c1,c2,...,cm].

In the absence of conflict, Observation 3.1 guarantees that we can
start our sequence with any point with the unique minimum value in
some fixed coordinate. However, as suggested by Lemma 3.2, in case of
a conflict, we cannot include all points to PMI. Thus, we need to include
some of the points and exclude others. The longest PMI sequence can be
found by computing m subsequences corresponding to m coordinates
and taking the maximum. We conclude that α[c1,c2,...,cm] can be
obtained by the following recurrence:

α[c1,c2,...,cm] = max
1≤j≤m

(α[c1,c2,...,cj+1,...,cm] + 1cj ) (10)

where

1cj =

{
1 if ∃ Dp s.t. [Dp]j = cj and [Dp]

′
j ≥ cj′ ∀j ′ 	= j.

0 otherwise.
(11)

We plan to precompute and memoize all required values ofα[c1,...cd]

in a table. Clearly, there are infinitely many possible values for cj ;
however, we observe the following.

Observation 3.3: Let Łj
i,j and Łj

i,j+1 be the jth coordinate values
of two consecutive points in Łj , then

α[c1,c2,...,x,...,cm] = α[c1,c2,...,Ł
j
i,j+1,...,cm]

for all x, such that Łj
i,j < x ≤ Łj

i,j+1.
Observation 3.3 implies that there are at most n different values for

each variable cj , which gives at mostn unique values forα[c1,c2,...,cm].
Thus, we only keep a table of size nm for computation and storage of
solutions to all subproblems.

We now state and prove the main result of this section.
Theorem 3.4: Given a graph G on n vertices, and m leaders,

Algorithm 1 returns a longest PMI sequence of distance-to-leaders
vectors in O(m(n logn+ nm)) time.

Proof: The correctness of Algorithm 1 follows from Observa-
tion 3.1, Observation 3.3, and Lemma 3.2 so all that remains is to
prove the time complexity. Computing sorted lists Ł1,Ł2, . . . ,Łm takes

Algorithm 2: PMI-Greedy Algorithm.

1: procedure PMI-GreedyŁ1,Ł2, . . . ,Łm

2: D ← ∅ � Initially empty sequence
3: while Ł1 	= ∅ do
4: Xj ← {Łj

i : Łj
i,j = Lj

1,j} for all j.
5: if ∃j such that |Xj | = 1 then � Unique min.
6: D ← [D Xj ]
7: Remove Xj from all lists.
8: else
9: Let j ′ ← arg minj |Xj | �Get smallest Xj

10: D ← [D Łj′
1 ]

11: Remove all points in Xj′ from all lists.
12: end if
13: end while
14: return D
15: end procedure

O(mn logn) time. Each value of Ac1,c2,...,cm can be computed by
taking the maximum of m known values previously computed, and
saved in multidimensional array A. The value of 1cj can be computed
in constant time by checking whether element at the last index of Łj has
the jth coordinate equal to cj as defined in (11). The multi-dimensional
array A contains at most nm values at the completion each of which
takes constant amount of time to compute. Therefore, running time of
this algorithm is bounded by O(m(n logn+ nm)). �

An example illustrating the algorithm is provided in [18].
Remark 3.5: We note that an exact algorithm to compute the longest

PMI sequence inO(mn)was proposed in [10]. Sincem is much smaller
than n typically, the dynamic programming solution in Algorithm 1
computes the longest PMI sequence in a much lesser O(m(n logn+
nm)) time.

IV. LINEARITHMIC TIME APPROXIMATION ALGORITHM FOR THE

DISTANCE-BASED BOUND

In this section, we discuss a greedy algorithm that takes linearithmic
time to approximate the lower bound δ(G,V�). The algorithm gives
very close approximations in practice, as illustrated numerically in
Section VII. We also discuss the approximation guarantees of the
algorithm. The main idea behind the greedy algorithm is to make locally
optimal choices when faced with the situation in Lemma 3.2, that is,
when including a point in PMI results in discarding a subset of points
from possible future consideration. In this case, the best thing to do
locally is to pick a point that results in the loss of the minimum number
of other points. The details are provided in Algorithm 2. An illustration
of this algorithm is given in [18].

Proposition 4.1: Algorithm 2 computes a PMI sequence in
O(mn logn) time. The length of the PMI sequence returned by the
algorithm is a min(m, n

m
)-approximation to the optimal length, where

m is the number of leaders and n is the total number of nodes.
Further, the approximation ratio of PMI lengths is logn if m ≤ logn
or m ≥ n

logn
.

Proof: Regarding the time complexity, computing sorted lists
Ł1,Ł2, . . . ,Łm takes O(m× n logn) time. Once we have m sorted
lists, we can keep the indices and count of points with the minimum
coordinate value in (m+ 1) min-priority queues (m queues to maintain
lists Ł1,Ł2, . . . ,Łm and one queue for X1,X2, . . . ,Xm). Cost of one
update, or delete operation is O(logn) in a priority queue. Since we
will update and/or delete at most n points from m queues. In total we
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will perform at most m× n deletions and m× n updates, thus, the
overall time complexity is O(mn logn).

Regarding the m-approximation ratio, we observe that there are at
least n

m
different values in at least one coordinate. Otherwise, we may

assume that we have at most n
m
− 1 unique values in each coordinate.

This would imply that there are at most ( n
m
− 1)×m distinct points

by the pigeonhole principle, which contradicts that we have n unique
points. As Algorithm 2 picks all distinct values in any coordinate, the
returned PMI sequence has a size of at least n

m
. Note that there is at

least one unique minimum point (corresponding to the leader itself) in
each of m directions, so the algorithm is ( n

m
)-approximation as well.

It is evident that when m is at most logn, there are at least n
logn

different values in at least one coordinate by the same argument. To
see why logn-approximation ratio holds when m is large, note that
there is at least one unique minimum point (corresponding to the leader
itself) in each of m directions so when m ≥ n

logn
, the algorithm will

include all of those unique points in the returned PMI sequence. Thus,
the approximation ratio follows. �

If there exists a PMI sequence of length n, then the network is
strong structurally controllable with a given set of leaders. The greedy
algorithm presented above always returns a PMI sequence of length n
if there exists one.

Lemma 4.2: If there exists a PMI sequence of length n, then
Algorithm 2 always returns an optimal PMI.

Proof: We observe that if there exists a PMI sequence of length n,
then by Lemma 3.2, we cannot have a conflict as defined in Section III.
In the absence of any conflict, we can always find a unique minimum
point along some coordinate. Consequently, in Algorithm 2, statements
in else will never be executed and algorithm will return a PMI sequence
of length n. �

While in many cases, Algorithm 2 achieves a solution close to
optimum, we observe that examples can be constructed for which
a greedy solution may not be globally optimal [18]. Moreover, the
greedy algorithm approach is significantly different from the one in
Algorithm 1, even if greedy returns an optimal solution.

V. APPLICATION: LEADER SELECTION FOR STRONG

STRUCTURAL CONTROLLABILITY

In this section, we briefly discuss an application of computing
the distance-based bound in approximately solving a leader selection
problem for strong structural controllability, which is intractable to
solve exactly [2], [8], [11]. The problem of finding the minimum number
of leaders to make a network strong structurally controllable is known
to be NP-complete [2], [11]. Here, we consider the problem of finding
a set V� of m leaders that maximizes the dimension of SSCS, i.e.,

maximize
V�⊆V

γ(G,V�); subject to |V�| = m.
(12)

In light of (9), the distance-based bound δ(G,V�) can be used to
obtain an approximate solution to such a leader selection problem by
solving

maximize
V�⊆V

δ(G,V�); subject to |V�| = m.
(13)

Any solution to the problem in (13), V ∗� , ensures that the resulting
dimension of SSCS is at least δ(G,V ∗� ). While the problem in (13) is
still hard to solve due to its combinatorial nature, an approximate solu-
tion can be obtained by utilizing an algorithm for computing δ(G,V�).
We present a simple greedy heuristic for leader selection for strong
structural controllability using PMI sequences of distance-to-leaders
vectors in a graph. Given a network G and the number of leaders m
as inputs, the main idea is to iteratively select leaders that maximally

Algorithm 3: Greedy Leader Selection Algorithm.

1: procedure Leader-SelectG,m
2: V� ← ∅, V ′ ← V
3: for i← 1 to m do
4: for each v ∈ V ′ do
5: Compute PMI sequence with V� ∪ {v} leaders.
6: end for
7: Choose v′ ∈ V ′ that gives a PMI sequence of maximum

length with V� ∪ {v′} leaders.
8: V� ← V� ∪ {v′}.
9: V ′ ← V ′ \ {v′}.

10: end for
11: end procedure

increase the length of resulting PMI sequences. The outline of the
heuristic is in Algorithm 3.

The time complexity of Algorithm 3 depends on the complexity
of computing a PMI sequence with a given set of leaders. Using
the algorithm in [10] to compute PMI sequences, the complexity of
Algorithm 3 is O(n×mn), which means the algorithm is practically
infeasible even form = 2. Using Algorithm 1 (dynamic programming)
to compute PMI sequences, the time complexity of Algorithm 3 is
O(n2 logn+m× nm+1), which is a significant improvement. The
first term in this expression is the cost of sorting the distance lists and the
second term is the cost of computing n PMI sequences when the leader
set includes m nodes (the iteration when i = m) as this dominates the
cost of all previous iterations. However, leader selection in Algorithm 3
can be achieved in O(m2n2 logn) time if we use Algorithm 2 to com-
pute PMI sequences. Section VII-C provides numerical evaluation of
the leader selection algorithm (see Algorithm 3) that uses exact/greedy
algorithm to compute δ(G,V�) to approximately solve (13).

VI. BOUNDS IN PATHS AND CYCLES

In this section, we explore connections between graph-theoretic
properties and the length of the longest PMI in path and cycle graphs.
As a result, we show interesting topological bounds on the dimension
of SSCS in such graphs with a given set of leader nodes. We note that
our results differ from previous works in this direction in two aspects:
first, we specifically study the strong structural controllability of such
graphs; second, instead of focusing on complete controllability, we
provide tight bounds on the dimension of SSCS even when the graph is
not strong structurally controllable with a given set of leaders (e.g., [19],
[20]).

Recall that a node with a single neighbor is called leaf. Moreover,
given G = (V,E) and V ′ ⊂ V , then the subgraph of G induced on V ′

is the graph whose vertex set is V ′, and the edge set consists of all of the
edges in E that have both endpoints in V ′. We start with the following
obvious fact.

Fact 6.1: A path graph in which a leaf is a leader has a PMI sequence
of length n.

Theorem 6.2: Let G be a path graph on n nodes, let V� be a set of
m ≤ n leader nodes, and let G−V� denote the subgraph of G induced
on vertices V \ V�. Then the following holds.

i) If the number of connected components inG−V� is less thanm+ 1,
then the longest PMI sequence induced by V� has length n.

ii) If the number of connected components in G−V� is m+ 1, then V�

induces a PMI sequence of length n− a, where a is the size of the
smallest connected component in G−V� .
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Proof: (i) Removal of a node from a path results in at most two
connected components. Hence, G−V� has at most m+ 1 such compo-
nents. If the number of components is less than m+ 1, either one of
the leader nodes is a leaf, or at least two leaders are adjacent. If a leaf
x is chosen as a leader, then by Fact 6.1, we can get a PMI sequence of
length n. Assuming none of the leaders is a leaf node, let vi and vi+1

be adjacent leader nodes; further assume that i < n/2 without loss of
generality. We will construct a PMI sequence of lengthn based on these
two leaders as follows:

⎡
⎢⎢⎣

[
0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[
i− 1
i

]
,

[
i

i− 1

]
,[

i+ 1
i

]
,

[
i+ 2
i+ 1

]
, · · · ,

[
n− i

n− i− 1

]
⎤
⎥⎥⎦ .

(ii) If the smallest connected componentX contains either of the leaf
nodes, then G−X has a leaf leader node, and thus, has a PMI sequence
of length n− |X| by Fact 6.1. If X does not contain leaf nodes, then
there exist two leader nodes vi, vj are adjacent to some nodes in X .
Also, assume that vi is not farther away from a leaf node than vj is.
Then, the following sequence of distance-to-leaders vectors defines a
PMI sequence of claimed length

⎡
⎢⎢⎢⎢⎢⎢⎣

[
0

a+ 1

]
,

[
a+ 1
0

]
,

[
1

a+ 2

]
,

[
a+ 2
1

]
, · · · ,[

i− 1
a+ i

]
,

[
a+ i
i− 1

]
,

[
a+ i+ 1

i

]
,

[
a+ i+ 2
i+ 1

]
, · · · ,[

n− i
n− i− a− 1

]

⎤
⎥⎥⎥⎥⎥⎥⎦
.

�
Theorem 6.3: Let G be a cycle on n nodes, let V� be a set of 2 ≤

m ≤ n leader nodes, and let G−V� denote the subgraph of G induced
on vertices V \ V�. Then, the following holds.

i) If the number of connected components in G−V� is less than m,
then the longest PMI sequence induced by V� has length n.

ii) If the number of connected components in G−V� is exactly m, then
V� induces a PMI sequence of length n− a, where a is the size of
the smallest connected component in G−V� .

Proof: (i) Removing a single node from a cycle does not affect
the number of connected components. However, the removal of every
subsequent node will result in at most one extra component. Thus, the
total number of connected components is at most m after the removal
of m nodes. If the number of components is less than m in G−V� ,
then at least two nodes in V� are neighbors in G. Let v1 and v2 be
an arbitrary adjacent pair in V�. We will construct a PMI sequence of
length n based on these two leaders. Consider the nodes in G with the
following distance-to-leaders vectors:

[ [
0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[
n
2
− 1
n
2

]
,

[
n
2

n
2
− 1

] ]

when n is even, and
[ [

0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
, · · · ,

[ �n
2
�

�n
2
�
] ]

when n is odd. This defines a PMI sequence of length n.
(ii) An argument identical to proof of Theorem 6.2(ii) can be used

here to prove (ii) as well. �
Theorems 6.2 and 6.3 imply graph-theoretic bounds on the dimen-

sion of SSCS for path and cycle graphs. A path (cycle) graph is strong

Fig. 3. Comparison of Algorithm 1 (dynamic programming) and
Algorithm 2 (greedy) for computing the distance-based bound. (a) ER.
(b) ER. (c) BA. (d) BA.

structurally controllable withV� leaders ifG−V� hasm+ 1 components
(m components in a cycle). Another direct implication of the above
results is as follows.

Corollary 6.4: Let G be a path or cycle graph and let V� be a set of
leaders, then the dimension of SSCS is at least n− a, where a is the
smallest distance between any two leader nodes.

VII. NUMERICAL EVALUATION

In this section, we numerically evaluate our results on Erdös–Rényi
(ER) and Barabási–Albert (BA) graphs. In ER graphs, any two nodes
are adjacent with a probability p. BA graphs are obtained by adding
nodes to an existing graph one at a time. Each new node is connected to
ε existing nodes with probabilities proportional to the degrees of those
nodes.

A. Comparison of Algorithms

First, we compare the performance of the exact dynamic program-
ming algorithm (see Algorithm 1) and the approximate greedy al-
gorithm (see Algorithm 2) for computing the maximum-length PMI
sequences. For simulations, we consider graphs with n = 200 nodes.
For ER graphs, we first plot the length of PMI sequences computed by
using Algorithms 1 and 2 as a function of p while fixing the number of
leaders (selected randomly) to be eight [see Fig. 3(a)]. Second, we fix
p = 0.075, and plot the length of PMI sequences as a function of the
number of leaders selected randomly [see Fig. 3(b)]. We repeat similar
plots for BA graphs in Fig. 3(c) and (d). We fix the number of leaders to
be eight in Fig. 3(c) and set ε = 2 in Fig. 3(d). Each point in the plots in
Fig. 3 corresponds to the average of 50 randomly generated instances.
From the plots, it is clear that the greedy algorithm, which is much faster
than the DP algorithm, performs almost as well as the DP algorithm
in terms of the length of PMI sequences returned. From the theoretical
analysis and the numerical evaluation, we conclude that the Algorithm 1
should be used to compute the exact solution when the number of nodes
is at most few thousand, and the number of leaders is small. Moreover,
whenever the number of nodes is in millions, or the number of leaders
is large, Algorithm 2, which computes an approximate solution, should
be preferred.
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Fig. 4. Comparison of the distance-based and ZFS-based lower
bounds on the dimension of SSCS in ER and BA graphs. The total
number of nodes in all graphs is 100. The diameters of graphs (denoted
by Diam) are also plotted. (a) ER (p = 0.1). (b) ER (|V�| = 30). (c) BA
(ε = 4). (d) BA (|V�| = 30).

B. Comparison of Bounds

Next, we numerically compare our distance-based bound with an-
other well known bound on the dimension of SSCS based on the notion
of zero-forcing sets (ZFS) [5], [14]. First, we explain the notion of ZFS.
Given a graph G = (V,E) in which each node is colored either white
or black, we repeatedly apply the following coloring rule: If v ∈ V is
colored black and has one white neighbor u, then the color of u is
changed to black. Now, given an initial set of black nodes (called input
set) in G, derived set V ′ ⊆ V is the set of all black nodes obtained
after repeated application of the coloring rule until no color changes
are possible. It is easy to see that for a given input set, the resulting
derived set is unique. The input set is called a ZFS if the corresponding
derived set contains all nodes in V . It is shown in [5] and [14] that for
a given set of leader nodes as input set, the size of the corresponding
derived set is a lower bound on the dimension of SSCS.

In our simulations in Fig. 4, for both ER and BA models, we consider
graphs with n = 100 nodes. In Fig. 4(a), we plot these bounds for
ER graphs as a function of the number of leaders, which are selected
randomly, while fixing p = 0.1. Next, we fix the number of leaders to
be 30 in Fig. 4(b) and plot bounds as a function of p. As previously,
each point in the plots is an average of 50 randomly generated instances.
Similar results are obtained in the case of BA graphs, where we fix ε = 4
in Fig. 4(c), and select the number of leaders to be 30 in Fig. 4(d). In
all the plots, lengths of PMI sequences are greater than the derived sets
indicating that the distance-based bound on the dimension of SSCS
performs better than the one based on the derived sets.

C. Leader Selection

We implement Algorithm 3 to illustrate the application of proposed
algorithms to the leader selection problem given in (13). Again, the
networks were generated for both ER and BA models with n = 60
nodes. In order to compute the length of the longest PMI sequence, we
use the bounds returned by the dynamic programming solution and the
greedy algorithm. We compare the respective bounds on the dimension
of SSCS and the computation times of the two algorithms. The results
of our experiments are shown in Fig. 5. The resulting bounds are plotted
against the number of leaders in Fig. 5(a) and (c), and the running times
are plotted in Fig. 5(b) and (d). For both graph families, the bounds

Fig. 5. Comparison of the leader selection algorithm with the greedy
computation and the exact computation (dynamic programming (DP)) of
the distance-based bound. The total number of nodes in all graphs is
60. (a) ER (p = 0.3). (b) ER (p = 0.3). (c) BA (ε = 2). (d) BA (ε = 2).

computed by the two algorithms are almost identical, but the greedy
algorithm has the advantage of superior runtime that becomes more
pronounced as the number of leaders increases.

VIII. CONCLUSION

We studied the computational aspects of a lower bound on the
dimension of SSCS in networks with Laplacian dynamics. The bound
is based on a sequence of distance-to-leaders vectors and has several
applications. We proposed an algorithm that runs in O(nm) time
(compared to O(mn) runtime of the algorithm in [10]) to compute the
bound. We also presented a linearithmic approximation algorithm to
compute the bound, which provided near-optimal solutions in practice.
Further, we explored connections between the graph-theoretic proper-
ties and the distance-based bound in path and cycle graphs using the
results. We plan to use these results to explore further the tradeoffs
between controllability and other desirable network properties, such as
robustness and resilience to perturbations.
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