
3550 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Byzantine Resilient Distributed Learning in
Multirobot Systems

Jiani Li , Waseem Abbas , Member, IEEE, Mudassir Shabbir , and Xenofon Koutsoukos , Fellow, IEEE

Abstract—Distributed machine learning algorithms are increas-
ingly used in multirobot systems and are prone to Byzantine at-
tacks. In this article, we consider a distributed implementation of
the stochastic gradient descent (SGD) algorithm in a cooperative
network, where networked agents optimize a global loss function
using SGD on the local data and aggregation of the estimates
of immediate neighbors. Byzantine agents can send arbitrary es-
timates to their neighbors, which may disrupt the convergence
of normal agents to the optimum state. We show that if every
normal agent combines its neighbors’ estimates (states) such that
the aggregated state is in the convex hull of its normal neighbors’
states, then the resilient convergence is guaranteed. To assure this
sufficient condition, we propose a resilient aggregation rule based
on the notion of centerpoint, which is a generalization of the me-
dian in the higher-dimensional Euclidean space. We evaluate our
results using examples of target pursuit and pattern recognition
in multirobot systems. The evaluation results demonstrate that
distributed learning with average, coordinate-wise median, and
geometric median-based aggregation rules fail to converge to the
optimum state, whereas the centerpoint-based aggregation rule is
resilient in the same scenario.

Index Terms—Byzantine attacks, centerpoint, multirobot
systems, resilient distributed learning and optimization, resilient
aggregation.

I. INTRODUCTION

THERE is a growing trend toward collaboratively training
machine learning models on distributed devices to deal

with the rapid increase of data as well as privacy and security
concerns. In this article, we consider the problem of distributed
machine learning (DML) in a fully decentralized network [2]–
[4]. In such a network, agents interact with each other without a
centralized server and leverage the shared information to benefit

Manuscript received 17 April 2021; revised 29 September 2021 and 14
February 2022; accepted 4 May 2022. Date of publication 13 June 2022; date of
current version 6 December 2022. This article was recommended for publication
by Associate Editor A. Prorok and Editor P. Robuffo Giordano upon evaluation
of the reviewers’ comments. (Corresponding author: Jiani Li.)

Jiani Li and Xenofon Koutsoukos are with the Department of Com-
puter Science at Vanderbilt University, Nashville, TN 37235 USA (e-mail:
jiani.li@vanderbilt.edu; Xenofon.Koutsoukos@vanderbilt.edu).

Waseem Abbas is with the Department of Systems Engineering,
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
waseem.abbas@utdallas.edu).

Mudassir Shabbir is with the Department of Computer Science at Vander-
bilt University, Nashville, TN 37235 USA, and also with the Department of
Computer Science, Information Technology University, Lahore 54000, Pakistan
(e-mail: mudassir.shabbir@vanderbilt.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2022.3178296.

Digital Object Identifier 10.1109/TRO.2022.3178296
A subset of the results appeared in the preliminary form in [1].

their learning performance. Such a decentralized framework also
addresses the single point of failure problem as well as scalability
issues and is naturally suited for applications in multirobot
systems, including spectrum sensing in cognitive networks [5],
target localization and tracking [6], distributed clustering [7],
and biologically inspired designs for mobile networks [8].

Although cooperation among agents helps improve the overall
learning performance [2], it is also susceptible to attacks, where
noncooperative or adversarial neighbors sharing wrong infor-
mation can disrupt the convergence of the algorithm. Average-
based information aggregation rules have been widely used in
DML [2], [3], [9]. However, a single misbehaving agent can
adversely impact the convergence of the average-based aggre-
gation rules [10], [11]. Many robust aggregation rules have
also been proposed to cope with outliers in data or Byzan-
tine adversaries, including the coordinate-wise median (CM)
[12]–[14], coordinate-wise trimmed mean [12], [15], geometric
median (GM) [16], [17], Krum and multi-Krum [10], Bulyan,
and multi-Bulyan [18], [19]. However, studies have already
reported successful attacks in Byzantine systems using the rules
mentioned above [20]–[22].

In this article, we study the problem of the resilient con-
vergence of DML for multirobot systems in the presence of
Byzantine adversaries. We show that in the aggregation step,
if every normal agent in the network combines its neighbors’
states such that the aggregated result is in the convex hull of
normal neighbors’ states, then the resilient convergence of DML
is guaranteed. We observe that most of the aggregation rules
used in the literature do not satisfy this condition, as illustrated
in Fig. 1. The primary challenge here is that an agent cannot
distinguish between its normal or Byzantine neighbors; hence, it
cannot simply discard the information from Byzantine neighbors
to satisfy the above condition. To address this challenge, we
propose a resilient aggregation rule based on the notion of safe
region. For a normal agent k with nk neighbors, of which any
f can be Byzantine agents, a safe region is the set of states that
always lie in the convex hull of agent k’s normal neighbors’
states. We show that a normal agent can always find a state in
the safe region by computing a centerpoint of its neighbors’
states if f ≤ � nk

d+1� − 1, where d is the dimension of states.
Thus, the centerpoint-based aggregation guarantees the resilient
convergence of DML in the Byzantine system.

Our main contributions are as follows:
1) We analyze the sufficient condition to achieve Byzantine

resilient convergence in distributed learning algorithms.
The condition guarantees that the state obtained due to

1552-3098 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9801-8417
https://orcid.org/0000-0002-9013-1463
https://orcid.org/0000-0002-6961-0961
https://orcid.org/0000-0002-0923-6293
mailto:jiani.li@vanderbilt.edu
mailto:Xenofon.Koutsoukos@vanderbilt.edu
mailto:waseem.abbas@utdallas.edu
mailto:mudassir.shabbir@vanderbilt.edu
https://doi.org/10.1109/TRO.2022.3178296

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3551

Fig. 1. Aggregating nine points including two Byzantine points using different
aggregation rules: all the aggregated results fall outside of the convex hull (blue
polygon) of the normal points.

the aggregation step lies inside the convex hull of the
normal agents’ states. When the sufficient condition is
satisfied, we show that normal agents converge to the
global optimum state with O(1/i) convergence rate using
appropriate stepsizes, where i denotes the time index.

2) We propose a centerpoint-based aggregation rule and show
that it guarantees the resilient convergence of the dis-
tributed learning algorithms whenever each normal agent
k in the network has f ≤ � nk

d+1� − 1Byzantine neighbors.
3) We evaluate our results using the examples of target pursuit

and pattern recognition in multirobot systems. We com-
pare the proposed centerpoint-based aggregation rule with
the average, CM, and GM-based rules. The simulation
results show that our approach is resilient to � nk

d+1� − 1
Byzantine neighbors, and the cooperation improves the
average learning performance over the network than the
noncooperative case, while the other approaches are not
resilient in the same scenarios.

The rest of this article is organized as follows: Section II
discusses the related work. Section III formulates the resilient
distributed learning problem. Section IV analyzes the suffi-
cient condition to achieve resilient convergence in distributed
learning. Section V introduces the resilient aggregation rule
based on the centerpoint, which satisfies the sufficient condition
and further guarantees the resilient convergence in distributed
learning. Section VI gives an evaluation of the results. Finally,
Section VII concludes this article.

II. RELATED WORK

Approximate Byzantine Consensus: The approximate Byzan-
tine consensus problem initiated in [23] is widely studied in the
robotics and control systems community and is very relevant
to resilient distributed learning and optimization. The main
objective is to ensure that all normal agents in a network satisfy
the safety and agreement conditions in the presence of Byzantine
agents [24], [25]. Safety condition requires normal agents to
update their states such that they are always inside the convex

hull of normal agents’ initial states. Agreement means that
eventually, all normal agents’ states are very close to each other,
that is, within an arbitrary ε > 0 distance from one another.
The mean subsequence reduced (MSR) algorithms [26]–[28]
and the median-based algorithms [29]–[31] were proposed for
the approximate Byzantine consensus over scalar states. The
problem is more challenging when the state vectors are in Rd

where d ≥ 2. For higher-dimensional cases, the MSR technique
can be applied in each dimension separately. However, this does
not guarantee that the aggregated result will be in the convex
hull of normal states.

For vector consensus, Tverberg partition [25], [32], [33],
safe area [24], and centerpoint-based [34], [35] approaches
have been proposed. The resilient vector consensus has various
applications in multirobot systems for fault-tolerant rendezvous
[36], formation control [37], flocking [38], secure localization
[39], [40], and target pursuit [1]. Some of these works rely
on coordinate-wise resilient scalar consensus, which does not
necessarily achieve resilient vector consensus. Note that in the
resilient consensus problem, the connectivity and robustness of
the underlying network play an important role in the conver-
gence of the iterative algorithms. In order to achieve resilient
consensus, the underlying network should satisfy certain ro-
bustness conditions that in turn guarantee the redundant infor-
mation needed by agents to ensure consensus in the presence
of adversarial agents [27], [28]. Different from the consensus
problem, in distributed learning, agents learn to converge to their
target using the adaptation step in addition to the aggregation
of the neighbors’ states. We will show in Section IV that the
normal agents converge toward the optimum state as long as
the safety condition is satisfied in the aggregation step of dis-
tributed learning, regardless of the robustness of the underlying
connectivity graph, which is different from the case of resilient
consensus. Note that in distributed consensus, the robustness
condition requires every normal agent to have sufficient many
normal neighbors in order to gather enough information and
diffuse its own information across the entire network and ensure
the convergence point is resulted from the combination of the
information from the entire network [27].

Resilient Aggregation in DML: To achieve resilient conver-
gence in DML, one approach is to discard cooperation with
possible Byzantine neighbors using the idea of trimming, similar
to the MSR approach used in resilient scalar consensus. In such
an approach, it is assumed that a maximum of f Byzantine
agents can be present in the neighborhood of a normal agent.
Algorithms are then designed for a normal agent to rank its
neighbors based on some trust criteria and a normal agent
discards the values from its f least trusted neighbors. Various
metrics have been proposed in the literature to evaluate a agent’s
trustworthiness, including metrics based on the product of the
weight and the loss [11], model parameters [15], gradients and
their norms [41], [42], and a combination of gradient and model
parameters [43]. Moreover, various majority-based aggregation
rules have been proposed, similar to the median-based approach
used in resilient scalar consensus. Well-known majority-based
aggregation rules include the CM [12]–[14], coordinate-wise
trimmed mean [12], [15], GM [16], [17], Krum and multi-Krum

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3552 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

[10], Bulyan and multi-Bulyan [18], [19]. Instead of ranking and
filtering out the suspicious messages, these rules differ from the
ranking methods in the way that they do not need the ranking step
and the aggregation result directly precludes states far away from
the cluster of the majority of the states by the intrinsic properties
of the aggregation rules. However, studies have already reported
all of the abovementioned methods are not resilient to attacks
under certain conditions [20]–[22].

Resilient DML via Computation Redundancy: One can also
use computation redundancy to achieve resilient convergence in
DML, which typically involves coding theory and algorithmic
redundancy [44]–[46]. An example of such a framework is
DRACO [44] in which the parameter server uses redundant
gradients received from agents to eliminate the effects of ad-
versarial updates. Another algorithm proposed recently is the
RSA [47] that introduces an �p-norm regularization term into
the objective function for the resilience purpose. It eliminates
the effect caused by the magnitudes of malicious messages
sent by the Byzantine agents, as a result, only the number of
Byzantine agents, but not the magnitude, influence the model
update, making the algorithm robust to large outliers.

III. PROBLEM FORMULATION

In this section, we describe the problem of distributed learning
in networks in an adversarial setting. First, we introduce the
following notation:
(·)� transpose of a matrix;
[n] {1, 2, . . . , n};
| · | cardinality of a set;
‖ · ‖ �2-norm of a vector;
Eξ[·] the expected value of a random variable ξ; if the context

is clear, E[·] is used.

A. Distributed Learning

Consider a connected network of n agents1 modeled by an
undirected graphG = (V, E), where V represents agents and
E represents interactions between agents. A bidirectional edge
(l, k) ∈ E means that agents k and l can exchange information
with each other. Since each agent also has its own information,
we have (k, k) ∈ E , ∀k ∈ V . The neighborhood of k is the set
Nk = {l ∈ V|(l, k) ∈ E}. Each agent k has data {(xi

k, y
i
k)}i∈Sk

sampled randomly from the distribution generated by the ran-
dom variable ξk, where xi

k ∈ Rd, yik ∈ R, andSk are the sample
set. We consider a convex prediction function (model)ϕk(x

i
k) =

θ�k x
i
k, where θk ∈ Rd is the model parameter (or state). We

use �k(·) to denote a convex loss function associated with the
prediction function for agent k, and fk(·) to denote the convex
(expected) risk functionfk(θk) = E[�k(θk; ξk)].

The objective of the network of n agents is to estimate the
parameter vector θ∗ in a distributed and cooperative manner,
that minimizes a global cost function of the following form:

min
θ

{
J (θ) � 1

n

n∑
k=1

fk (θ)

}
. (1)

1We use terms agent and robot interchangeably.

Stochastic gradient descent (SGD) can be used to optimize the
global cost function (1) given the stochastic gradient of J(θ).
Since such a value is not available, we consider a distributed solu-
tion for each agent, known as cooperative SGD, which takes the
following two steps in synchronized rounds of communication
between agents [2]

θ̂k,i = θk,i−1 − αk,i−1∇�k
(
θk,i−1; ξ

i−1
k

)
, (SGD) (2)

θk,i = Aggr
({

θ̂l,i : l ∈ Nk

})
. (Aggregation) (3)

In cooperative SGD, at each iteration i, agent k minimizes the
individual risk using SGD given local data, followed by an
aggregation step that aggregates neighboring estimates. Here,
αk,i is the stepsize, ∇�k(θk,i−1; ξ

i−1
k) is the gradient using the

instantaneous realization ξi−1
k of the random variable ξk, Nk

is the neighborhood set of agent k, and Aggr(·) denotes an
aggregation function. An example of aggregation functions is
the convex combination of the neighbors’ states, i.e.,

Aggr
({

θ̂l,i : l ∈ Nk

})
�
∑
l∈Nk

alk(i)θ̂l,i

where alk(i) denotes the weight assigned by agent k to l at
iteration i, and satisfies the following:

alk(i) ≥ 0,
∑
l∈Nk

alk(i) = 1, alk(i) = 0 if l �∈ Nk. (4)

B. Byzantine Attacks and Resilient Distributed Learning

In distributed learning, the issue of resilience against Byzan-
tine agents has received much attention recently [12], [16],
[17], [48], [49]. Since Byzantine agents can send incorrect
information (state values) to their neighbors, the aggregation
step is susceptible to cyber-attacks. In particular, normal agents
communicating with Byzantine neighbors and updating their
states using the Byzantine messages in the aggregation step may
converge to a point desired by the attacker [11].

We assume two types of agents in the network, normal and
Byzantine. Normal agents are the ones that interact with their
neighbors synchronously and always update their estimates ac-
cording to the prescribed update rule. Byzantine agents are the
ones that can change their states arbitrarily and do not follow
the prescribed update rule. Moreover, a Byzantine agent can
transmit different values to its different neighbors. Further, we
assume that the identities of normal and Byzantine agents are not
changing. Since Byzantine agents that stop sending messages
can be easily identified in a synchronous network, we assume
Byzantine agents always send messages during communication.
For a normal agent k, all agents in its neighborhood are indistin-
guishable, that is, k cannot identify which of its neighbors are
Byzantine. Further, we use the following notation:
N set of normal agents;
F set of Byzantine agents(|N |+ |F| = n);
Nk set of neighbors of agent k;
N+

k set of normal neighbors of agent k;
N−

k set of Byzantine neighbors of agent k, such that |N+
k |+

|N−
k | = |Nk| ;

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3553

f upper bound on the number of Byzantine neighbors of a
normal agent, i.e., |N−

k | ≤ f .
In the presence of Byzantine agents, the objective of the

normal agents should be rewritten as follows:

min
θ

{
F (θ) � 1

|N |
∑
k∈N

fk(θ)

}
. (5)

We make the following assumption about the global objective
function in (5):

Assumption 1: (Strong convexity) The global objective func-
tion F is strongly convex in that there exists a constant c > 0
such that

F (y) ≥ F (x) +∇F (x)�(y − x) +
c

2
‖y − x‖2, ∀x, y.

Hence, F has a unique minimizer, denoted as θ∗ with F ∗ �
F (θ∗). We also assume that all agents share the same minimizer
θ∗, which is a common scenario in distributed learning problems,
where data of different agents arises from the same distribution,
distributed inference applications, where distributions depend
on a common parameter vector to be optimized, and single task
networks where agents work to attain a common objective such
as tracking a target [2], [50]–[53].

This article aims to address the problem of resilient distributed
learning in the presence of Byzantine agents. The goal is to
ensure that all the normal agents in the network using the
cooperative SGD algorithm to optimize (5) achieve resilient
convergence, formally stated below.

Definition 1: (Resilient Convergence) The network is said to
achieve resilient convergence if

lim
i→∞

E
[‖θk,i − θ∗‖2] = 0, ∀k ∈ N (6)

thereby ensuring that all normal agents converge to the globally
optimum state in expectation. Here, θ∗ is the minimizer of (5).

IV. RESILIENT DISTRIBUTED LEARNING

In this section, we propose a sufficient condition to guarantee
the resilient convergence of the cooperative SGD algorithms.
We also discuss the possible outcome when this condition is not
satisfied. Later in Section V, we propose an aggregation rule
that satisfies the sufficient condition, which further guarantees
the resilient convergence of the cooperative SGD.

A. Sufficient Condition and Convergence Analysis

Sufficient Condition. At each iteration i ∈ N and for every
normal agent k ∈ N , the outcome of the aggregation step θk,i is
a convex combination of the estimates of the normal neighbors
of k, i.e.,

θk,i =
∑
l∈N+

k

alk(i)θ̂l,i, ∀i ∈ N, k ∈ N

s.t. alk(i) ≥ 0, ∀l ∈ N+
k , and

∑
l∈N+

k

alk(i) = 1. (7)

In other words, at each iteration i, a normal agent k aggregates
its neighbors’ estimates such that the output of the aggregation

θk,i is in the convex hull of normal neighbors’ state estimates
regardless of the estimates from Byzantine neighbors2.

Next, we prove the resilient convergence when the sufficient
condition is satisfied (see Theorem 1). To facilitate the analysis,
we list the following assumptions and lemma.

Assumption 2: (Lipschitz-continuous gradients). The global
objective function F is continuously differentiable and ∇F is
Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀x, y.
Assumption 3: (First and second moment limits). The objec-

tive function F and the sequence of θk,i for k ∈ N and i ∈ N,
obtained by implementing the cooperative SGD algorithm sat-
isfy the following:

1) F (θk,i) ≤ Finf for some scalar Finf .
2) There exist scalars μG ≥ μ > 0 such that

∇F (θk,i)
� Eξik

[∇�k(θk,i; ξ
i
k)
]≥μ‖∇F (θk,i)‖2 and

‖Eξik

[∇�k
(
θk,i; ξ

i
k

)] ‖≤μg‖∇F (θk,i)‖
, ∀k∈N and i∈N.

3) There exist scalars Mk ≥ 0 and Vk ≥ 0 such that

Eξik

[‖∇�k(θk,i; ξ
i
k)‖2

]− ‖Eξik

[∇�k
(
θk,i; ξ

i
k

)] ‖2
≤ Mk + Vk‖∇F (θk,i)‖2, ∀k ∈ N and i ∈ N.

Note that Assumption 3 is based on the preliminary assump-
tion that agents share the same minimizer θ∗.

Lemma 1: 3 Under Assumptions 1–3 and stepsize 0 < αk,i ≤
μ

LGk
, where Gk � Vk + μ2

g , for all k ∈ N , i ∈ N, the iterates
of SGD (step (2)) satisfy the following inequalities:

E
[
F
(
θ̂k,i+1

)
− F ∗

]
≤ (1− αk,icμ)E [F (θk,i)− F ∗]

+
1

2
α2
k,iLMk.

Denote Δk,i � E[F (θk,i)− F (θ∗)] as the expected optimal-
ity gap. Using the cooperative SGD algorithm satisfying the
sufficient condition, Δk,i can be bounded as given in Theorem
1, which guarantees its resilient convergence as given in Propo-
sition 1.

Theorem 1: If the sufficient condition (7) and Assumptions 1–
3 are satisfied, and all normal agents implement the cooperative
SGD algorithm with the same diminishing stepsize sequence
αk,i = αi given by

αi =
β

γ + i
for some β >

1

cμ
and γ > 0 s.t. 0 < α1 ≤ μ

LḠk
(8)

where Ḡk � maxk∈N Gk, then for all i ∈ N, k ∈ N , the ex-
pected optimality gap satisfies

Δk,i ≤ ν

γ + i
(9)

2The convex hull of a set of pointsS = {p1, p2, . . . , pn} in Rd is the smallest
convex set containingS. Any point p inside the convex hull ofS has the property
that p =

∑n

k=1
λkpk , where 0 ≤ λk ≤ 1 and

∑n

k=1
λk = 1. And no point

outside of the convex hull has such representation.
3Proof is given in the Appendix.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3554 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

where ν = max

{
β2L

2 (βcμ− 1)
max
l∈N

Ml, (γ + 1)Δk,1

}
.

Proof: Given (7) and the convexity of F , using Jensen’s
inequality, we have

F (θk,i) ≤
∑
l∈N+

k

alk(i)F
(
θ̂l,i

)
. (10)

Given (8),αk,i = αi ≤ α1 ≤ μ
LḠk

≤ μ
LGk

, for all k ∈ N . Thus,
following Lemma 1, it holds that

Δk,i+1 ≤
∑
l∈Nk

alk(i)

[
(1− αicμ)Δl,i +

1

2
α2
iLMl

]
. (11)

The following proof is based on the convergence proof of SGD
[54, Th. 4.7]. When i = 1, (9) holds given the definition of ν. We
now prove (9) by induction. Assume (9) holds for some i ≥ 1,
then it follows from (11) that

Δk,i+1 ≤
∑
l∈Nk

alk(i)

[(
1− βcμ

î

)
ν

î
+

β2LMl

2̂i2

]

=
∑
l∈Nk

alk(i)

[(
î− βcμ

î2

)
ν +

β2LMl

2̂i2

]

=
î− 1

î2
ν −

∑
l∈Nk

alk(i)

[
βcμ− 1

î2
ν − β2LMl

2̂i2

]
︸ ︷︷ ︸
nonnegative by the definition of ν

≤ ν

î+ 1

where î :� γ + i, and the last inequality follows since î2 ≥ (̂i+
1)(̂i− 1), which completes our proof. �

Remark 1: It immediately follows from Theorem 1 that nor-
mal agents achieve O(1/i) convergence rate since E[F (θk,i)−
F (θ∗)] ≤ ν

γ+i with constants ν > 0 and γ > 0.
Proposition 1: If the sufficient condition (7) and Assumptions

1–3 are satisfied, and all normal agents implement the coopera-
tive SGD with the same diminishing stepsize sequence defined
in (8), then the network achieves resilient convergence as defined
in Definition 1.

Proof: Given the expected optimality gap (9) obtained in
Theorem 1, and the fact that limi→∞ ν

γ+i = 0 with constants
ν > 0 and γ > 0, it follows that

lim
i→∞

E [F (θk,i)− F (θ∗)] = 0, ∀k ∈ N .

Using the strong convexity of F , it yields that

lim
i→∞

E
[‖θk,i − θ∗‖2] ≤ c

2
lim
i→∞

E [F (θk,i)− F (θ∗)] = 0

∀k ∈ N , which completes the proof. �
The above discussion establishes that if the aggregation result

is a convex combination of the normal neighbors’ states, then
the resilient convergence is guaranteed. Now, we consider a
scenario in which the condition (7) is not satisfied and θk,i in an
aggregation step of a normal node k lies outside the convex hull

of θ̂j,i, where j ∈ N+
k . Then, it is possible that after aggregation

the distance from θk,i to θ∗ is larger than the distance of any of the
normal neighbors’ states to θ∗. This means the aggregation step
indeed makes the state of the normal agent k deviate from θ∗. As
the number of iterations increases, the deviation from the target
state might also increase and normal agents might converge to
a wrong state. We further demonstrate this in Section VI, where
the aggregation rules, such as average, CM, and GM, do not
satisfy the sufficient condition, and normal agents fail to achieve
resilient convergence using such rules.

B. Advantages of Cooperation

In the previous section, we proposed a sufficient condition for
achieving resilient distributed learning and analyzed its conver-
gence. However, a particular case, where agents do not cooperate
with each other, i.e., the noncooperative case, also achieves this
goal. However, the comparison between cooperative and nonco-
operative distributed learning and adaptation has been studied in
the literature, which reveals the advantages of using cooperation
in distributed learning, especially for lifelong adaptation [2],
[55], [56], [53, Chap. 12]. In the following, we briefly review the
results of such studies and discuss the advantages by deploying
the cooperative setting.

Note that we used a time-dependent diminishing stepsize in
the previous section for convergence analysis. However, con-
stant stepsizes are often used for lifelong learning and adaption
over time, in various applications such as distributed sensing,
biologically systems, and target localization, where diminish-
ing stepsizes fail to work. When using constant stepsizes, for
sufficiently small stepsizes, the network converges to a point
close to the optimum point but with a bounded distance. The
squared Euclidean distance between the convergence point and
the optimum point is referred to as the steady-state mean-square-
deviation (MSD), which can be used to measure the learning
performance [2].

It is studied in [56] that for sufficiently small stepsize, coop-
eration improves the steady-state MSD in a distributed learning
network. We illustrate the case when the data is related via a
linear model, i.e., yik = θ�k,ix

i
k + vik, where vik is a noise term

with E[vik
�
vik] = σ2

v,k. For sufficiently small uniform constant
stepsize α for each agent, the network learning performance
of noncooperative SGD is defined as the averaged steady-state
MSD among agents and can be approximated by

MSD
ncop, net

� lim
i→∞

1

N

N∑
k=1

E‖θ̃k,i‖2≈ αd

2
·
(

1

N

N∑
k=1

σ2
v,k

)
(12)

where θ̃k,i � θ∗ − θk,i, and d is the dimension of the states. And
for cooperative SGD, the network steady-state MSD is given by

MSDcoop,net ≈ αd

2
·
(∑

k∈N
p2kσ

2
v,k

)
(13)

where A = {alk, k = 1, 2, . . . , N} is the N ×N left-stochastic
combination matrix at convergence and p = {pk, k =

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3555

1, 2, . . . , N} denotes the right eigenvector of A that
is associated with the eigenvalue at one and satisfies
Ap = p, p�1 = 1, 0 < pk < 1.

The aggregated result can be expressed by a weighted sum of
all the normal agents’ estimates, i.e., θk,i =

∑
l∈Nk

alk(i)θ̂k,i,
where 0 ≤ alk(i) ≤ 1 and

∑
l∈Nk

alk(i) = 1. Assume the noise
variance is uniform across all normal agents, i.e., σ2

v,k =

σ2
v , (k = 1, 2, . . . , N), then we observe that the steady-state

MSD performance of the cooperative SGD is better than the
noncooperative SGD by (12) and (13) as

MSDcoop,net − MSDncop,net

=
αd

2
·
(∑

k∈N+

p2kσ
2
v,k − 1

|N+|
∑

k∈N+

σ2
v,k

)

=
αd

2
·
(∑

k∈N+

p2k − 1

)
· σ2

v ≤ 0

where
∑

k∈N+
k
p2k ≤ 1 given

∑
k∈Nk

pk = 1 and pk > 0.
Based on the above discussion, cooperation in general leads

to better learning performance measured by steady-state MSD
when constant stepsizes are used for lifelong learning and adap-
tation, for instance, when the objective to be optimized by the
network is time-varying. This is further demonstrated in the
evaluation section. Moreover, cooperation among agents, for
instance, in a diffusion network, improves the network perfor-
mance by reducing the excess risk compared to the noncoop-
erative setup [52],[53, Sec. 12.4]. However, cooperation could
be detrimental in the presence of Byzantine agents. This article
presents a solution that discards Byzantine agents’ effects in
a cooperative setting, thus allowing to utilize the benefits of
cooperation.

V. RESILIENT AGGREGATION

The sufficient condition in Section IV requires that in the
aggregation step, a normal agent computes a point that lies in
the convex hull of points corresponding to normal neighbors’
states. Computing such a point is a challenging task as a normal
agent cannot distinguish between its normal and Byzantine
neighbors. Our goal in this section will be to propose an ef-
ficient way to compute such a point in the aggregation step.
For this, we will utilize the notion of safe region as defined
below.

A. The Safe Region

Let S denote a set of nk points, and S ′ be a subset of S con-
taining exactly (nk − f) points. There are

(
nk

nk − f

)
possibilities

of S ′ and one such possibility corresponds to the set of normal
points. Let S be the family of all

(
nk

nk − f

)
possibilities of S ′. If

one could somehow show that the intersection of convex hulls of
members of S is nonempty, then every point in this intersection
is guaranteed to lie inside the convex hull of normal points. We
call this intersection set a safe region.

Fig. 2. Illustration of Safe1(S) (shaded region) for a set of five points in (a).
In (b)–(f), black nodes are normal, red nodes are Byzantine, and the area spanned
by thick lines is the convex hull of the normal nodes.

Definition 2: (Safe Region) For a set S of nk points in Rd,
of which any f points can be Byzantine, the safe region of
S is

Safef (S) =
⋂

S′⊂S,|S′|=nk−f

Conv(S ′)

where Conv(S ′) denotes the convex hull of S ′.
It is immediately implied from the above definition that

Safef (S), if it exists, is always in the convex hull of the (nk − f)
normal points, regardless of the selection of the f Byzantine
points, as illustrated by the example in Fig. 2. There are nk = 5
points and f = 1, which means there are five possibilities to
choose a point corresponding to a Byzantine agent. The gray
shaded area is the safe region Safe1(S). We note that the safe
region always lies in the convex hull of four normal points
regardless of the selection of the Byzantine point, as illustrated
in Fig. 2(b)–(f).

The existence of the safe region depends on the number of
Byzantine agents (points) f . For example, if f > nk/2, then a
safe region may not exist even in dimension d = 1, because two
potential sets of normal points, (leftmost, and rightmost intervals
of nk − f points) are nonoverlapping, and the intersection will
be empty. For dimension d = 2, if there are nk/3 Byzantine
points, then all possibilities for 2nk/3 normal points might not
have a common point. In other words, no matter which point
we choose for aggregation, there is always a chance that it lies
outside the convex hull of normal points in R2. Thus, the number
of allowed Byzantine points can not be more thann/3 in a plane.
The condition of the existence of a nonempty safe region has
been studied in [24, Lemma 3.6, 3.10], which is given in the
following.

Lemma 2: For a setS ofnk points in Rd, of which anyf points
could be Byzantine, if f < nk

d+1 , then Safef (S) is necessarily
nonempty; and if f ≥ nk

d+1 , then Safef (S) might be empty.
Based on Lemma 2, the maximum number of Byzantine

agents the system is resilient to is f = � nk

d+1� − 1 and the safe
region is nonempty in this case. For computing, a point in the safe
region when f = � nk

d+1� − 1, we use the notion of centerpoint,
which we explain next.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3556 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

B. Centerpoint-Based Resilient Vector Consensus

In the following, we define the notion of a centerpoint,
and show that every centerpoint lies inside Safef (S) for f =
� nk

d+1� − 1.
Definition 3: (Centerpoint) Given a set S of nk points in Rd

in general positions,4 where nk ≥ d+ 1, a centerpoint p is a
point, not necessarily from S, such that any closed half-space5

of Rd that contains p also contains at least � nk

d+1� points from
S.

Intuitively, a centerpoint lies in the “center region” of the
set of points, in the sense that there are enough points of S on
each side of a centerpoint. A centerpoint extends the notion of
median to higher dimensions, and is an active topic of study in
discrete geometry [34], [35], [57]–[59]. Note that centerpoint is
not unique, in fact, there can be infinitely many centerpoints.
The set of all centerpoints constitutes the convex safe region.
We have studied the connection between the centerpoint and the
safe region in [34], [35]. In particular, we have the following
result.

Lemma 3: Let S be a set of nk points in Rd, C(S) be the
corresponding centerpoint region (set of all centerpoints) and
f = � nk

d+1� − 1, then

Safef (S) ≡ C(S).
An immediate consequence of Lemmas 2 and 3 is that for a set

S of nk points in Rd, of which any f = � nk

d+1� − 1 points could
be Byzantine, a centerpoint of S is always inside the convex hull
of the (nk − f) normal points, regardless of the selection of the
f Byzantine points.

Now that the existence of a point in the safe region for
optimal number of Byzantine neighbors is guaranteed, one has
to actually find such a point to aggregate to. It is easy to compute
a centerpoint in lower dimensions. In two dimensions, the time
complexity for computing a centerpoint is O(nk) using a prune
and search algorithm in [60]. The algorithm iteratively removes
a fraction of points from a given point set while ensuring that
the centerpoint of the remaining points is also a centerpoint
of the original point set. When the number of points becomes
smaller than a constant, the algorithm uses a brute force method
to compute a centerpoint [60]. In three dimensions, we can use
Chan’s algorithm in [61] to find a centerpoint in O(n2

k) time.
Chan[61] basically provides a randomized algorithm to some
geometric linear program in O(n2

k) and uses this framework to
find a geometric Tukey median of a given point set, which is
guaranteed to be a centerpoint also. We have given an overview
of these methods in our previous work [34], [35]. We note that
d ≤ 3 is the case in many practical applications in robotics. For
higher dimensions, i.e., d > 3, the time bound to compute a
centerpoint is O(nd−1

k) [61], which is impractical for very large
d. However, in such cases, algorithms exist to compute an ap-
proximate centerpoint [62]. These approximations degrade the
optimal bound on the number of Byzantine agents. For instance,

4A set of points in Rd is said to be in general positions if no hyperplane of
dimension d− 1 or less contains more than d points.

5Recall that closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥ b}
for some a ∈ Rd \ {0}.

given a set of nk points, of which at most (nk

dr/r−1) are Byzantine
and the remaining are normal points, we can compute a point that
is in the convex hull of normal points in time O(nc log d

k (rd)d),
where r is any integer greater than 1, and c is some positive
constant. By increasing r, the quality of approximation, and
hence the bound on the number of Byzantine agents improves
and approaches n

d ; however, this also leads to an increase in
the time complexity. Moreover, the method proposed in [63]
generates approximate centerpoint in linear time complexity for
any dimension. However, this will reduce the upper bound on
Byzantine tolerance from � nk

d+1� − 1 to � nk

4(d+1)3 � − 1.

Proposition 2: If f ≤ � |Nk|
d+1� − 1, Assumptions 1–3 are sat-

isfied, and all normal agents implement the cooperative SGD
with the same diminishing stepsize sequence defined in (8)
using the centerpoint-based aggregation rule in the aggregation
step, i.e.,

Aggr
({

θ̂l,i : l ∈ Nk

})
� C

({
θ̂l,i : l ∈ Nk

})
then the network achieves resilient convergence as defined in
Definition 1.

Proof: Since f ≤ � |Nk |
d+1� − 1, given Lemma 3 and Definition

2, it follows that

Aggr
({

θ̂l,i : l ∈ Nk

})
∈ Conv(

{
θ̂j,i : j ∈ N+

k

}
)

which satisfies the sufficient condition in (7). Then, the resilient
convergence is guaranteed given the results provided in Propo-
sition 1. �

VI. EVALUATIONS

In this section, we evaluate the proposed centerpoint-based
aggregation rule for the cooperative SGD algorithm using target
pursuit and pattern recognition as case studies.6 We compare
it with other commonly used aggregation rules including the
average (alk = 1

|Nk | for l ∈ Nk), CM, and GM, as well as the
non-cooperative SGD (non-coop SGD). We define the CM and
GM below.

1) CM: Let med(·) be the one-dimensional median, then the
CM Median(·) of vectors {xk ∈ Rd, k ∈ [n]} is defined
to be xMed � Median{xk : k ∈ [n]} with the jth coordi-
nate to be (xMed)j � med{xj

k : k ∈ [n]} for each j ∈ [d].
2) GM: The geometric median GM(·) of vectors {xk ∈

Rd, k ∈ [n]} is defined to be GM{xk : k ∈ [n]} �
arg minx∈Rd

∑n
k=1 ‖x− xk‖.

We show in multiple cases that the cooperative SGD algo-
rithm using centerpoint-based aggregation always outperforms
the noncooperative SGD in achieving a better average learning
performance over the network at convergence, with or without
the presence of Byzantine agents. However, the other rules either
fail to converge to θ∗ or exhibit a worse learning performance
than the noncooperative SGD, showing that such cooperation
could be harmful to the overall network’s performance.

6Simulation code can be found at [Online]. Available: https://github.com/
JianiLi/resilient_distributed_learning_centerpoint.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JianiLi/resilient_distributed_learning_centerpoint
https://github.com/JianiLi/resilient_distributed_learning_centerpoint

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3557

A. Target Pursuit

In this example, we consider a mobile adaptive network [8]
of n agents that move collectively in pursuit of a target located
at θ∗ ∈ Rd that can be either static or time-varying.

A.1. Background
Suppose the location of agent k at time i is denoted by xk,i ∈

Rd. The distance dok(i) ∈ R between agent k and the target at
time i can be expressed as

dok(i) = uo
k,i

�(θ∗ − xk,i)

where uo
k,i ∈ Rd denotes the unit direction vector pointing

from xk,i to θ∗. Suppose agents have only noisy observations
{dk(i), uk,i} of the distance and the unit direction vector, i.e.,

dk(i) = dok(i) + ηdk(i), uk,i = uo
k,i + ηuk,i

where ηuk,i ∈ Rd and ηdk(i) ∈ R denote noise terms. Let

ηk(i) = −ηuk,i
�(θ∗ − xk,i) + ηdk(i), d̂k(i) = dk(i) + u�

k,ixk,i,
we have

d̂k(i) = u�
k,iθ

∗ + ηk(i).

To optimize θ∗, consider

min
θ

{
Floc(θ) �

1

|N |
∑
k∈N

E‖d̂k(i)− u�
k,iθ‖2

}
. (14)

At each iteration i, agent k knows its location xk,i ∈ Rd and
velocity vk,i ∈ Rd, and it receives its neighbors’ location xl,i

for l ∈ Nk. It then updates velocity according to the following
update rule [8]:

vk,i+1 = λ · h(θk,i − xk,i) + βvgk,i (15)

where θk,i is the estimate of the target location by k at time i,
vgk,i is the velocity of the center of mass of the network, λ, β are
nonnegative parameters, and

h(θk,i − xk,i) =

{
θk,i − xk,i, if ‖θk,i − xk,i‖ ≤ s

s · θk,i−xk,i

‖θk,i−xk,i‖ , otherwise

for some positive scaling factor s used to bound the speed in
pursuing the target.

The first term in (15) relates to the objective of having the
network move toward the unknown target, and the other term
suggests that agents should adjust their velocities to be consis-
tent with the average displacement vector in the neighborhood.
Agents then update their location according to

xk,i+1 = xk,i +Δt · vk,i+1

where Δt represents the time step.
To obtain the velocity, agents need to know the estimate

of the target location θk,i optimized by (14), and the ve-
locity of the center of mass vgk,i, which can be optimized
by

min
vg

{
Fvel(v

g) � 1

|N |
∑
k∈N

E‖vk,i − vg‖2
}
. (16)

Fig. 3. Network connectivity (blue nodes: normal agents, red nodes: Byzantine
agents). (a) No attack. (b) With 5 Byzantine agents.

Fig. 4. Mobile network’s final deployment for static target. From left to right:
noncooperative SGD, cooperative SGD with average/CM/GM/centerpoint-
based aggregation. (a) No attack. (b) With 5 Byzantine agents.

A.2. Static Target
In our simulation, we consider a network of n = 20 agents

with d = 2. Fig. 3 shows the initial deployment of agents with
and without Byzantine attacks and their connectivity network.
Agents are located in [0, 1]× [0, 1] region initially and agents
connected with links are neighbors. The average neighborhood
size is

∑n
k=1 |Nk|/n ≈ 13.9 and the underlying connectivity

topology does not change throughout the simulation. The regres-
sion vector uk,i has uniform covariance matrix Ru,k = σ2

u,kI2,
σ2
u,k ∈ [0, 1.0], where I2 is the identity matrix of size 2. The

noise variance of distance σ2
d,k ∈ [1.0, 2.0], ∀k ∈ N . The time-

varying stepsizes for updating location and velocity estimates are
both αk,i =

2
i+10 for k ∈ N . Further, λ = 0.5, β = 0.1, s = 1,

and Δt = 0.2s. The target location is denoted by θ∗ = (5, 5).
In the case of attack, we randomly select five agents as the
Byzantine agents. For any normal agent k ∈ N , it is guaranteed
that the number of its Byzantine neighbors is upper bounded by
� |Nk|

3 � − 1. Thus, the centerpoint-based aggregation should be
resilient in such a network.

We run the noncooperative SGD and cooperative SGD with
average/CM/GM/centerpoint-based aggregation rules to esti-
mate the target location θk,i and the velocity vgk,i. In the case
of attack, Byzantine agents continuously send (0,0) to all nor-
mal agents as their current estimates of the target location and
velocity. Fig. 4 shows the final deployment of agents after 500
iterations, where the yellow star represents the target.

In the case of no attack, we find all the four aggregation
rules—average, CM, GM, and centerpoint—converge to the tar-
get as shown in Fig. 4(a). However, in the presence of Byzantine

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3558 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 5. Static target estimates θk,i (1st dimension). From left to right: non-
cooperative SGD, cooperative SGD with average/CM/GM/centerpoint-based
aggregation. (a) No attack. (b) With 5 Byzantine agents.

Fig. 6. Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with different aggrega-
tion rules for static target. (a) No attack. (b) With 5 Byzantine agents.

agents, only the centerpoint-based cooperative SGD converges
to the target as shown in Fig. 4(b). Fig. 5 illustrates the state
estimates as a function of time, where each line represents the
estimates of a normal agent k. The learning accuracy (mean
and range) measured by ‖θk,i − θ∗‖2, for k ∈ N is illustrated
in Fig. 6, where lines are the average values, and shaded area
is the range between the minimum and the maximum values
among the network. We observe that cooperative SGD with all
the four aggregation rules achieve a better average learning ac-
curacy at convergence (measured by

∑
k∈N ‖θk,i − θ∗‖2/|N |)

than the noncooperative SGD under no attack, whereas only
the centerpoint-based aggregation achieves a better average
learning accuracy than the noncooperative SGD under attack.
A.3. Time-Varying Target

We next consider the case when the target is time-
varying. Using time-varying target can make robots follow
a desired trajectory, which can be used in swarm robotics.
The location of the time-varying target is given by (5 +
cos(0.01i), 5 + sin(0.01i)). The noise variance of distance
σ2
d,k ∈ [2.0, 3.0], ∀k ∈ N . And we use fixed stepsize αk,i =

0.05, for k ∈ N , i ∈ N. The other setups and Byzantine attacks
are the same as in Section VI-A.2.

Fig. 7 shows the final deployment of agents after 1000 itera-
tions, where the yellow dashed circle represents the time-varying
target trajectory and the yellow star represents the current target.
Fig. 8 illustrates the state estimates as a function of time. And
the learning accuracy measured by ‖θk,i − θ∗‖2 are illustrated

Fig. 7. Mobile network’s final deployment for time-varying target.
From left to right: noncooperative SGD, cooperative SGD with
average/CM/GM/centerpoint-based aggregation. (a) No attack. (b) With
5 Byzantine agents.

Fig. 8. Time-varying target estimates θk,i (1st dimension). From left to right:
noncooperative SGD, cooperative SGD with average/CM/GM/centerpoint-
based aggregation. (a) No attack. (b) With 5 Byzantine agents.

Fig. 9. Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with different aggrega-
tion rules, for time-varying target. (a) No attack. (b) With 5 Byzantine agents.

in Fig. 9. The simulation shows similar results to the case of
static target.

A.4. Experiments on Robotarium
In addition to the numerical simulations, we carried out sim-

ilar experiments using real robots on Robotarium [64], a multi-
robot testbed developed at the Georgia Institute of Technology.
The robots are 11 cm wide, 10 cm long, and operate on a 3m ×
2m area. We denote the bottom-left corner of the arena to be the
original point with coordinates (0, 0) and the upper-right corner
to be (3, 2).

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3559

Fig. 10. Network under no attack on Robotarium. (a) Initial network. (b) Final
network (CM). (c) Final network (GM). (d) Final network (Centerpoint).

Fig. 11. Network with five Byzantine robots on Robotarium. (a) Initial net-
work. (b) Final network (CM). (c) Final network (GM). (d) Final network
(Centerpoint).

We consider a network of 11 normal robots. Parameters
are selected to be s = 1,Δt = 1s. The target location is set
to be θ∗ = (2.4, 1.7). The regression vector uk,i has uni-
form covariance matrix Ru,k = σ2

u,kI2, σ2
u,k ∈ [0.1, 0.5]. The

noise variance of distance σ2
d,k ∈ [0.5, 5.0]. Both σ2

d,k and
σ2
u,k decrease linearly as the distance to the target decreases.

The fixed stepsize is 0.2. In the case of attack, five more
Byzantine robots are introduced making the total number of
robots to be 16. We consider the network to be modeled by a
complete graph, where every agent is the neighbor of every other
agent. Since the centerpoint-based aggregation rule is resilient
up to � 16

3 � − 1 = 5Byzantine robots, we expect it to be resilient
in the experiment.

Figs. 10 and 11 show the network deployments using
CM/GM/centerpoint-based cooperative SGD under no attack
and with attack, respectively. The Byzantine robots are indicated
by the red circle, and the target location is highlighted by the blue

Fig. 12. (a) Real data distribution, (b)–(d) data with outliers received by
normal agents. (a) Real distribution. (b) 10% Outliers. (c) 20% Outliers. (d)
30% Outliers.

Fig. 13. Test loss on 500 test data samples from the real data distribution
without outliers (Normal agents receive training data with uniform outlier rate
20%). (a) No attack. (b) With 3 Byzantine agents.

star. Byzantine robots stay stationary throughout the experiment
and continuously send wrong estimates of the target location
(0, 0) and velocity vector (0, 0) to normal robots. We adopt the
collision avoidance mechanism implemented by Robotarium in
our experiment.

The results are similar to the simulation results. Without at-
tacks, robots with CM/GM/centerpoint-based aggregation rules
all converge to the target. However, in the presence of Byzantine
agents, only robots using the centerpoint-based aggregation rule
converge to the target.

B. Pattern Recognition

In the second case study, we consider the case when robots
perform a pattern recognition or detection task using sensor read-
ings. We consider a network of 10 agents modeled by a complete
graph, where every agent is the neighbor of every other agent.
Agents collect two-dimensional features (sensor readings) to
perform binary classification. The real data distribution is given

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3560 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 14. Decision boundary achieved by different aggregation rules when 3
out of 10 agents are Byzantine. (a) Average. (b) CM. (c) GM. (d) Centerpoint.

Fig. 15. Test loss on 500 test data samples from the real data distribution
without outliers. (Normal agents receive training data with different outlier rates
from 10% to 30%). (a) No attack. (b) With 3 Byzantine agents.

in Fig. 12(a). The label-0 data has mean (1, 1) and covariance
((0.1468, 0.9233), (0.1863, 0.3456)) and label-1 data has mean
(−1,−1) and covariance ((0.4170, 0.7203), (0.0001, 0.3023)).
We assume outliers in the training data such that the labels of
the outliers are inverted – from 0 to 1 or from 1 to 0. The data
distribution with 10%− 30% outliers is illustrated in Fig. 12
b–d. We use logistic regression to classify the data. The global
cost function has the following form:

min
θ

{
F (θ) � 1

|N |
∑
k∈N

−E
{
yik log

(
g
(
θ�xi

k

))

+
(
1− yik

)
log
(
1− g

(
θ�xi

k

))}}
(17)

where g(z) = 1
1+e−z .The cooperative SGD algorithm in (2) and

(3) can be used to optimize the above cost function. The time-
varying stepsize is αk,i =

1
i+10 for k ∈ N .

We consider two scenarios. In the first scenario, every normal
agent receives data with uniform outlier rate 20%. This simulates
the case in which agents receive similar data resulting in similar
learning performance. We compute the test loss of normal agents
over 500 data samples from the real data distribution without
outliers by (17). In the case of attack, we randomly pick 3 out
of 10 normal agents as Byzantine agents that continuously send
(1,−1) as their estimates to the other normal agents. The test loss
for the noncooperative SGD, cooperation using average, CM,
GM, and centerpoint is plotted in Fig. 13. Since we consider
a complete graph, normal agents receive the same messages
in cooperation and therefore their aggregation results are the
same. As a result, normal agents share the same test loss in the
cooperative cases, which is also the mean of their test losses. We
find the centerpoint-based aggregation outperforms the other co-
operative aggregation rules as well as the noncooperative SGD.
When there is an attack, only the centerpoint-based aggregation
converges with a better learning performance measured by the
average test loss than the noncooperative SGD. Fig. 14 illustrates
the decision boundary achieved by different aggregation rules
under attack.

In the second scenario, every normal agent receives data
from the real data distribution with different outlier rate of
10%− 30%. This simulates the case in which agents receive dif-
ferent data resulting in different learning performance. Figs. 15
illustrates the learning results. We observe that the results are
similar to the previous example.

VII. CONCLUSION

The major computational step in the the proposed approach
is the computation of a point in the safe region Safef (S). We do
so by computing a centerpoint of a set of points S in dimension
d. If we have a set of N points (i.e., |S| = N), then a centerpoint
can be computed in O(N) time in d = 2, and O(N2) time in
d = 3. Since in robotic applications, the position vector is in
two or three dimensions, the case of centerpoint computation
in d = 2, 3 is of particular interest. In general, the problem
of checking whether a point is a centerpoint of a given set of
points or not is a co-NP-complete problem. In higher dimensions
(d ≥ 4), the complexity of finding a centerpoint is unknown.
However, there exist approximation algorithms and randomized
algorithms that compute approximate centerpoints. We also note
that a point in a safe region Safef (S) can also be computed using
other techniques, for instance, through linear programming [65].
The linear program uses a total of

(
n

n−f

)
(d+ 1 + n− f) con-

straints in d+
(

n
n−f

)
(n− f) variables, which cannot be solved

in polynomial time for f = � n
d+1� − 1 with the number of

variables and constraints that are not polynomial in n. However,
centerpoint-based computation of a point in Safef (S) offers
more advantages in terms of computational complexity and
characterization.

In this work, we studied the resilient aggregation rules for
DML algorithms. We showed that the commonly used CM
and geometric median-based aggregation methods do not guar-
antee resilient convergence for distributed learning. We pro-
posed a centerpoint-based aggregation rule that generalizes

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3561

the resilience property of the median into higher dimensions.
The centerpoint-based aggregation rule guarantees that the dis-
tributed learning algorithms converge to the optimum state if the
number of Byzantine agents in a normal agent’s neighborhood
is less than � nk

d+1�, where nk is the number of agents in the
neighborhood, and d is the dimension of the state vector of
the agents. Finally, we note that the framework and the cor-
responding methods and analysis can be easily generalized to
federated learning. We aim to explore the tradeoff between the
computational cost for resilient aggregation and the degradation
in learning performance for future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: Our proof is based on the convergence proof of SGD
[54, Th. 4.6].

Since F has an L-Lipschitz continuous gradient, it holds that

F
(
θ̂k,i+1

)
− F (θk,i) ≤ ∇F (θk,i)

�
(
θ̂k,i+1 − θk,i

)
+

1

2
L‖θ̂k,i+1 − θk,i‖2.

Given the SGD step (2), we have

F
(
θ̂k,i+1

)
− F (θk,i) ≤ − αk,i∇F (θk,i)

�∇�k(θk,i; ξ
i
k)

+
1

2
α2
k,iL‖∇�k

(
θk,i; ξ

i
k

) ‖2.
(18)

Take the expected value of the above equation with respect to
the random variable ξik. Since θ̂k,i+1 depends on ξik, whereas
θk,i does not, we obtain

Eξik

[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤ −αk,i∇F (θk,i)
�Eξik

[∇�k
(
θk,i; ξ

i
k

)]
+

1

2
α2
k,iLEξik

[‖∇�k
(
θk,i; ξ

i
k

) ‖2] .
Given Assumption 3, it follows that

Eξik

[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤ −μαk,i‖∇F (θk,i) ‖2 + 1

2
α2
k,iLEξik

[‖∇�k
(
θk,i; ξ

i
k

) ‖2]
≤ −μαk,i‖∇F (θk,i)‖2

+
1

2
α2
k,iL

(
Mk + (Vk + μ2

g)‖∇F (θk,i)‖2
)

= −
(
μ− 1

2
αk,iLGk

)
αk,i‖∇F (θk,i) ‖2 + 1

2
α2
k,iLMk

(19)
where Gk � Vk + μ2

g .
Given that F is strongly convex, there exists 0 < c ≤ L such

that

‖∇F (θ)‖2 ≥ 2c (F (θ)− F ∗) for all θ.

Also, since αk,i ≤ μ
LGk

, it holds that αk,iLGk ≤ μ. Following
19, We have

Eξik

[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤ − 1

2
αk,iμ‖∇F (θk,i)‖2 + 1

2
α2
k,iLMk

≤ − αk,icμ (F (θk,i)− F ∗) +
1

2
α2
k,iLMk.

Subtracting F ∗ from both sides of (19) and taking total ex-
pectations over the joint distribution ξk,i for all k ∈ N , i ∈ N,
we have

E
[
F
(
θ̂k,i+1

)
− F ∗

]
≤ (1− αk,icμ)E [F (θk,i)− F ∗]

+
1

2
α2
k,iLMk

which completes the proof. �

REFERENCES

[1] J. Li, W. Abbas, M. Shabbir, and X. Koutsoukos, “Resilient distributed
diffusion for multi-robot systems using centerpoint,” in Proc. Robot.: Sci.
Syst., Corvalis, Oregon, USA, 2020.

[2] A. H. Sayed, S. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies
for adaptation and learning over networks: An examination of distributed
strategies and network behavior,” IEEE Signal Process. Mag., vol. 30,
no. 3, pp. 155–171, May 2013.

[3] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4, pp. 460–
497, Apr. 2014.

[4] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” 2019, arXiv:1901.11173.

[5] J. Plata-Chaves, N. Bogdanovic, and K. Berberidis, “Distributed diffusion-
based LMS for node-specific adaptive parameter estimation,” IEEE Trans.
Signal Process., vol. 63, no. 13, pp. 3448–3460, Jul. 2015.

[6] R. Abdolee, S. Saur, B. Champagne, and A. H. Sayed, “Diffusion LMS
localization and tracking algorithm for wireless cellular networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4598–4602.

[7] X. Zhao and A. H. Sayed, “Clustering via diffusion adaptation over
networks,” in Proc. 3rd Int. Workshop Cogn. Inf. Process., 2012, pp. 1–6.

[8] S. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel. Topics
Signal Process., vol. 5, no. 4, pp. 649–664, Aug. 2011.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., Fort Lauderdale, FL,
USA, 2017, pp. 1273–1282.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Neural Inf. Process. Syst., 2017, pp. 119–129.

[11] J. Li, W. Abbas, and X. Koutsoukos, “Resilient distributed diffusion in
networks with adversaries,” IEEE Trans. Signal Inf. Process. over Netw.,
vol. 6, pp. 1–17, 2020.

[12] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in Proc. 35th Int.
Conf. Mach. Learn., 2018, pp. 5636–5645.

[13] X. Chen, T. Chen, H. Sun, Z. S. Wu, and M. Hong, “Distributed training
with heterogeneous data: Bridging median- and mean-based algorithms,”
2019, arXiv:1906.01736.

[14] H. Yang, X. Zhang, M. Fang, and J. Liu, “Byzantine-resilient stochastic
gradient descent for distributed learning: A lipschitz-inspired coordinate-
wise median approach,” 2019, arXiv: 1909.04532.

[15] Z. Yang and W. U. Bajwa, “ByRDiE: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.
Process. over Netw., vol. 5, no. 4, pp. 611–627, Dec. 2019.

[16] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 1, no. 2, pp. 1–25, 2017.

[17] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” 2019, arXiv:1912.13445.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

3562 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

[18] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnerability
of distributed learning in Byzantium,” in Proc. 35th Int. Conf. Mach.
Learn., Stockholmsmässan, Stockholm, Sweden, 2018, pp. 3518–3527.

[19] E. El-Mhamdi and R. Guerraoui, “Fast and secure distributed learning in
high dimension,” 2019, arXiv:1905.04374.

[20] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumventing
defenses for distributed learning,” in Proc. Neural Inf. Process. Syst., 2019,
pp. 8632–8642.

[21] C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation,” in Proc. 35th Conf. Uncer-
tainty Artif. Intell., 2019, paper no. 83.

[22] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to Byzantine-robust federated learning,” 2019, arXiv:1911.11815.

[23] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, 1986.

[24] H. Mendes and M. Herlihy, “Multidimensional approximate agreement in
Byzantine asynchronous systems,” in Proc. 45th Annu. ACM Symp. Theory
Comput., 2013, pp. 391–400.

[25] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in complete
graphs,” in Proc. ACM Symp. Princ. Distrib. Comput., 2013, pp. 65–73.

[26] R. M. Kieckhafer and M. H. Azadmanesh, “Reaching approximate agree-
ment with mixed-mode faults,” IEEE Trans. Parallel Distrib. Syst., vol. 5,
no. 1, pp. 53–63, Jan. 1994.

[27] H. LeBlanc, H. Zhang, X. D. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 4, pp. 766–781, Apr. 2013.

[28] N. H. Vaidya, L. Tseng, and G. Liang, “Iterative approximate byzantine
consensus in arbitrary directed graphs,” in Proc. ACM Symp. Princ. Distrib.
Comput., Funchal, Madeira, Portugal, 2012, pp. 365–374.

[29] H. Zhang and S. Sundaram, “A simple median-based resilient consensus
algorithm,” in Proc. 50th Annu. Allerton Conf. Commun., Control, Com-
put., 2012, pp. 1734–1741.

[30] M. Franceschelli, A. Giua, and A. Pisano, “Finite-time consensus on the
median value with robustness properties,” IEEE Trans. Autom. Control,
vol. 62, no. 4, pp. 1652–1667, Apr. 2017.

[31] A. Pilloni, A. Pisano, M. Franceschelli, and E. Usai, “Robust distributed
consensus on the median value for networks of heterogeneously perturbed
agents,” in Proc. IEEE 55th Conf. Decis. Control, 2016, pp. 6952–6957.

[32] N. H. Vaidya, “Iterative Byzantine vector consensus in incomplete graphs,”
in Proc. Int. Conf. Distrib. Comput. Netw., Springer, 2014, pp. 14–28.

[33] X. Wang, S. Mou, and S. Sundaram, “A resilient convex combination for
consensus-based distributed algorithms,” Numer. Algebra, Control Optim.,
vol. 9, 2019, Art. no. 269.

[34] M. Shabbir, J. Li, W. Abbas, and X. Koutsoukos, “Resilient vector consen-
sus in multi-agent networks using centerpoints,” in Proc. Amer. Control
Conf., 2020, pp. 4387–4392.

[35] W. Abbas, M. Shabbir, J. Li, and X. Koutsoukos, “Resilient dis-
tributed vector consensus using centerpoint,” Automatica, vol. 136, 2022,
Art. no. 110046.

[36] H. Park and S. Hutchinson, “Fault-tolerant rendezvous of multirobot
systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 565–582, Jun. 2017.

[37] L. Guerrero-Bonilla, A. Prorok, and V. Kumar, “Formations for resilient
robot teams,” IEEE Robot. Automat. Lett., vol. 2, no. 2, pp. 841–848,
Apr. 2017.

[38] K. Saulnier, D. Saldana, A. Prorok, G. J. Pappas, and V. Kumar, “Resilient
flocking for mobile robot teams,” IEEE Robot. Automat. Lett., vol. 2, no. 2,
pp. 1039–1046, Apr. 2017.

[39] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods for
securing wireless localization in sensor networks,” in Proc. 4th Int. Symp.
Inf. Process. Sensor Netw., UCLA, Los Angeles, California, USA, 2005,
pp. 91–98.

[40] Y. Zeng, J. Cao, J. Hong, S. Zhang, and L. Xie, “Secure localization and
location verification in wireless sensor networks: A survey,” J. Supercom-
put., vol. 64, no. 3, pp. 685–701, 2013.

[41] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in Proc. 36th Int. Conf.
Mach. Learn., 2019, pp. 6893–6901.

[42] N. Gupta and N. H. Vaidya, “Byzantine fault tolerant distributed linear
regression,” 2019, arXiv:1903.08752.

[43] L. Su and N. H. Vaidya, “Byzantine-resilient multi-agent optimization,”
IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2227–2233, May 2021.

[44] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
Byzantine-resilient distributed training via redundant gradients,” in Proc.
35th Int. Conf. Mach. Learn., 2018, pp. 902–911.

[45] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos, “DETOX: A
redundancy-based framework for faster and more robust gradient aggre-
gation,” in Proc. Neural Inf. Process. Syst., 2019, pp. 10320–10330.

[46] D. Data, L. Song, and S. N. Diggavi, “Data encoding methods for
byzantine-resilient distributed optimization,” in Proc. IEEE Int. Symp. Inf.
Theory, 2019, pp. 2719–2723.

[47] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from hetero-
geneous datasets,” in Proc. 33rd AAAI Conf. Artif. Intell., 2019, pp. 1544–
1551.

[48] Z. Yang, A. Gang, and W. U. Bajwa, “Adversary-resilient distributed and
decentralized statistical inference and machine learning: An overview of
recent advances under the byzantine threat model,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 146–159, May 2020.

[49] E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault, “SGD:
Decentralized byzantine resilience,” 2019, arXiv:1905.03853.

[50] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed
online prediction using mini-batches,” J. Mach. Learn. Res., vol. 13,
pp. 165–202, 2012.

[51] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 56–69,
Jul. 2006.

[52] Z. J. Towfic, J. Chen, and A. H. Sayed, “Excess-risk of distributed stochas-
tic learners,” IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5753–5785,
Oct. 2016.

[53] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Found. Trends Mach. Learn., vol. 7, no. 4–5, pp. 311–801, 2014.

[54] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[55] X. Zhao and A. H. Sayed, “Performance limits for distributed estimation
over LMS adaptive networks,” IEEE Trans. Signal Process., vol. 60, no. 10,
pp. 5107–5124, Oct. 2012.

[56] S. Tu and A. H. Sayed, “Diffusion strategies outperform consensus strate-
gies for distributed estimation over adaptive networks,” IEEE Trans. Signal
Process., vol. 60, no. 12, pp. 6217–6234, Dec. 2012.

[57] J. Matoušek, Lectures on Discrete Geometry. Berlin, Germany: Springer,
2002.

[58] J. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, “The discrete yet ubiq-
uitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg,”
Bull. Amer. Math. Soc., vol. 56, no. 3, pp. 415–511, 2019.

[59] N. H. Mustafa, S. Ray, and M. Shabbir, “k-centerpoints conjectures for
pointsets in Rd,” Int. J. Comput. Geometry Appl., vol. 25, no. 3, pp. 163–
185, 2015.

[60] S. Jadhav and A. Mukhopadhyay, “Computing a centerpoint of a finite
planar set of points in linear time,” Discrete Comput. Geometry, vol. 12,
no. 3, pp. 291–312, 1994.

[61] T. M. Chan, “An optimal randomized algorithm for maximum tukey
depth,” in Proc. 15th Annu. ACM-SIAM Symp. Discrete Slgorithms, 2004,
pp. 430–436.

[62] G. L. Miller and D. R. Sheehy, “Approximate centerpoints with proofs,”
Comput. Geometry, vol. 43, no. 8, pp. 647–654, 2010.

[63] W. Mulzer and D. Werner, “Approximating Tverberg points in linear time
for any fixed dimension,” Discret. Comput. Geom., vol. 50, no. 2, pp. 520–
535, 2013.

[64] D. Pickem et al., “The Robotarium: A remotely accessible swarm robotics
research testbed,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 1699–1706.

[65] H. Mendes, M. Herlihy, N. H. Vaidya, and V. K. Garg, “Multidimensional
agreement in Byzantine systems,” Distrib. Comput., vol. 28, no. 6, pp. 423–
441, 2015.

Jiani Li received the Ph.D. degree in computer
science from the Electrical Engineering and Com-
puter Science Department, Vanderbilt University,
Nashville, TN, USA, in 2021.

She is currently working as a Research Scientist
with Meta. Her research focuses on resilient multia-
gent distributed systems and resilient design of cyber-
physical systems with machine learning components.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BYZANTINE RESILIENT DISTRIBUTED LEARNING IN MULTIROBOT SYSTEMS 3563

Waseem Abbas (Member, IEEE) received the M.Sc.
and Ph.D. degrees in electrical and computer engi-
neering, from Georgia Institute of Technology, At-
lanta, GA, USA, in 2013 and 2010, respectively.

He is currently an Assistant Professor with the
System Engineering Department, University of Texas
at Dallas, Dallas, TX, USA. Previously, he was a
Research Assistant Professor with the Vanderbilt Uni-
versity, Nashville, TN, USA. He was a Fulbright
scholar from 2009 till 2013. His research interests
are in the areas of control of networked systems,

resilience and robustness in networks, distributed optimization, and graph-
theoretic methods in complex networks.

Mudassir Shabbir received the Ph.D. degree in com-
puter science from Division of Computer Science,
Rutgers University, NJ, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science, Information Tech-
nology University, Lahore, Pakistan and a Re-
search Assistant Professor with Vanderbilt Univer-
sity, Nashville TN, USA. Previously, he has worked
with Lahore University of Management Sciences,
Lahore, Pakistan, Los Alamos National Labs, New
Mexico, Bloomberg L.P. New York, NY, USA, and

with Rutgers University, NJ, USA. He was Rutgers Honors Fellow form 2011
to 2012. He also works in graph machine learning and resilient network sys-
tems. His main area of research is algorithmic and discrete geometry, and has
developed new methods for the characterization and computation of succinct
representations of large datasets with applications in nonparametric statistical
analysis.

Xenofon Koutsoukos (Fellow, IEEE) received his
Ph.D. degree in electrical engineering from the Uni-
versity of Notre Dame in 2000. He is currently a
Professor and the Chair of the Department of Com-
puter Science and a Senior Research Scientist with
the Institute for Software Integrated Systems (ISIS),
Vanderbilt University, Nashville, TN, USA.

He was a Member of Research Staff with the Xerox
Palo Alto Research Center (PARC) (2000–2002). He
has authored or coauthored more than 300 journal
and conference papers and he is coinventor of four

US patents. His research work is in the area of cyber-physical systems with
emphasis on learning-enabled systems, formal methods, distributed algorithms,
security and resilience, diagnosis and fault tolerance, and adaptive resource
management.

Prof. Koutsoukos was the recipient of the NSF Career Award in 2004, the
Excellence in Teaching Award in 2009 from the Vanderbilt University School
of Engineering, and the 2011 NASA Aeronautics Research Mission Directorate
(ARMD) Associate Administrator (AA) Award in Technology and Innovation.
He was named a Fellow of the IEEE for his contributions to the design of resilient
cyber-physical systems.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 21,2022 at 18:05:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

