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Abstract. Load forecast systems play a fundamental role the operation
in power systems, because they reduce uncertainties about the system’s
future operation. An increasing demand for precise forecasts motivates
the design of complex models that use information from different sources,
such as smart appliances. However, untrusted sources can introduce vul-
nerabilities in the system. For example, an adversary may compromise
the sensor measurements to induce errors in the forecast. In this work,
we assess the vulnerabilities of load forecast systems based on neural
networks and propose a defense mechanism to construct resilient fore-
casters.

We model the strategic interaction between a defender and an attacker
as a Stackelberg game, where the defender decides first the prediction
scheme and the attacker chooses afterwards its attack strategy. Here, the
defender selects randomly the sensor measurements to use in the forecast,
while the adversary calculates a bias to inject in some sensors. We find an
approximate equilibrium of the game and implement the defense mecha-
nism using an ensemble of predictors, which introduces uncertainties that
mitigate the attack’s impact. We evaluate our defense approach training
forecasters using data from an electric distribution system simulated in
GridLAB-D.

Keywords: Security · Machine learning · Power systems ·
Load forecast · Game theory

1 Introduction

Load forecast systems play a fundamental role in the operation of power systems,
because utilities and generators need estimations of the future loads to plan their
operation. For example, the utilities procure (or sell) energy in electricity markets
based on estimations of the future demand. The relevance of forecast systems
will increase due to uncertainties coming from new technologies (e.g., renewable
generation, electric vehicles, and smart appliances); however, these technologies
also introduce vulnerabilities.

Some works have demonstrated that false data injection (FDI) attacks, which
manipulate sensor readings, can induce errors in state estimation systems of
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power grids, affecting the system’s operation [14,29]. An adversary can design
attacks to damage the system or to change the electricity market prices. Likewise,
an adversary can manipulate the forecast system exploiting vulnerabilities of
artificial intelligence models [1,4].

In this work, we assess the vulnerabilities that forecast systems introduce
in electricity markets. We focus on forecast models based on artificial neural
networks (NNs) that accept as inputs the historical measurements from some
sensors (e.g., power sensors and thermometers). We consider an adverse gener-
ator who injects a bias in some measurements to induce errors in the forecast.
Unlike other works, this adversary must choose its strategy taking into account
that the attack will affect future predictions that use the biased measurements.

We model the strategic interaction between the defender and the attacker as
a Stackelberg game, in which the defender decides first the prediction scheme
and the attacker chooses afterwards its attack strategy [9]. In this case, the
defender chooses randomly the sensor measurements to use in the forecast. A
near optimal defense strategy consists in selecting each sensor’s measurements
with the same probability. With this strategy the defender reduces the number
of compromised sensors used in the prediction.

We find some practical limitations implementing the proposed defense strat-
egy, due to the large strategy space. In particular, since the defender selects
randomly the sensor measurements, the number of possible models grows expo-
nentially with respect to the number of sensors. For practical reasons, we propose
an approximate implementation of the defense mechanism using a ensemble of
prediction models.

The defense strategy can fail if the ensemble becomes more sensitive to the
attacks than the original model. This can happen because each model in the
ensemble makes predictions using less sensors; therefore, an attack with fewer
resources can still create a significant deviation in the predictions. We find that
the ensemble becomes more resilient when its models predict a fraction of the
total load.

We evaluate our defense approach training forecasters to predict the future
load of an electric distribution system simulated in GridLAB-D. Our simulation
includes both residential and commercial loads, which have appliances, such as
heating, ventilation, and air conditioning (HVAC) systems, water heaters, pool
pumps, among others.

The paper is structured as follows. In Sect. 2 we introduce a model of the
electricity market and explain how an adverse generator can manipulate the
sensor readings to profit. Section 3 presents our methodology to design resilient
forecasters. In this section we introduce the game between the adversary and
the defender and find an approximated equilibrium. Section 4 presents a way to
implement the optimal defense policy using a small number of models, without
losing its efficacy. In Sect. 5 we validate our approach with some experiments.
Finally, in Sect. 6 we comment on related work and we conclude the paper in
Sect. 7.
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2 System Model

In this section we introduce an electricity market model and show how load
forecasts affect the profit of both utilities and generators. Then we explain how
an adverse generator can manipulate the sensor readings to profit. Also, we
quantify the consequences of an attack, that is, the costs for the utility and the
benefits for the adversary.

2.1 Electricity Markets

In general, electricity systems use markets as mechanisms to allocate resources
efficiently. The electricity markets, unlike other markets, need an operator who
guarantees that the system’s equilibrium (allocation of resources) satisfies the
system’s physical constraints.1 Some power systems use two markets, namely
the day-ahead market (DAM) and the real-time market (RTM) [22].

The DAM accepts bids for the next day and produces commitments for
demand and generation. The commitments reduce uncertainties of demand,
which allows the system’s operator to schedule generators with anticipation.
However, unexpected events may change the production capacity or the needs
for energy. The RTM complements the DAM correcting periodically imbalances
between demand and generation, preventing frequency deviations that may dam-
age components with thigh operational limits. These adjustments translate into
trades settled at the price of the RTM [16].

The market participants must fulfill the agreements from both the day-ahead
and the real-time markets. For example, buyers must pay sellers the price agreed
in the DAM; however, if a generator fails to supply energy, then the system oper-
ator has to buy energy in the RTM. Likewise, if a customer uses less resources,
then the system operator sells the excess in the RTM.

Why Load Forecasting Is Important?. Customers usually do not perceive
changes in prices because they pay a flat tariff to retailers, who serve as their
intermediaries in the markets. Hence, the retailers deal with the risk of uncertain
market prices, that is, they buy energy at variable prices in the market and sell
it at a fixed price to their customers. For this reason, the retailers try to reduce
uncertainties by forecasting the demand of their customers [25].

2.2 Load Forecasting

Utilities and generators use short-term load forecasting (STLF), which ranges
from hours to weeks, to adjust their bids in electricity markets. Shorter forecast
horizons help to control the power flow, while long-term forecasts help to plan
the operation and the system expansion [10].
1 These constraints prevent damage to the equipment and the environment. For exam-

ple, generators may have operational limitations to prevent emissions or to regulate
the use of water (for hydroelectric plants) [16].
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Here we consider a forecaster that uses past sensor measurements of loads
and the weather to predict the total demand during a future time period. In
particular, the forecaster uses the measurements available a time t to estimate
the demand at time t + τ , where τ is the forecast horizon.

Let us denote with M = {1, . . . , m} the set of sensors, which have mea-
surements lk(t) at time t = 1, 2, . . . , T , with k ∈ M. Each measurement lk(t)
corresponds to average values during a period of one hour. Furthermore, we
denote with y(t) the total demand at time t. Thus, the prediction problem con-
sists in finding a function f(·) that uses sensor measurements available at time
t to estimate the future demand y(t + τ).

We denote with the vector xk(t) = [lk(t− 1), . . . , lk(t−H − 1)] the historical
measurements of the kth sensor available at time t. In this case we use H past
samples to estimate the future load. Moreover, we denote with the vector X(t) =
[xk(t − τ)]k∈M the whole historical data at time t.

Remark 1. In this case we build a forecaster using load and temperature mea-
surements; however, we assume that the adversary manipulates only the load
measurements.

Here we use a NN to estimate y(t) as a function of the historical data X(t).
The estimated demand is

ŷ(t) = f(X(t), w∗) = f(X(t)),

where the vector w∗ represents the weights of the NN that minimizes an error
metric (loss function) l(·), that is,

w∗ ∈ arg min
w

l(y, f(X,w)).

Hence, the prediction error at time t is

ε(t) = y(t) − ŷ(t).

In general, nonlinear distance metrics are more sensitive to outliers, since
large errors in individual samples have a larger impact. Hence, the mean squared
error (MSE) is more sensitive to outliers than the mean absolute error (MAE)
[12] (we illustrate this in Sect. 5). For this reason, we choose MAE as loss function,
that is,

l(y, ŷ) =
1
T

∑T

t=1
|y(t) − ŷ(t)|. (1)

Forecast’s Economic Impact. Recall that the utility uses load forecasts to
choose its bids, which in turn create commitments in the electricity market. In
our model the utility purchases the estimated load ŷ in the DAM and trades the
demand imbalance (estimation error) ε in the RTM. Hence, the utility pays

Ωu(y, ŷ) =
∑T

t=1

{
ŷ(t)pDA(t) + ε(t)pRT (t)

}
, (2)
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where pDA and pRT represent the price in the DAM and RTM, respectively. On
the other had, we model the profit of generators (revenues minus generation
costs) as

Ωg(y, ŷ) = Ωu(y, ŷ) − C(y), (3)

where C(·) represents the generation cost. For simplicity, we formulate the gen-
eration cost as a function of the total energy produced y. However, in practice
the trades in each market can affect the generation costs.

2.3 Adversary Model

According to Eq. (3), the generators can profit from estimation errors that
increase the utility’s cost Ωu. In particular, we consider a cyber-attack that
injects false data in the sensor measurements and transforms them as

lak(t) = lk(t) + bk(t),

where the bk(t) represents the bias in the kth sensor at time t. Likewise, the
historical data of the kth sensor becomes xa

k(t) = xk(t) + ϕk(t), where

ϕk(t) = [bk(t − 1), . . . , bk(t − H − 1)]. (4)

We denote the total historical data manipulated by an adversary as Xa(t) =
X(t) + Ba(t), where the vector

Ba(t) = [ϕk(t − τ)]k∈M (5)

represents the bias observed by the forecast model. An attack with bias Ba(t)
transforms the load forecast as

ŷa(t) = f(X(t) + Ba(t)) ≈ ŷ(t) − δ(Ba, t),

where δ(Ba, t) denotes the impact of the attack (the deviation from the origi-
nal prediction), which satisfies δ(0, t) = 0. Therefore, the net prediction error
becomes

y(t) − ŷa(t) ≈ y(t) − ŷ(t) + δ(Ba, t) = ε(t) + δ(Ba, t). (6)

Impact of the Attack. From Eqs. (2) and (6), the utility’s cost with an attack
is

Ωu(y, ŷa) ≈
∑T

t=1

{
ŷa(t)pDA(t) + (ε(t) + δ(Ba, t)) pRT (t)

}
.

Hence, the benefit of generator is

Ωg(y, ŷa) − Ωg(y, ŷ) ≈ −
∑T

t=1
δ(Ba, t)(pDA(t) − pRT (t)). (7)

The precise goal of the attack depends on the price difference between the
DAM and the RTM. The next result shows some conditions in which the adver-
sary benefits by either increasing or decreasing the forecasts.
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Lemma 1. Assume that δ(Ba) and pDA − pRT are independent random vari-
ables. If either E[δ(Ba)] ≤ 0 and E[pDA − pRT ] ≥ 0 or E[δ(Ba)] ≥ 0 and
E[pDA − pRT ] ≤ 0, then the adversary profits from the attack.

In the remainder of the paper we assume that 1
T

∑
t pDA(t) ≤ 1

T

∑
t pRT (t);

hence, the adversary seeks to induce under-estimations of the future load
( 1

T

∑
t δ(Ba, t) ≥ 0). For this reason, we formulate the adversary’s objective

as

maximize
[bk]mk=1

1
T

∑T

t=1
|ŷ(t) − ŷa(t)| =

1
T

∑T

t=1
|ε(t) + δ(Ba, t)|

subject to: Eq. (4)
Eq. (5)
∑T

t=1
δ(Ba, t) ≥ 0

bk(t) = 0 if k /∈ Ma

(8)

We measure the impact of the attack for the defender as the damage in the
forecast’s accuracy. The defender’s loss function (see Eq. (1)) with an attack
becomes

l(y, ŷa) =
1
T

∑T

t=1
|y(t) − ŷa(t)| ≈ 1

T

∑T

t=1
|ε(t) + δ(Ba, t)|. (9)

Thus, the defender and the attacker pursue opposite goals.

Remark 2. A FDI attack may have broader consequences, since other forecast-
ers can use the same historical data with different purposes. For example, the
system operator may calculate reserves based on load predictions. Thus, under-
estimations in the future load may expose the system to both failures and other
attacks.

2.4 Attack Capabilities and Restrictions

We make the following assumptions about the attack:

1. The adversary knows both the forecast system (or estimates it [4,8,28]) and
samples of the historical measurements. With this information the adversary
can find an attack that solves Eq. (8).

2. The attack does not depend on the current state of the system. This can
occur if the adversary cannot read the sensor measurements in real time or if
it is unable to use such information to compute the bias.

3. The prices’ distribution do not change with the attack; hence, the adversary’s
goal does not change after the attack.

4. The adversary compromises a subset of sensors Ma ⊆ M, with ma = |Ma|.
Hence, bk(t) = 0 for the sensors k /∈ Ma.

5. The adversary injects the same bias in all the compromised sensors. Hence,
bk(t) = bj(t) = b(t) for all k, j ∈ Ma.
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6. The number of sensors compromised is the main variable that determines the
impact of an attack.

7. The impact of the attack δ(·) is concave increasing with respect to the number
of sensors compromised. Intuitively, the attacker may experience diminishing
returns in its attacks, that is, the impact increases with the number of sensors
compromised, but the growth rate decreases with each additional sensor.
Likewise, we assume that forecasters that use the same number of sensors
have the same impact function.

The adversary must design its attack considering its future effects, because
the utility uses the biased measurements during H periods. In this case, the
adversary can leverage the periodicity of the load to design a successful attack.
In particular, the loads follow a 24 h period determined by the daily habits of
the consumers. Likewise, the forecaster also has some periodicity, because it uses
H samples in its estimation. Thus, the adversary can manipulate the sensors to
report periodically the same bias, that is, bk(t) = bk(t + H).

3 Resilient Forecasting

The defense problem consists in designing a forecast system using data from
untrusted sources. Here we consider the possibility of mitigating the impact of
attacks by introducing randomness in the system, which in turn creates uncer-
tainties for the attacker. In particular, we analyze the efficacy of building forecast
models using randomly selected sensor measurements. Intuitively, uncertainties
in the system’s model can reduce the success of the adversary, who has to design
the attack considering possible contingencies.

3.1 Game Formulation

We model strategic interaction between the defender and the attacker as a Stack-
elberg game, where the defender decides first the prediction scheme and the
attacker chooses afterwards its attack strategy [9].

Strategies. In this case, the defender chooses the probability of using the kth

sensor ρd
k ∈ [0, 1], for k ∈ M, which satisfy

∑
k∈M ρd

k = md. The above condition
implies that the forecaster uses in average md sensors. We denote the defense
strategy with the vector ρd = [ρd

k]k∈M. Likewise, we represent the strategy of the
adversary with the vector ρa = [ρa

k]k∈M, where ρa
k ∈ [0, 1] denotes the probability

of attacking the kth sensor. In this case, the adversary compromises at most ma

sensors in average; hence,
∑

k∈M ρa
k ≤ ma. Let us denote with Md and Ma the

sets of sensors selected by the defender and the attacker, respectively. Thus, the
set Mc = Md

⋂ Ma contains the compromised sensors that the defender uses
in the prediction.

Let Wk be a Bernoulli random variable with success probability ρk = ρd
kρa

k.
In other words, Wk describes whether both the defender and the adversary select
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the kth sensor. Hence, the number of compromised sensors (attacked sensors used
in the forecast) is

Sm =
∑

k
Wk = |Mc|,

where Sm follows the m-generalized binomial distribution. Hence, the expected
number of compromised sensors is

E[Sm|ρd, ρa] = λ(ρd, ρa) =
∑

k∈M ρd
kρa

k.

Player’s Payoff. Let us express the impact of the attack as a function of the
sensors selected by the players (Md and Ma) and the bias b

y(t) − ŷa(t) ≈ δ(Md,Ma, b, t).

Since we assume that the impact depends only on the number of sen-
sors compromised, then two attacks on the sets Ma1 and Ma2 that satisfy
|Md

⋂ Ma1 | = |Md
⋂ Ma2 | have approximately the same impact,2 that is,

δ(Md,Ma1 , b, t) ≈ δ(Md,Ma2 , b, t). (10)

Henceforth we denote the impact function as

δ(Sm, t) = δ(Md,Ma, b∗, t),

where b∗ represents the optimal attack schedule that solves Eq. (8).
According to Eqs. (8) and (9), the defender’s objective consist in reducing

the expected impact of the attack, while the adversary attempts to create an
error in the prediction. For this reason, we define the payoff of the adversary as

Πa(ρd, ρa) = E[δ(Sm)|ρd, ρa].

On the other hand, we define the payoff of the defender as

Πd(ρd, ρa) = −Πa(ρd, ρa).

3.2 Game’s Approximate Equilibrium

The equilibrium of the game is the solution to

min
ρd

max
ρa

Πa(ρd, ρa). (11)

The concavity of the impact with respect to the number of sensors compro-
mised implies

E[δ(Sm)|ρd, ρa] ≤ δ
(
E[Sm|ρd, ρa]

)
= δ(λ(ρd, ρa)). (12)

2 Although the impact depends on the particular model, that is, the set Md, we assume
that models with the same number of sensors md have the same impact function.
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The next result shows that an approximate equilibrium to the game in
Eq. (11) comes from the solution to

min
ρd

max
ρa

δ(λ(ρd, ρa)). (13)

Proposition 1. Let (ρd, ρa) be the solution Eq. (13). Then (ρd, ρa) is a
ξ−equilibrium of the game in Eq. (11), that is,

Πd(ρd, ρa) ≥ Πd(ρ̃d, ρa) − ξ

and
Πa(ρd, ρa) ≥ Πa(ρd, ρ̃a) − ξ

for some strategies ρ̃d and ρ̃a. and ξ ≥ 0.

This means that the players cannot get benefits superior to ξ by adopting
another strategy. Moreover, the next result shows that the optimal defense strat-
egy ρd for the game in Eq. (13) consists in selecting the sensors with the same
probability.

Proposition 2. The defense strategy ρd in the equilibrium of Eq. (13) satisfies
ρd

k = md

m , for all k ∈ M.

Remark 3. The adversary’s optimal strategy consists in targeting the sensors
with the highest selection probability. However, when the defender chooses all the
sensors with the same probability, then the adversary doesn’t have any preference
for the sensors.

Properties of the Defense Mechanism. If the defender selects md sensors
with an uniform distribution, then the expected number of compromised sensors
is

λ(ρd, ρa) =
md

m
ma.

Thus, the proportion of compromised sensors is λ(ρd, ρa)/md = ma/m, which
doesn’t depend on md. In other words, by selecting sensors randomly we reduce
the number, but not proportion, of compromised sensors.

We improve the resiliency of the system if the ensemble has a lower impact
than the original model; hence, from Eq. (12) we need

δ(M,Ma, b̃, t) ≥ E[δ(Sm)|ρd, ρa], (14)

where b̃ represent the optimal bias when the forecast model uses all the sensors.
The above condition can fail if the ensemble becomes more sensitive to the
attacks than the original model.

Besides selecting randomly the sensor measurements, the defender may adjust
the training of models to guarantee Eq. (14). In particular, the defender may
implement some form of regularization to make the models less sensitive. For
example, [20] makes NNs robust against attacks implementing an algorithm
equivalent to Lipschitz regularization. In Sect. 5 we explore how the target in
the training phase affects the sensitivity of the models.
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4 Implementation of the Forecast

From the game formulation, the defender selects randomly md sensors and con-
structs a forecaster. Thus, the defender must either train a new model for each
prediction task or train and store the models with anticipation. However, such
approaches may require a prohibitively large amount of time and resources,
because the defender can build

(
m
md

)
different forecasters. For this reason, we

approximate the defense strategy constructing an ensemble with n models guar-
anteeing that they use each sensor’s data with probability md/m (the desired
defense strategy (see Proposition 2)).

Let us partition the set of sensors M in n sets Pi of size m/n, where
⋃n

i=1 Pi =
M and Pi

⋂ Pj = ∅ for all i �= j, 1 ≤ i, j ≤ n. If md/m ≤ 0.5, then we construct
an ensemble of n = m/md models, where each model uses the set Mi = Pi for
its training. In this way, each model uses each sensor with probability md/m.

On the other hand, if md/m ≥ 0.5, then we construct n models that use
all except one of the subsets. In this case, the ith model uses Mi =

⋃
j �=i Pj

sensors. Thus, we select each sensor’s data with probability (n − 1)/n, which
must satisfy n−1

n = md

m (that is, n = m
m−md ). This means that each partition has

size |Pi| = m − md and each model uses |Mi| = md sensors.
When n is not integer, we can still achieve the desired selection probability

merging two ensembles. Let us construct two partitions {Pa
i }n1

i=1 and {Pb
i }n2

i=1

with n1 = 	n
 and n2 = �n�. With these partitions we can build two ensembles
that select each sensor with probability γk = nk−1

nk
, for k = 1, 2. We can merge

the ensembles selecting them with probability βk ∈ [0, 1] to satisfy
∑

k γkβk =
md

m , for k = 1, 2. In this way, we can construct an ensemble that guarantees that
the prediction uses each sensor with probability md/m.

Since the ensemble uses models trained beforehand, the adversary my target
the sensors of particular forecasters to improve its profit, rather than selecting
them randomly. The next result shows that the adversary’s optimal strategy
consists in allocating its resources equally to all the partitions.

Proposition 3. Consider an ensemble constructed from a partition {Pa
i }n

i=1

and let σi be the proportion of resources allocated to the set Pi. Then the adver-
sary maximizes the impact selecting σi = 1

n , which leads to an expected impact

δ

(
md

m
ma

)
= δ(λ(ρd, ρa)).

Remark 4. According to the previous result, our mechanism to implement the
ensemble has the same expected impact than the ensemble proposed in Sect. 3.
Hence, combining multiple ensembles doesn’t improve the forecaster’s resiliency,
because individually they have the same expected impact.

Remark 5. The previous results hold if the models of the ensemble have the
same impact as a function of the number of sensors compromised.
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5 Evaluation

In this subsection we examine how some parameters of the forecasters affect their
sensitivity to attacks. Based on the results from these experiments we design the
ensemble and show its robustness against attacks.

5.1 Experimental Setup

Power System. We make a detailed simulation of an electric distribution sys-
tem using GridLAB-D and the prototypical distribution feeder models provided
by the Pacific Northwest National Laboratory (PNNL) [24]. The distribution
models capture fundamental characteristics of distribution utilities from the U.S.
In this case, we use the prototypical feeder R1-12.47-3 that represents a mod-
erately populated area with 109 commercial and residential loads composed by
appliances such as heating, ventilation, and air conditioning (HVAC) systems,
water heaters, and pool pumps, among others. We simulate the distribution sys-
tem during summer time (June to August) to build a dataset with measurements
of the power consumed by each load and the outdoor temperature.

Forecast Models. We implement each forecaster in Keras [6] using NNs com-
posed by five layers (three layers with 150 Long Short-Term Memory (LSTM)
units [11] and two layers with 200 and 100 rectified linear units (ReLU), respec-
tively). We train the NN using Adadelta as optimizer, which adapts the learning
rate based on a moving window of gradient updates.

We use as input data X the last H = 24 measurements from 110 sensors (109
power sensors and 1 temperature sensor). We train the NNs to estimate the load
during the next hour (τ = 1), and we make the predictions every hour. In the
experiments we use 80% of the samples to train the forecasters, 10% to determine
the attack policy, and 10% to evaluate the impact of the attacks. Figure 1 shows
an example of the prediction made with the forecaster.

Design of Attacks. We find the attack schedule solving Eq. (8) using the L-
BFGS-B algorithm from [15]. We use the gradient of the forecaster (e.g., the
expected gradient of the ensemble) and part of the samples (10%) to find the
optimal attack schedule. In other words, the adversary uses the available infor-
mation about the forecaster and the loads’s behavior to design the attack.

Moreover, we make Monte Carlo simulations to assess the impact of the
strategy of each player. In particular, we train 20 forecasters reflecting the defense
strategy ρd. Likewise, for each attack we choose randomly a forecaster and find
an attack selecting randomly ma sensors (we repeat this random selection 20
times).
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Fig. 1. Example of the load forecast.

5.2 Sensitivity of Forecast Models

Loss Function. Figure 2 shows the expected attack’s impact δ(Ba, t) on models
trained with different loss functions, namely the MSE and the MAE. The exper-
iment confirms that the NN trained with MSE suffers a higher impact with the
attack. Moreover, the impact is approximately concave with respect to the num-
ber of sensors compromised ma for both MSE and MAE. In the remainder we
use models trained with MAE.

Ensemble Training. Now we examine how to design the models of an ensemble
guaranteeing that it has a lower impact than a single model (see Eq. (14)). In
particular, we experiment with different targets of the models (the value that
they learn).

We construct four forecasters {f j}4j=1 with different characteristics. The first
forecaster f1 estimates the total load y using data from m sensors (this is the
nominal case). Each one of the remainder forecasters has an ensemble of two
models, f j

1 and f j
2 for j = 2, 3, 4, trained using half of the sensors (md = 0.5m)

to predict a values yj
1 and yj

2, respectively. We build the second forecaster with
models that estimate the total load; hence, y2

1 = y2
2 = y and f2 = (f2

1 + f2
2 )/2.

On the other hand, the models of the third forecaster estimate a fraction of the
load with y3

1 = y3
2 = 0.5y and f3 = f3

1 + f3
2 . We define the last forecaster as

f4 = f4
1 +f4

2 , where the models f4
1 and f4

2 estimate the total load of their sensors,
that is, y4

i =
∑

k∈Mi
lk.

Figure 3 shows that the model’s target affects the sensitivity of the ensem-
bles. In this case, the forecasters f2 and f3 suffer a larger impact than the
original model f1, while f4 succeeds in reducing the impact of attacks (but has
a larger prediction error (0.075) than the other forecasters). For this reason, in
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Fig. 2. Attack’s impact on models trained with MSE and MAE. The model trained
with MAE is more resilient to attacks.
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Fig. 3. Impact of an attack on four different forecasters. The training’s target yi affects
sensitivity of the ensemble.

the remainder of the text we train ensembles as f4, dividing the prediction task
among the ensemble’s individual models.

5.3 Selection of the Best Ensemble

Now we test the robustness of ensembles using models with different values of md.
Figure 4a shows that the ensemble’s prediction error increases as we reduce the
number of sensors used in each model md, but it does not increase significantly.
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Fig. 4. Prediction error and impact of ensembles with different parameters md.

This may happen because as md decreases, the forecast tends to estimate the
demand of fewer loads, giving the ensemble a greater detail of them.3 On the
other hand, Fig. 4b shows that the impact increases with respect to md.

Since both the prediction error and the attack’s impact have concave shapes,
the value of md that minimizes the cost of the attack (see Eq. (9)) falls in one of
the extremes, that is, md ∈ {1,m}. In our particular scenario, md = 1 attains
the lowest cost of the attack (the ensemble that predicts each load individually).

Ensemble Size. Figure 5 shows the impact of attacks as a function of combined
ensembles. We train the models selecting randomly md = 0.5m models and
consider random attacks on ma = 0.5m sensors. This experiment shows that
the number of ensembles (or models) doesn’t affect significantly the impact,
confirming Remark 4.

6 Related Work

Previous works have analyzed the vulnerability of CPS against false data injec-
tion (FDI) attacks, which modify sensor measurements to manipulate the sys-
tem’s operation. The seminal work by Liu et al. [21] considers attacks on sensors
that induce errors in the state estimation of power grids. Such errors can affect
the system’s operation, in particular, the electricity prices. An adversary that
manipulates the electricity prices can profit and/or cause damage to the system.
This attack requires historical data and real time measurements to calculate the
attack.

3 Other forecast models make predictions using less information (e.g., the aggregate
loads); hence, their accuracy decrease significantly with less loads [25].
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Fig. 5. Combining multiple ensembles does not improve its accuracy nor its resiliency.

Other works have considered FDI attacks that modify information about the
congestion patterns (the rate of the transmission lines) [14,29] and the topology
of the power system [5]. Also, the attacks can also target information that con-
sumers use to make decisions, misleading them to take actions that benefit the
adversary [2,3]. In most cases, the adversary calculates the attack based on the
system’s state.

Some works have recognized the vulnerabilities of cyber attacks on forecast-
ing systems. For example, [19] analyzes attacks that manipulate load forecasts to
manipulate the economic dispatch, which determines the production of each gen-
erator based on the estimations of future demand. However, the paper focuses
on the consequences of the attack (e.g., how an adversary profits), rather than
its precise implementation.

Chen et al. [4] show how an adversary can manipulate the temperature mea-
surements to increase or decrease load forecasts. In particular, the adversary
does not need knowledge about the forecasting model (e.g., the precise struc-
ture of the NN) or the power system. This and other works (for example [8,28])
show that the adversary can estimate the system’s model through either his-
torical data or queries from the forecast system. Our work is closely related to
[4]; however, our attack targets load, rather than temperature measurements.
Nonetheless, our defense approach can be applied the attack presented in [4].

The research of FDI attacks against NNs analyzes how an adversary can
design adversarial examples to induce errors in the system’s task (e.g., misclassify
images) [27]. In particular, the attacks are transferable among models. In other
words, two models trained independently (even with different data) to perform
the same task can suffer from the same attacks [23].

Ilyas et al. [13] explain the existence of adversarial examples due to non-
robust-features (patterns in the data that are highly predictive). In other words,
models may become sensitive to well-generalizing features of the data. Hence,
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attacks that target such features, regardless of the model, can induce errors in
the outcome (this also explains why we have transferability of the attacks).

Some papers design robust NNs in image classification applications introduc-
ing randomness in the system. However, these approaches differ from ours in the
way they introduce the uncertainties. For example, [18] proposes a robust NN
borrowing ideas from differential privacy (DP). DP randomize computations on
databases such that a small change in the data set has a bounded change in the
distribution over the outputs. This property guarantees that bounded changes in
the input of NN will induce bounded changes in the output, preventing the mis-
classification of images. On the other hand, [20] prevents gradient based attacks
adding noise in the layers of the NN. In this way, a single NN acts as multi-
ple models, which combined conform an ensemble of models. Also, [7] proposes
stochastic activation pruning, which removes a subset of the activations (nodes)
in each layer to protect pre-trained NN against adversarial examples. This app-
roach resembles dropout [26], but the selection is based on the magnitude of the
activation. [7] also formulates the interaction between defender and attacker as
a zero-sum game, but it does not present the equilibrium of the game.

Some literature on statistics consider the problem of designing robust predic-
tors or estimators [17]. In this case, a robust predictor has a small sensitivity
to outliers (e.g., random failures). In other words, it has the capacity to handle
disturbances for a wide type of distributions. Thus, the design decisions focus
on selecting the loss function, rather than manipulating the data.

In general, nonlinear distance metrics are more sensitive to outliers, since
large errors in individual samples have larger impact. Hence, the MSE is more
sensitive to outliers than the MAE [12]. Nonetheless, robust models have a cost in
terms of efficiency, that is, they may have a larger variance (confidence interval).

7 Conclusions

In this work, we show that an adverse generator can profit by inducing errors
in load forecasts of utilities. The adversary with knowledge about the forecast
model and historical samples from the sensors can succeed injecting a bias in
the sensor measurements.

We model the interaction among defender and attacker using game theory
and find a defense strategy that can mitigate the attack’s impact. In this case,
building forecast models using each sensor’s measurements with a fixed proba-
bility reduces the number of compromised sensors. However, this strategy may
fail if forecasters that use less information become more sensitive to attacks.

Due to the large strategy space, we approximate the defense strategy with
an ensemble of predictors. Beside its practical benefits, the ensemble allows us
to divide the forecast task, improving the resiliency against attacks. In this case,
the ensemble becomes more resilient as its models use less measurements, that
is, as it estimates fewer loads. In this way, with a careful selection of the training
data we can incorporate uncertainties in regular NNs that help to mitigate the
impact of attacks.
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Other protection schemes may complement the proposed approach. For exam-
ple, regularization during the training also can mitigate the attack’s impact,
because it makes the models less sensitive to deviations in the data.

A Appendix

Proof (Lemma 1). Let δ(Ba) and pDA − pRT be independent random variables;
hence, we can approximate their expected value using a Monte Carlo integration
with T terms, that is,

E[δ(Ba)] =
1
T

∑T

t=1
δ(Ba, t),

E[pDA − pRT ] =
1
T

∑T

t=1

{
pDA(t) − pRT (t)

}
.

Now, since two independent random variables X and Y satisfy E[XY ] =
E[X]E[Y ], we can approximate their expected product E[δ(Ba)(pDA − pRT )]
as

E[δ(Ba)(pDA − pRT )] =
1
T

∑T

t=1
δ(Ba, t)

1
T

∑T

t=1

{
pDA(t) − pRT (t)

}
.

Thus, if either
∑

t pDA(t) − pRT (t) ≥ 0 and
∑

t δ(Ba(t)) ≤ 0 or
∑

t pDA(t) −
pRT (t) ≤ 0 and

∑
t δ(Ba(t)) ≥ 0, then the attacker has positive profit (see

Eq. (7)).

Proof (Proposition 1). Let us consider the following bounds on the difference
between expected impact and its approximation from Eq. (12)

ξ ≤ δ(λ(ρd, ρa), t) − Πa(ρd, ρa) ≤ ξ.

Since Πd(ρd, ρa) = −Πa(ρd, ρa), then the previous expression implies

Πd(ρd, ρa) ≥ −δ(λ(ρd, ρa), t) + ξ (15)

and
− δ(λ(ρ̃d, ρa), t) ≥ Πd(ρd, ρa) − ξ. (16)

Moreover, the solution to Eq. (13), denoted (ρd, ρa), satisfies the following
properties

δ(λ(ρd, ρa), t) ≥ δ(λ(ρd, ρ̃a), t),

δ(λ(ρd, ρa), t) ≤ δ(λ(ρ̃d, ρa), t), (17)

for some strategies ρ̃d and ρ̃a. Thus, from Eqs. (15) and (17) we have

Πd(ρd, ρa) ≥ −δ(λ(ρd, ρa), t) + ξ ≥ −δ(λ(ρ̃d, ρa), t) + ξ.

Now, using the previous expression with Eq. (16) we obtain

Πd(ρd, ρa) ≥ Πd(ρ̃d, ρa) − ξ.

where ξ = ξ − ξ ≥ 0. With a similar approach we can show that

Πa(ρd, ρa) ≥ Πa(ρd, ρ̃a) − ξ.
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Proof (Proposition 2). Since δ(·) is increasing with respect to the number of
sensors compromised, the following holds

max
x

δ(x) = δ(max
x

x).

The previous property can be applied also to minimization problems; hence, we
can express the game’s equilibrium of Eq. (12) as

min
ρd

max
ρa

δ(λ(ρd, ρa)) = δ

(
min
ρd

max
ρa

λ(ρd, ρa)
)

This means that the adversary designs its strategy to maximize the number of
compromised sensors, while the defender pursues the opposite goal.

The adversary’s optimal strategy consists in attacking the sensors with high-
est selection probability. Without loss of generality, let ρd

1 ≥ ρd
2 ≥ . . . ≥ ρd

m.
Then, the attack strategy ρa

i = 1 and ρa
j = 0 for 1 ≤ i ≤ ma and j > ma leads

to the following expected number of compromised sensors

λ(ρd, ρa) =
∑ma

i=1
ρd

i .

Since a different attack strategy cannot increase the number of compromised
sensors, this attack strategy is weakly dominant.

Given the previous attack strategy, the defender’s optimal strategy consists
in selecting all the sensors with the same probability

ρd
k =

md

m
.

Observe that any deviation from this strategy increases the number of sensors
compromised.

Proof (proposition 3). Here we consider that the adversary compromises ma

sensors. Let σi be the proportion of resources allocated to the set Pi. According to
Sect. 4, we create a partition of sensors {Pi}n

i=1. First, let us consider ensembles
trained with sensors in Mi = ∪j �=iPj , for i = 1, . . . , n, where n−1

n = fracmdm.
Thus, the total number of compromised sensors used by the ith model amount
to ma

∑
j �=i σj = ma(1 − σi).

Due to the concavity of the impact function, the expected impact on the
ensemble satisfies

1
n

n∑

i=1

δ(ma(1 − σi)) ≤ δ

(
1
n

n∑

i=1

ma(1 − σi)

)
= δ

(
n − 1

n
ma

)
= δ

(
md

m
ma

)
.

Thus, the allocation that maximizes the impact attains the previous upper bound
satisfying σi = 1

n , for all i = 1, . . . , n. In other words, the adversary’s best
strategy consists in allocating its resources uniformly in the partition’s sets.
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Now, if Mi = Pi, for i = 1, . . . , n, with n = m
md , then the expected impact

on the ensemble becomes

1
n

∑n

i=1
δ(maσi) ≤ δ

(
1
n

∑n

i=1
maσi

)
= δ

(
ma

n

)
= δ

(
md

m
ma

)
.

In this case, the attack strategy that attains the upper bound satisfies σi = 1
n .

Therefore, the adversary allocates its resources equally in all the sensors in the
partition.

In practice, the adversary can compromise at most md sensors form each
partition. Hence, the optimal attack policy must satisfy σi = min{1/n,md/ma}.
When 1/n > md/ma the adversary cannot implement its ideal strategy.
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