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Abstract—Flocking control of a group of mobile agents has
been recently investigated using Graph Convolution Networks
(GCNs). The design relies on training using a centralized
controller but the resulting GCN controller is based on
communication between the agents. The agents receive sensor
measurements which are incorporated into the states and shared
between the neighbors. However, the paradigm is prone to
adversarial attacks. In this paper, we consider the problem
of designing GCN-based distributed flocking control that is
resilient to attacks on the communicated information. We
consider an attack model that is used to compromise the inter-
agent communication and may inject arbitrary signals. Our
control design uses a coordinate-wise median-based aggregation
function. It is shown that the GCN-based controller using the
proposed aggregation method is resilient against attacks on
the communication between the agents, whereas the typical
average-based aggregation fails to maintain the flock structure.
Robustness analysis is performed to show that the proposed
method is resilient whenever a majority of the agents in the
neighborhood can be trusted. Simulation results and analysis
are presented that validate the merits of the proposed approach.

Index Terms—Flocking control, graph convolutional network,
imitation learning, resilient aggregation.

I. INTRODUCTION

A multi-agent system can be described as a group of
intelligent units capable of communicating with each other
and cooperatively implementing different types of tasks [1].
This can be realized by various types of robots and have wide
application areas including military surveillance, exploration,
and rescue operation. Flocking control is one such behavior
designed for multi-agent systems, where the agents move at
the same velocity while avoiding collision with each other.
Design of flocking control has received a lot of research
attention due to its wide range of applications, including
connected automated vehicles [2], fleet of ground robots [3],
and others.

Flocking and other coordination-based tasks can be per-
formed using a centralized controller, which receives sensor
data from all the agents, and sends back the appropriate
control action to each of these agents. Such a centralized
controller can achieve the optimal performance, but it suffers
from scalability and point-of-failure issues. Therefore, for a
large group of agents, distributed control becomes a necessity.
In such a control scheme, the agents communicate with their
neighbors to decide on the suitable control actions. However,
the design of an optimal controller in such a setting is a
challenging problem [4]. Some of these challenges stem from
the fact that in a distributed setting, the agents can only

communicate with their immediate neighbors. This issue can
be overcome by the use of imitation learning [5]. The idea
has been employed in applications of single-agent system
such as autonomous driving [6] and quadrotor navigation [7].
However, in multi-agent system with swarms, this learning
becomes challenging as the number of agents becomes large.

Imitation learning can be effectively employed using Graph
Convolutional Networks (GCNs) [8], [9]. GCNs are highly
suitable for control of large-size multi-agent systems, as
their architecture is based on information exchange using the
underlying topology. For a known communication graph, this
architecture can be used in large-scale networks to incorporate
information from multi-hop neighbors. This improves the
performance of the designed control significantly over local
controllers that rely only on the information received from the
immediate neighbors. The work in [10] develops a distributed
control algorithm using GCNs, where information from multi-
hop neighbors are aggregated using simple averaging.

While cooperation among agents can improve learning
performance in an ideal scenario, the overall performance
of the network may deteriorate in cases when some of the
agents may be influenced by an external adversary [11].
GCN algorithms are subject to potential attacks from various
adversarial entities that may target a fraction of agents in
the network. When these attacked agents share corrupted
information with their neighbors, they affect them in turn,
and cascading propagation of this harmful information may
potentially deteriorate the performance of the entire network.
This makes it critical for the healthy agents to have a
mechanism to maintain performance in the presence of
compromised agents whose identity maybe unknown to them.
Thus, the design of resilient algorithms has become a vital
area of research in distributed learning. The main goal is to
enable the normal agents to be able to mitigate the effect of
corrupted parameters shared by the adversarial agents. One
of the most effective ways of achieving this goal is by using
resilient aggregation, where the normal agents update their
parameters based on the shared information [12], [13], while
filtering out the effect of adversarial information as much as
possible.

Resilient aggregation has been widely applied to design
attack-resilient algorithms in reinforcement learning (RL) and
federated learning (FL). In RL, performance enhancement
has been achieved by average-based aggregation [14], or
consensus-based method [12]. A coordinate-wise trimmed
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mean was used in [13] to achieve resilience. In FL, various
methods have been developed which are shown to be effective
against Byzantine attacks, for examples coordinate-wise
median [15], coordinate-wise trimmed mean [16], Krum and
multi-Krum [17], Bulyan and multi-Bulyan [18].

In this work, we address the problem of attack-resilient
aggregation for design of flocking control using GCNs. First,
we show that the GCN-based flocking control using average
aggregation as proposed in [10] is vulnerable to attacks, and
the controller fails to achieve a flock formation. Instead, we
propose a resilient aggregation method using coordinate-wise
median (CM) to incorporate the information received from the
neighbors. The contributions of this paper are the following:

• We develop an adversarial model that arbitrarily corrupts
the parameters shared from the designated attack agents.
We show that average aggregation in GCN-based controller
is ineffective under the presence of such an adversary.

• A resilient aggregation method using coordinate-wise
median is proposed for incorporating information from other
agents in designing this flocking controller. We perform
breakdown point analysis to verify that the aggregated
states for each normal agent remain bounded even when
the attack signals are arbitrarily large, provided that in the
neighborhood of each agent, the normal nodes outnumber
the attacked nodes. Note that the condition is imposed
only on the immediate neighborhood even though the
communication occurs between multi-hop neighbors.

• We perform experiments to verify the robustness of our
proposed method and the results verify the claims regarding
the performance of the modified GCN controller we propose
in this paper.

The notation used in the paper is fairly standard. The
cardinality of a finite set A is denoted by |A|, [n] denotes
the set {1, 2, . . . , n}, and ⌊.⌋ is the flooring function. Before
presenting the results of this work, some preliminary concepts
and ideas are discussed in the next section.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a team of N mobile agents spatially distributed
with flocking as their dynamic task. A flocking controller
allows these agents to move together while avoiding collision
with each other, where the velocity variance between agents
is as minimum as possible. The agents are point mass systems
having double integrator dynamics, given by

ṙi = vi,

v̇i = ui,
(1)

for i = 1, 2, · · · , N . Here ri and vi denote the position and
velocity, respectively, of agent i. The control input ui is the
acceleration to the system. The system is discretized by the
sampling time Ts and the modified signals are denoted with a
subscript t. The flocking controller consists of two components
- one responsible for alignment of velocity between agents, and
the other avoids possible inter-agent collisions. The relative
position of agent j with respect to agent i is denoted as
rij,t = rj,t− ri,t. The approach of artificial potential function

(APF) is used for collision avoidance [19], and the function
is chosen as

Ut(ri, rj) =

{
1

∥rij,t∥2 + log ∥rij,t∥2 , ∥rij,t∥ < ρ
1

∥ρ∥2 + log ∥ρ∥2 , otherwise
(2)

where ρ is the communication radius of the mobile agents,
dependent on the sensors used. The potential Ut diverges
at ∥rij,t∥ = 0, has a minimum when the distance between
agents is ∥rij,t∥ = 1, and is indifferent when ∥rij,t∥ > ρ.
Thus, it makes the agents maintain a minimum distance of
∥rij,t∥ = 1 from each other, for all i, j ∈ [N ], i ̸= j. The
global centralized control action for agent i is designed as

u∗
i,t = −

N∑
j=1

(vi,t − vj,t)−
N∑
j=1

∇riUt(ri, rj), (3)

where ∇riUt(ri, rj) is the gradient of the collision avoidance
function Ut(ri, rj) with respect to ri,t. The global controller
is characterized by the policy π∗.

As discussed earlier, the need for distributed control
becomes inevitable for large group of agents, and the simpler
distributed controller is the one that relies on information
received only from the neighbors. The interaction between the
agents can be represented as an undirected graph G = (V, E),
where the agents are denoted by the node set V , and the
communication between them is captured by the edge set
E , i.e., (i, j) ∈ E , if the agents i and j share their state
information with each other. The set of nodes that agent
i directly shares information with are called its neighbors,
and is denoted by the set Ni,t = {j : (i, j) ∈ E}, where the
subscript t denotes the time instant. In the case of flocking, the
graph G is dynamic, due to the mobility of the agents, which
have a limited communication range ρ. The local controller
can be designed in similar form as (3), while the terms are
summed up over the neighboring agents. This controller takes
longer for all the agents to coordinate their velocities, and
often cannot achieve the required formation.

To allow information exchange between agents that are
distantly placed in the graph, aggregation-based GCNs has
been employed for designing the flocking controller [9],
[10]. Traditionally, GCNs incorporate node features that carry
important information about the system and the assigned task.
Here the features represent the state vector. For agent i, the
state vector at discrete time index t is given by

[xt]i =

 ∑
j∈Ni,t

(vi,t − vj,t),
∑

j∈Ni,t

rij,t

∥rij,t∥4
,
∑

j∈Ni,t

rij,t

∥rij,t∥2


(4)

Clearly, this feature vector contains information about the
average velocity and also nonlinear functions of inter-agent
distance, averaged over the neighborhood. The state infor-
mation broadcast by agent i at time instant t is denoted by
[χt]i.

The GCN-based controller achieves improved performance
over local controller by incorporating information from distant
neighbors, formally known as the multi-hop neighbors. The
multi-hop neighborhood is defined recursively, and the idea is
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explained as follows. The 0-hop neighborhood is defined as
the node itself, N 0

i,t = {i} for all time instants t. The 1-hop
neighborhood of i is defined as the set of neighbors of i, i.e.,
N 1

i,t = Ni,t. The k-hop neighbors of i at time instant t are
the nodes that are (k− 1)-hop neighbors at time t− 1 of the
neighbors of i. The k-hop neighborhood of agent i is thus
defined as

N k
i,t = {j

′
∈ N k−1

j(t−1) : j ∈ Ni,t}. (5)
The idea of multi-hop neighborhood recognizes the fact that
information can propagate through a graph-structured network.

Aggregation GCNs operate on networked graphs to process
useful information by repeatedly communicating with the
neighboring agents [9]. However, aggregation GCNs typically
operate on fixed graphs. In this application, the communication
graph is dynamic, as the information exchange between agents
depend on their spatial locations. A modified aggregation
GCN, called delay aggregation GCN, was proposed in
[10] that operates on a time-varying graph structure. This
architecture allows information flow from multi-hop neighbors,
while also recognizing the fact that the information exchange
cannot happen instantaneously. A delay factor is introduced
while propagating this information, where the units of delay
in the received information equals the number of hops the
sender is away from the receiver node. Considering this, the
information available at node i at time instant t includes
the collective states from all its multi-hop neighbors with
appropriate delays, given as

Ψi,t =

K−1⋃
k=0

{ [
x(t−k)

]
j
: j ∈ N k

i,t

}
, (6)

where K is the depth of information propagation. A larger
value of K would improve the performance of the GCN-
controller, but at an increased cost of communication and
computation.

The distributed control design attempts to find a policy π
that maps the information set Ψi,t to local control action ui,t,
and we assume that π can be parameterized [9] using tunable
parameters H . The goal of the controller design is to minimize
a loss function L(π, π∗) that measures how close the system
implementing the GCN controller to the global centralized
controller is. In this controller design, each agent i averages
the information received from all its k-hop neighbors, where
k ∈ [K − 1] and stacks them in the cumulative aggregated
state vector, which serves as the input to the convolution
neural networks (CNNs).

As it has been shown in the literature, in average-based
aggregation, instability can be caused even by a single
malicious node. In this paper, we design an adversary model
and show that the average aggregation GCN fails in the
presence of such attacks. Moreover, as an attempt to design a
resilient GCN-based flocking controller, we focus on a more
robust aggregation function, the coordinate-wise median. In
particular, this work aims to address the following:
• Design an attack model that demonstrates the ineffective-

ness of average aggregation based GCN controller;
• Design a resilient aggregation method for GCN controller

using coordinate-wise median;

• Breakdown point analysis of the proposed controller;
• Demonstration of the performance of the proposed con-

troller in comparison with the baseline methods.
The adversary modeling is discussed in the next section.

III. ADVERSARY MODEL

In the proposed attack model, some of the agents of the
group are controlled by a single adversary. This is a targeted
attack model, and the set of affected agents is denoted by τ .
The attack is not direct; instead, it is realized by intercepting
the information exchanged between agents. The attack is
assumed to take place during the evaluation period, after the
training of the GCN is completed. The adversary modifies
the states shared by the attacked agents to some arbitrary
values. The following assumptions are made regarding the
attack model.
Assumption 1. The set of adversarial agents τ does not
change throughout the operation of the algorithm. However,
the information shared by these agents to their respective
neighbors may change over time.

Assumption 2. The adversary compromises the communica-
tion network, but the sensors and actuators associated with
the agents are correctly functioning at all times.

It is important to note that the adversary does not need
any knowledge about the algorithm employed by the agents,
the hyperparameters used, or the communication graph. The
only information needed by the adversary is the size of the
state vector of the agents. The attacked agents share the
adversarial data with its neighbors, which are in turn shared
with their distant neighbors. This way, the attacker can achieve
the adversarial objective by attacking only a small group of
agents. To formally express the adversary model, the state
vector broadcast by an agent i at time instant t is given by

[χt]i =

{
∗, if i ∈ τ

[xt]i , otherwise
(7)

where ∗ is used to express an array of arbitrary values. It
is shown later in the paper that the GCN controller using
average aggregation performs poorly in the presence of this
attack. This motivates us to design a resilient aggregation
method, which is presented in the next section.

IV. RESILIENT GCN-BASED FLOCKING CONTROL

In this section, the proposed resilient algorithm for GCN
based flocking control is presented. Coordinate-wise median
(CM) has the property to be resilient against adversarial attacks
that motivated us to use this function in the state aggregation.

As explained earlier, the local state vector xt captures the
important features required for designing the controller. This
information solely depends on the sensor measurements. To
design the GCN based controller, the agents need to aggregate
information from their immediate and multi-hop neighbors.
At node i, the state information available from its 1-hop
neighbors are given as [χt−1]j for all j ∈ N 1

i,t. Agent i
aggregates this information as

[y1,t]i = CM

{
[χt−1]j

}
, j ∈ N 1

i,t, (8)
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where CM denotes the point-wise median function. Thus,
each element of this aggregated vector is the median of the

respective entries of the sequence
{
[χt−1]j

}
, the states of

1-hop neighboring nodes j ∈ N 1
i,t observed at time t − 1.

Similarly, the information received from multi-hop neighbors
can be aggregated as below

[y2,t]i = CM

{
[χt−2]j

}
, j ∈ N 2

i,t,

...

[yK,t]i = CM

{
[χt−K ]j

}
, j ∈ NK

i,t .

(9)

These aggregated states are then stacked as the cumulative
aggregated state vector. At agent i, this sequence at time
instant t is given by

[zt]i =
[
[y0,t]i ; [y1,t]i ; · · · ; [yK−1,t]i ,

]
(10)

where [y0,t]i = [xt]i. The cumulative aggregation state [zt]i
is constructed for each node i, which is then supplied to a
regular convolutional neural network (CNN) of depth L. For
each layer l = 1, 2, · · · , L of the CNN, we have

[zt]
(l)
i = σ(l)

(
H(l) [zt]

(l−1)
i

)
, (11)

where [zt]
(l)
i is the output of the lth layer, σ(l) denotes point-

wise nonlinearity, and H(l) are the graph filters containing the
learnable parameters. The initialization is performed with the
cumulative aggregated state vector, i.e., [zt]

(0)
i = [zt]i. The

output of the last layer should calculate the suitable control
action of the agent, i.e., ui,t = [zt]

(L)
i . The parameters H(l)

are shared across all agents. This implies that once trained,
the operation of the controller depends only on the aggregated
information. Clearly, the overall architecture can be considered
as a modified Graph Convolution Network (GCN) where
the aggregation takes place using coordinate-wise median
function.

As mentioned earlier, the designed controller aims to
imitate the global centralized controller. So, the training set T
consists of sample trajectories (xt, π

∗(xt)) obtained from the
centralized controller u∗

t = π∗(xt), where u∗
t is the collective

control action of all the agents and xt is the collective feature
vector of all the agents. The goal of the learning is to find
the optimal parameters H∗, given by

H∗ = argmin
H

∑(
xt,π∗(xt)

)
∈T

L
(
ut, u

∗
t

)
,

where L
(
ut, u

∗
t

)
is the quadratic loss function involving the

GCN based and the global optimal control actions. The
proposed robust aggregation method in design of GCN
based controller design achieves resilient performance in
the presence of attacks. In addition to demonstrating the
effectiveness through simulation results, it is also important
to analytically investigate the robustness of the method. The
breakdown point analysis of the proposed method is presented
in the next section.

V. ROBUSTNESS ANALYSIS

According to the proposed attack model, the adversary
targets a few agents, which broadcast malicious information
to their neighbors. As the information propagates through the
graph, the performance of many other agents may get affected,
due to the information exchange between agents. At a certain
point, an agent may find that more than one of its neighbors are
driven by malicious information. This makes it important to
find out how the percentage of malicious neighbors affects the
performance. In a network of N connected agents, breakdown
point analysis of an agent i aims to find out the minimum
fraction ϵ for which the parameters estimated by agent i
remains bounded in the presence of ϵN attacked agents. In
this work, the connectivity between agents is based on the
distance between them, so it is not practical to consider a fully
connected graph for this application. The breakdown point
analysis is thus performed based on the number of neighbors.
Formal definition of the breakdown point is given below.
Definition 1. [20] The breakdown point of an estimator T
of a collection X of n observations is defined as the smallest
fraction m/n of outliers that can produce an unbounded
estimate

ϵ∗(T,X) = min
1≤m≤n

{m

n
: sup

Ym

∥T(X)− T(Ym)∥ = ∞
}
,

where the supremum is taken over all possible corrupted
collections Ym that are obtained by replacing m data points
of X by arbitrary values.

The breakdown point analysis discussed here corresponds
to the aggregation layer of the network, in particular, the
input to the convolution network. It is easy to verify that
robustness in this aggregation layer determines the robustness
of the overall controller.

Let the neighborhood of agent i at time instant t, denoted as
N 1

i,t, be divided into two disjoint sets, hN 1
i,t and aN 1

i,t, where
hN 1

i,t denotes the set of healthy neighbors of i, and aN 1
i,t

is the set of its attacked neighbors. Clearly, hN 1
i,t

⋃
aN 1

i,t =
N 1

i,t and hN 1
i,t

⋂
aN 1

i,t = ∅. In a similar fashion, the multi-
hop neighborhoods of each agent can be divided into disjoint
sets, with healthy and adversarial agents. The analysis is
performed considering the worst-case scenario, where we aim
to find the minimum fraction of attacked neighbors of agent
i such that ∥[zt]i∥ < ∞ does not hold anymore, given that∥∥∥[χt−k]j

∥∥∥ → ∞ for all j ∈ aN all
i and k ∈ {1, 2, · · · ,K−1}.

Here aN all
i is the set of all adversarial neighbors of agent i,

i.e., aN all
i = aN 1

i,t

⋃
aN 2

i,t

⋃
· · ·

⋃
aNK−1

i,t . The following
theorem shows that the cumulative aggregation state of agent i
remains bounded even when the states shared by the attacked
agents have an infinite norm, provided there is a majority of
healthy agents in the 1-hop neighborhood of each agent of
the group.

Theorem 1. Consider a graph of N cooperative agents learn-
ing distributed flocking controller using graph convolution
networks. The input to the convolution network for each agent
i is given by the equation (10), where each of its elements
are calculated according to the equations (4), (8), and (9).
Some of the agents in the network are under attack, and the
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adversary model is given by (7). Then for each healthy agent
i, the cumulative aggregated state has a finite breakdown
point of 1

|N 1
i,t|

⌊( ∣∣N 1
i,t

∣∣+ 1
)
/2
⌋

.

Proof. The cumulative aggregated state of agent i remains
bounded if and only if the aggregated neighbor information
at the agent i are bounded for up to (K − 1)-hop neighbors,
i.e.,∥∥[y0,t]i∥∥ < ∞,

∥∥[y1,t]i∥∥ < ∞, · · · ,
∥∥[yK−1,t]i

∥∥ < ∞

We need to analyze each of these conditions individually. The
first term, [y0,t]i captures the information from the sensor
measurements of the agents. As the adversary is assumed
to launch the attacks only through the communicated states,
this term remains bounded always. The second term, [y1,t]i is
calculated by taking median of

{
[χt−1]j

}
, j ∈ N (1)

i,t . From
the properties of median, [y1,t]i is bounded as long as there

is a majority of normal agents in N (1)
i,t , i.e., |aN 1

i,t|
N 1

i,t
< 0.5.

Following the same analysis, we can argue that [y2,t]i is

bounded when |aN 2
i,t|

N 2
i,t

< 0.5. Therefore, the conditions for
the aggregation scheme to be robust are given as∣∣

aN
p
i,t

∣∣
N p

i,t

< 0.5 (12)

for p ∈ {1, 2, · · · ,K − 1} and all i ∈ [N ]. Thus, the
cumulative aggregation state for agent i, given as [zt]i, remains
bounded under the condition that there is a minority of
attacked agents in up to (K − 1)-hop neighborhoods of i.

To simplify this condition, we use the definition of recursive
neighborhood. It was shown that [y1,t]i is bounded if there
is a minority of attacked agents in the 1-hop neighborhood
of agent i. From the point of view of the whole network, for
the aggregated information from the 1-hop neighbors to be
bounded, there should be a minority of attacked agents in the
1-hop neighborhood of all the agents at all times.

Now, by definition, the 2-hop neighbors of agent i at time
instant t are the collective 1-hop neighbors of agent j ∈ N 1

i,t at
time (t−1). By the condition derived earlier, and Assumption
1, each of j ∈ N 1

i,t has a minority of attacked 1-hop neighbors
at time instant (t− 1). Thus, the 2-hop neighbors of agent i
has a minority of attacked agents. The same argument can be
applied recursively up to (K−1)-hop neighbors of all agents.
It is therefore shown that the cumulative aggregation state
remains bounded when the number of normal 1-hop neighbors
outnumbers the number of 1-hop adversarial neighbors, for
all the nodes in the graph.

This concludes the breakdown point analysis of the pro-
posed method, which is consistent with the breakdown point
of the coordinate-wise median function.

VI. EVALUATION

In this section, we present evaluation results of the proposed
robust aggregation based flocking controller applied to a
swarm of 100 mobile agents with continuous-time second
order dynamics (1), having a communication range of ρ = 2m.
The discretization time period is Ts = 0.01s. The initial
positions of the agents are chosen randomly from a ball of

(a) t = 0 (b) t = 300
Fig. 1: Position and velocity of the agents at two different time
instants using the proposed controller under normal scenario.

(a) Average magnitude of velocity
difference

(b) Average minimum distance
between neighboring agents

Fig. 2: Properties of the flocks using different algorithms under
normal scenario.

radius 10m, and their initial velocities are sampled uniformly
from the interval

[
−vinit,+vinit

]
, where vinit = 3m/s.

Each agent uses an aggregation GCN, where the input
features are given by (4), and the cumulative aggregated state
vector is computer using (10) with K = 3. This goes as the
input to a fully connected neural network with two hidden
layers, each having 64 neurons and Tanh activation function.
To train the GCN filters, 240 trajectories are generated, each
of length 200 steps, from the global centralized controller.
The Adam optimizer is used with learning rate 1 × 10−5.
The learned controller was then tested using 20 trajectories,
each having 200 steps. To evaluate the performance of our
proposed controller, the global centralized controller (3) and
the average aggregation based GCN controller are used as
baselines.

First, to demonstrate the performance of the proposed
controller without adversaries, the initial position and velocity
of the agents are plotted in Figure 1(a), and the same are
plotted after 300 time steps in Figure 1(b). It can be verified
that with the proposed method, the agents are able to achieve
a flock formation after a few time steps. To compare the
performance of this controller with the baseline methods,
the average magnitude of velocity difference for all the
agents are plotted in Figure 2(a). The average minimum
distance from the neighbors for all the agents is plotted
in Figure 2(b). These plots depict the mean values over
all the testing episodes, and the shaded areas represent the
standard deviation. It can be verified that the performance of
the median based method is close to the baseline methods.
The evaluation results demonstrate the controller performance
under a normal scenario without attacks. To verify the claim
about the resilient properties of the proposed controller, we
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(a) Median aggregation (b) Average aggregation
Fig. 3: Position and velocity of the agents at t = 300 using different
aggregation methods under adversarial attack.

(a) Average magnitude of velocity
difference

(b) Average minimum distance
between neighboring agents

Fig. 4: Properties of the flocks using different algorithms under
adversarial scenario.

simulate the controllers under the proposed attack model (7).
We assume that the adversary has control over 5 agents of
the group. Each element of the communicated states from
these attacked agents is randomly chosen from the interval[
−0.3, 0.3

]
. As shown in Figure 3(a), the agents are able

to achieve the flock formation even in the presence of the
attack, when the proposed robust aggregation based controller
is in use. In contrary, when the aggregation is performed
using averaging method, the agents get dispersed, and the
formation is not achieved, as shown in Figure 3(b). Similar
to the normal scenario, the average velocity mismatch of the
agents and the average minimum distance from the neighbors
are plotted in Figure 4(a) and Figure 4(b), respectively. The
average aggregation method under the attack is not cohesive
enough, as the average minimum distance between neighbors
increases, and thus the flock loses its formation. Also, the
median-based method achieves a lower velocity mismatch
than the average method. These plots altogether support our
claim that the proposed median based GCN controller has
resilient property against the proposed attack model.

VII. CONCLUSION

This work proposes a resilient aggregation method for
designing a GCN-based flocking controller. The information
from multi-hop neighbors are aggregated using coordinate-
based median. We proposed an attack model that exploits
the communication between agents, and can compromise the
formation when the average aggregation is used, whereas the
proposed method is shown to be robust, provided that the
required condition is satisfied as found from the breakdown
point analysis. The simulation results show that the proposed
controller’s performance is comparable to the average-based
method in the normal scenario without attacks. Under attack,
the method is resilient in contrast to the average-based

method that may become unstable in the presence of a single
adversarial node.

In the future, we also aim to evaluate the proposed resilient
method against other attack models, including those relevant to
the specific flocking problem as well exploring other resilient
aggregation methods.
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