
 Building a Blockchain Simulation using the
Idris Programming Language

Qiutai Pan
Department of Electrical Engineering

and Computer Science
Vanderbilt University
Nashville, TN, USA

qiutai.pan@vanderbilt.edu

Xenofon Koutsoukos
Department of Electrical Engineering

and Computer Science
Vanderbilt University
Nashville, TN, USA

xenofon.koutsoukos@vanderbilt.edu

ABSTRACT
The primary aim of this work is to create a program simulating a
private distributed blockchain using the functional programming
language Idris. This simulation is implemented such that a rock-
paper-scissors game can be played between any two users of the
blockchain via the use of smart contracts. Our motivation is to
assert, using relevant features of Idris, that such an
implementation possesses some of the accepted properties of
blockchains. This paper first presents some differences between
our implementation and most real-world blockchains. Next the
Idris language and some of its features are discussed, focusing on
how the language is used to implement the simulation. Finally,
the advantages and disadvantages of utilizing Idris instead of an
imperative programming language are examined.

CCS CONCEPTS
• Software and its engineering → Functional languages; •
Computing Methodologies → Distributed Computing
Methodologies

KEYWORDS
Blockchains, Cryptographic Hash Functions, Smart Contracts,
Idris, Functional Languages, Dependent Types

ACM Reference Format:

Qiutai Pan and Xenofon Koutsoukos. 2019. Building a Blockchain
Simulation using the Idris Programming Language. In 2019 ACM
Southeast Conference (ACMSE 2019), April 18-20, 2019, Kennesaw, GA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3299815.
3314456

1 INTRODUCTION
Blockchains are data structures with many potential applications
across various domains (i.e. storing records of transactions).
However, there have not been many blockchain implementations

developed using a functional language. Thus, our goal is to
create a working implementation of a private distributed
blockchain using Idris. Then, we investigate if Idris’s features
can be used to assert common blockchain properties. Finally, we
identify advantages and disadvantages of using Idris instead of
an imperative programming language.

This paper presents a working simulation of a blockchain in
Idris, and we are able to assert a necessary property of
blockchains using the language’s appropriate features. However,
it is also established that the relative advantages of using Idris
for such an application did not outweigh the deficiencies, most
notably in terms of efficiency. We begin this paper with a basic
description of blockchains, describing the components of a
constituent block, and explaining some associated concepts (such
as smart contracts). Then, the desired specifications of the
blockchain simulation that is to be implemented are explained,
as well as how it will use smart contracts to allow any two
“users” to play a game of rock-paper-scissors (RPS). Some
potential advantages of playing a game via a blockchain are
listed, as well as some desirable properties that help guarantee
security. Afterwards, we introduce the Idris programming
language. We examine the shared properties of its class of
language (pure functional) and some of its distinctive features.
Then, the specific details of how the blockchain simulation
program was implemented using Idris, as well as how to execute
the program, are discussed. Finally, several observed advantages
and disadvantages of using Idris to implement such a blockchain
simulation are discoursed.

2 BLOCKCHAIN CONCEPTS
On a basic level, a blockchain is simply a data structure
consisting of individual elements called blocks where each block
comprises a stored datum (e.g., a series of transactions) and
several others fields storing metadata about the block itself [6].
These metadata fields include a cryptographic hash of the
contents of the block, a copy of the hash of the preceding block
in the blockchain, a block number representing the position of
the block within the blockchain, and an integer nonce [6]. Thus,
every block in a blockchain is cryptographically linked with its
preceding block and it is very difficult for a malicious entity to
modify it. This is because it is nearly impossible to alter the
datum stored in a block without causing its hash field to change.
It will be easy to detect that the hash field of the altered block no
longer matches the previous hash field of the subsequent block

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACMSE 2019, April 18–20, 2019, Kennesaw, GA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6251-1/19/04...$15.00
https://doi.org/10.1145/3299815.3314456

ACM Southeast Conference – ACMSE 2019 – Session 2: Short Papers – ISBN: 978-1-4503-6251-1

Kennesaw, GA, USA, April 18-20, 2019

190

unless the attacker is somehow able to simultaneously alter all
the blocks from that point forward [6]. The process of adding a
new block to a blockchain is known as mining, and involves the
block’s nonce field. For mining, an entity simply guesses nonces
until one is found that satisfies a particular desired condition;
usually that when the nonce is used as input into a
cryptographic hash function alongside all other non-hash fields
of the desired block, the result is an output hash that is below a
certain desired level [1]. That hash and the successful nonce are
then set as the respective fields of the block and the block is
added to the blockchain.

Typically, the term “blockchain” is used to refer to distributed
blockchains that are spread among users within a network, all of
whom have their own copy [7]. There is no central server that
stores a single official version of the blockchain (decentralized).
Instead, all of the blockchains within the network are considered
valid [7]. This further increases the security of the blockchain,
as even if one user manages to successfully modify his or her
version of the blockchain, all other users will then be able to see
that the altered blockchain no longer matches their own and
thereby reject that particular version [7]. A distributed
blockchain can be considered public, where any entity with an
internet connection can access it and initiate the addition of a
new block. Alternatively, a distributed blockchain can be
private, in which access to the blockchain is limited to a set
number of users [7]. Real-world distributed blockchains often
have an associated cryptocurrency such as Bitcoin, and users
then compete with each other to mine new blocks for the
blockchain. The entity that finds a satisfactory hash for a new
block first is usually rewarded with an amount of the associated
cryptocurrency [1].

Another concept that is associated with blockchains is that of
smart contracts. Gatteschi et. al define them as small programs
residing on a blockchain that execute certain operations when
certain conditions are met [4]. However, the term “smart
contract” is more commonly used to refer to blockchain
programs that encode conditions for the execution of agreements
or transactions between users and then execute them should
their requirements be fulfilled. This is all performed without the
need for intermediary entities [5].

3 SPECIFICATIONS
Our goal is to implement a simulation of a private distributed
blockchain in which the number of users is fixed. There is no
associated cryptocurrency and the data stored in the blocks are
strings rather than transaction lists. Due to these assumptions,
there is no economic incentive for the “users” within the
network to compete amongst each other to mine new blocks [3].
Instead, the user that initiates the addition of a new node also
mines that node, and then all other users verify the correctness
of the node through a consensus protocol. Ideally, such a
protocol would be non-blocking and resistant to users not
responding to messages.

The simulation must support any two users within the
network to play a game of rock-paper-scissors (RPS) via the use
of smart contracts associated with the blockchain. The definition

of a smart contract described earlier applies despite the lack of
actual transactions. Among other benefits, executing a simple
game on a distributed blockchain using smart contracts forgoes
the need for an outside referee to determine the outcome of the
game, and prevents the result of any game from being changed
due to the immutability of the blockchain.

There are a few constraints that the implementation should
uphold for security. Since in any game, a block containing the
play of the first player is added to the blockchain before the
second player makes their play, the first player’s play must be
obfuscated in such a way that the second player will not be able
to determine the play of the first player [8]. Furthermore, users
should be identified by the blockchain in such a way that a user
cannot change his or her identity or attempt to pose as another.
However, this property is be practically assured simply by
assuming one initiates an instance of the distributed blockchain
simulation correctly.

4 THE IDRIS PROGRAMMING LANGUAGE
Idris is an experimental functional programming language, still
in active development, whose source code can be found in a
public GitHub repository. As it is purely functional, the
execution of Idris programs consists of evaluating side-effect free
functions rather than statements as in imperative languages [2].
Due to not having side effects, Idris functions cannot alter a
program’s state in any way, and thereby will always produce the
same output if given the same set of inputs (referential
transparency). Also, replacing a functional call with its
calculated output cannot affect a program’s execution [2].
Furthermore, Idris functions are first-class constructs; all of the
general operations of the language can be applied to them.
Among other things, this means that they can be passed as input
into or returned from other functions [2].

Likewise, types in Idris are also first-class constructs, and can
be manipulated, used, passed as arguments to functions, and
returned from functions just like any other value [2]. Idris also
has dependent types, a concept rarely seen even in other purely
functional languages. Dependent types are simply types that are
calculated based on an outside value [2]. For example, the Idris
type Vect is a dependent type that depends on a natural number
and another type and Vect 4 String is a type that specifies a
vector (list) of 4 Strings. In our case, dependent types can be
used to specify that a blockchain has nondecreasing size.
Furthermore, the Idris compiler contains a totality checker that
is able to determine in almost all cases if a function is total or
not. A total function is one that is guaranteed to return a value
of its specified return type in a finite amount of time regardless
of the values of its input arguments [2].

5 BLOCKCHAIN IMPLEMENTATION IN IDRIS

5.1 Overview of Implementation
Although the primary goal is to implement a simulation of a
distributed blockchain (UDP sockets are used), it is also possible
for the program to simulate a simple solitary blockchain. In both

Building a Blockchain Simulation using the Idris Programming Language
Q. Pan, X. Koutsoukos

191

cases, a blockchain is represented internally as a Vect of Blocks,
where a Block is a record containing 5 fields, shown below in
Figure 1. Throughout the rest of this paper, when a reference is
made to adding a string to a blockchain, this actually means
adding a block to the blockchain whose dataField field is that
desired string.

Figure 1: The Fields of a Block Record and Their Types

The implementation can be found on GitHub at
https://github.com/sciadopitys/Idris-Blockchain. One specifies
simple or distributed simulation when the program first begins
running. To begin a simple blockchain simulation, one types
“:exec runProc (procMain [])” in a single terminal running the
program in the Idris runtime environment. To start a distributed
blockchain simulation, one must type the same line but with a
nonempty array argument, on as many open terminals as the
desired number of network “users”. At each terminal, the first
element of the input array argument should be the desired port
number of the current user’s socket, while the remaining
elements should be the port numbers of all other users. It is
henceforth assumed that anyone running the simulation will
provide correct input array arguments at each terminal such that
all users in the simulation have different port numbers and have
received the port numbers of each other user.

5.2 Simple Blockchain Simulation
The program repeatedly prompts the single user for a command
until the user has decided to quit the program. Here, the only
supported commands are “add”, “display”, and “quit. The “quit”
command simply ends the program. The “display” command
prints the entire contents of the current blockchain to the
terminal. This is done by implementing the Show interface,
which contains a show function for creating a String
representation of a type, for the Block record type. Finally, the
“add” command results in a new block being added to the
current blockchain, and it is based on a call of the mining
function findNonceAndHash.

The function findNonceAndHash takes as input Bits 128
representations of the desired block and dataField fields of the
block to be added, its desired prevHash field (already a Bits 128),
and an Integer that is the current nonce to be tried (in the simple
simulation, the first nonce to be tried is always one). The
function creates a Bits 128 representation of the nonce, and then
obtains a cryptographic hash of that along with the input fields.
If this obtained hash is determined to be below a certain level,
then the function returns a pair of the successful nonce and the
obtained hash. Otherwise, it recursively calls itself, with the

nonce that was just tried incremented by one as the current
nonce parameter. Since it cannot be guaranteed that a
satisfactory nonce will ever be found, this recursive function
may not terminate.

5.3 Distributed Blockchain Simulation
The interface to the distributed blockchain simulation is the
same as that for the simple simulation. However, at each open
terminal representing a network user, there are several
additional supported commands besides “add”, “display”, and
“quit”. The latter two commands act exactly as in the simple
simulation, but the blockchain is displayed only for the user who
requested “display” and likewise the program ends only for the
user who requested “quit”. For the “add” command, not only will
the new blockchain containing the new block has to be obtained
as before, but also the user seeking to add the block must initiate
a two-part consensus protocol. The user in question first sends a
string containing all fields of the newly added block to all other
users and waits for them to respond. If every other user
responds with a message of “yes”, then the first user sends
another message to all other users confirming the addition to the
blockchain. However, if any user had responded with any non-
“yes” message, then the original user sends a message to all
other users stating to revert to the earlier blockchain without the
added block.

A “receive” command must be given to all other users in
order for them to participate in the consensus protocol. Upon
being given a “receive” command, a user blocks until it receives a
message on its socket. Then, it splits the received string into the
fields of the desired new block using ‘+’ as the separator
character (thus for the distributed simulation, strings containing
the ‘+’ cannot be added to the blockchain). The user then adds a
block containing the desired new string to its own blockchain,
and verifies that all fields of this block are identical to the
corresponding fields in the received message. If so, then it sends
a “yes” message back to the sender. Otherwise, or if the original
message was not in the correct format, it sends “no” back. In
any case, the user then blocks until it receives another message
from the original sender, and finally implements or discards the
addition to the blockchain based on that message.

5.4 Smart Contracts
The “rock”, “paper”, and “scissors” can be used to play a game of
RPS between any 2 distinct users, where each user is identified
by their port number. These commands are examples of smart
contracts. Whenever a user provides one of these commands,
the last block of the current blockchain is obtained, and that
block’s dataField field is checked to see if it is in the format of a
RPS play or not. If so, then the current user would be the second
player of a game, and the port number (a part of the dataField) of
the user who made the first play is compared with that of the
current user. If the numbers are the same, then the blockchain
remains unchanged, as a user is not allowed to play both sides of
a game. Otherwise, the move of the first player is obtained, a
winner is determined based on the standard rules of RPS, and a

record Block where
 constructor CreateBlock
 block : Nat
 nonce : Integer
 dataField : String
 prevHash : Bits 128
 hash : Bits 128

ACM Southeast Conference – ACMSE 2019 – Session 2: Short Papers – ISBN: 978-1-4503-6251-1

Kennesaw, GA, USA, April 18-20, 2019

192

string proclaiming which player won (and their port number) is
added to the blockchain via calling the “add” command.

If the dataField field of the last block had not been in the
format of a RPS play, then the current user must be the first
player of a prospective game. In this case, an Integer value (the
commit value) must have been provided along with the
command to obfuscate the play of the first player and thereby
prevent any second player from gaining an unfair advantage. A
cryptographic hash of the Bits 128 representations of the play
and the commit value is obtained and then converted back into a
String. Finally, a String containing the port number of the
current user, the commit value, and the String representation of
the obtained cryptographic hash is added to the blockchain via
calling the “add” command. The various sections of this String
are separated by the ‘*’ char. Thus for the distributed
simulation, strings containing ‘*’ cannot be added either.

6 ADVANTAGES AND DISADVANTAGES OF
IDRIS

There are several reasons why implementing a blockchain
simulation in Idris is beneficial. The most pressing advantage is
due to the nature of simple blockchains; they are essentially
linear data structures. Representing a blockchain in Idris using
the dependent Vect data type not only captures this inherent
structure, but also allows a user to easily establish constraints on
the size of a blockchain. For example, using the Vect data type
and a user-defined dependent type based on Vect, one can
ensure a basic property about simple blockchains –
nondecreasing size – just by setting the return types of relevant
functions to the dependent type instead of Vect. This dependent
type is shown below in Figure 2.

Figure 2: User-defined Data Type VectSameOrInc

Furthermore, the functional paradigm of pattern matching on a
structure with zero, one, or more elements is more intuitive and
elegant than performing traversals through a structure as would
likely be done when using an imperative language. Additionally,
both the simple and distributed blockchain simulations require
I/O operations such as obtaining and processing user input. It is
typically easy to make errors when coding I/O, but Idris
mitigates this by enforcing separation of I/O and pure operations
providing simple sequencing of I/O operations via the use of the
monadic >>= operator or do blocks. It is also easy to call pure
functions within sequences of I/O operations by making use of
Idris’s “pure” function. Also, the type checker included with the
Idris compiler is can establish that all of the helper (non-mining)
functions in the program are indeed total.

Unfortunately, there are also several substantial
disadvantages. The most concerning disadvantage is the greatly
decreased efficiency and increased running time of user

commands. This is due to the nature of functional languages –
since there are no variables, the blockchain often needs to be
copied and passed to functions. This is inefficient, especially
when the blockchain has grown in size. Furthermore, we are
currently making use of the idris-crypto package found on
GitHub, but unfortunately both the MD5 and SHA cryptographic
hash function implementations in the package have unresolved
issues. Therefore, the desired level in the mining function is
currently set to be so high as to accept the very first nonce tried
each time. Also, there is no timeout mechanism for sockets in
Idris, so it is impossible to implement a non-blocking consensus
protocol. Thus the simulation is indeed vulnerable to users
simply not responding (it will block indefinitely). Additionally,
due to the strict separation of I/O and pure code, one cannot
easily print statements to the console for debugging purposes.
Another potential issue is that Idris has meaningful whitespace.
This is not present in most imperative languages and may lead to
unusually wide lines of code. Finally, although defining
functions using pattern matching is usually beneficial, in certain
situations this may lead to one being unable to define a helper
function to reduce redundancy.

7 CONCLUSION
Overall, attempting to implement a blockchain simulation in
Idris will almost certainly be a beneficial experience for a
programmer seeking to gain experience with functional
programming languages and learn how to use dependent types.
However, even though Idris does provide several advantages for
those seeking to create a blockchain simulation, chief among
them being the ability to guarantee desired properties as part of
the program itself rather than via assertions or tests, these are
likely not sufficient to ignore the poor efficiency and other
drawbacks of the language for this purpose. Therefore, unless
the disadvantages presented earlier are resolved with future
updates to the language, implementing a serious blockchain
simulation in Idris is not recommended.

REFERENCES
[1] N. Acheson. 2018. How Bitcoin Mining Works. (January 2018). https://www.

coindesk.com/information/how-bitcoin-mining-works.
[2] E. Brady. 2017. Type-driven Development with Idris. Manning Publications,

Shelter Island, NY.
[3] K. Christidis and M. Devetsikiotis. 2016. Blockchains and Smart Contracts for

the Internet of Things. IEEE Access 4 (May 2016), 2292-2303. DOI: https://doi.
org/10.1109/ACCESS.2016.2566339.

[4] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamaría. 2018.
Blockchain and Smart Contracts for Insurance: Is the Technology Mature
Enough? Future Internet 10, 2, Article 20 (February 2018), pp. 1-16. DOI:
https://doi.org/10.3390/fi10020020

[5] T. Horda. 2018. A Guide to Smart Contracts and Their Implementation.
(January 2018). https://rubygarage.org/blog/guide-to-smart-contracts.

[6] A. Lewis. 2015. A Gentle Introduction to Blockchain Technology – Bits on
Blocks. https://bitsonblocks.net/2015/09/09/gentle-introduction-blockchain-
technology/#more-72.

[7] M. H. Miraz and M. Ali. 2018. Applications of Blockchain Technology beyond
Cryptocurrency. arXiv:1801.03528. https://arxiv.org/abs/1801.03528.

[8] J. Pettersson and R. Edström. 2016. Safer smart Contracts through Type-driven
Development. Master’s thesis. Chalmers University of Technology & University
of Gothenburg, Gothenburg, Sweden.

data VectSameOrInc : Type -> Type where
 Same : (len : Nat) -> Vect len a -> VectSameOrInc a
 Inc : (len : Nat) -> Vect (S len) a -> VectSameOrInc a

Building a Blockchain Simulation using the Idris Programming Language
Q. Pan, X. Koutsoukos

193

