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Improving Network Robustness through Edge Augmentation While
Preserving Strong Structural Controllability

Waseem Abbas, Mudassir Shabbir, Hassan Jaleel, and Xenofon Koutsoukos

Abstract— In this paper, we consider a network of agents
with Laplacian dynamics, and study the problem of improving
network robustness by adding a maximum number of edges
within the network while preserving a lower bound on its
strong structural controllability (SSC) at the same time. Edge
augmentation increases network’s robustness to noise and
structural changes, however, it could also deteriorate network
controllability. Thus, by exploiting relationship between net-
work controllability and distances between nodes in graphs,
we formulate an edge augmentation problem with a constraint
to preserve distances between certain node pairs, which in turn
guarantees that a lower bound on SSC is maintained even
after adding edges. In this direction, first we choose a node
pair and maximally add edges while maintaining the distance
between selected nodes. We show that an optimal solution
belongs to a certain class of graphs called clique chains. Then,
we present an algorithm to add edges while preserving distances
between a certain collection of nodes. Further, we present a
randomized algorithm that guarantees a desired approximation
ratio with high probability to solve the edge augmentation
problem. Finally, we evaluate our results on various networks.

Index Terms— Strong structural controllability, graph dis-
tances, edge augmentation, network robustness.

I. INTRODUCTION

Network controllability has been an active research topic
in the broad domain of systems and control as well as in net-
work science in recent years [1]. The main goal is to under-
stand how can we manipulate a network of dynamical agents,
often represented by a directed or an undirected graph, by
controlling only a small subset of agents, referred to as
leaders. In a networked dynamical system, the underlying
network topology significantly influences its controllability.
Therefore, it is crucial to develop a topological view-point
of network controllability [2], [3], [4], [5], [6], [7]. Another
important aspect here is to consider the effect of weights
given by nodes to each other’s information, which is typically
modeled by assigning edge weights in the graph. In fact, we
say that a network is strong structurally controllable if it is
possible to control the entire network with an arbitrary choice
of non-zero edge weights. This controllability notion, which
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is independent of edge weights is particularly useful when
exact coupling strengths between nodes are unknown.

Along with the network controllability, we also desire to
improve other attributes of a networked dynamical system,
in particular, its robustness to changes in the underlying
network topology as well as to the noisy information. A
network can be made robust by adding more links (edges)
between nodes. For instance, a widely used measure of
network robustness is Kirchhoff index Kf , which is simply
the sum of the reciprocal of the (non-zero) eigenvalues of
the graph Laplacian. It measures the effect of structural
changes in the network topology as well as the effect of
noise on the overall dynamics [8], [9], [10], [11], [12]. It
is well known that adding edges always improves network’s
robustness as measured by Kf . In fact, network robustness
increases monotonically with edge additions.

Adding edges and densifying a graph is effective on the
one hand as it improves network’s robustness, but on the
other hand it can also deteriorate network controllability [13],
[14]. For instance, we have shown in [13] that for given
network parameters, such as the number of nodes and the
diameter, networks with maximal robustness require a large
number of input nodes (leaders) to become controllable. Sim-
ilarly networks that are controllable with minimum leaders
are least robust to noise and to structural changes. Thus, it
is important to identify edges whose addition to the network
minimally reduces its controllability.

In this paper, we study the problem of maximally adding
edges in a network while preserving its strong structural
controllability (SSC). It is easy to verify, in fact in a
linear time, whether the entire network is strong structurally
controllable [15]. If it is not, computing exactly how much
of the network is indeed strong structurally controllable is
an extremely challenging problem. Thus, lower bounds on
the SSC of networks have been studied in the literature [2],
[16], [5], [17], [3], [18], [7]. In this work, we utilize a tight
lower bound on SSC, which is based on the topological
distances between nodes, and propose algorithms to densify
the original network while preserving this lower bound. Our
main contributions are:
• We formulate the problem of adding maximal edges in

a network while preserving a lower bound on SSC as an
edge augmentation problem in which distances between
certain node pairs in a graph need to be maintained.

• We show that for a fixed node pair, optimal solution
to the distance preserving edge augmentation problem
belongs to a class of graphs known as clique chains.

• We provide two algorithms, including a randomized
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algorithm, to add edges in a graph while preserving
distances between a collection of node pairs, thus solv-
ing the problem of adding edges while ensuring that a
lower bound on SSC is maintained. We also show that
the proposed randomized algorithm is an approximation
algorithm with high probability.

• Finally, we numerically evaluate our results on various
networks.

Numerous results are available in the context of graph
sparsification, where the objective is to remove edges while
preserving distances between nodes exactly or approximately
(e.g., see [19], [20], [21], [22]). However, to the best of our
knowledge, this paper is novel in considering the opposite
problem, that is the densification of graphs while preserving
distances between nodes, and then applying it towards pre-
serving SSC in networks. We mention that a recent paper
[23] studies the problem of characterizing edges, which if
added to a directed network preserve its SSC. However,
results hold if the entire network is strong structurally
controllable. In our case, we solve the maximal edge addition
problem in networks even if they are only partially strong
structurally controllable. Further studies in the domain of
network controllability include selecting inputs and leader
nodes to structurally control a network, for instance see [24],
[25], [26], [27], [28], [29].

The rest of the paper is organized as below: Section II
introduces preliminaries and formulates the problem. Section
III presents an overview of our approach along with the
distance preserving edge augmentation problem. Section
IV provides algorithms to add edges in a network while
preserving SSC. Section V presents an evaluation of our
results, and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Notations

We consider a network of dynamical agents modeled by a
simple undirected graph G = (V, E), in which the node set
represents agents and the edge set represents interconnections
between agents. Nodes1 a and b are adjacent if there is an
edge between them. The neighborhood of node a, denoted
by Na is the set of nodes adjacent to a, and the number of
nodes in Na is the degree of a. The distance between nodes
a and b in G, denoted by dG(a, b), is the number of edges in
the shortest path between a and b. The maximum distance
between any two nodes in a graph is called its diameter.
Moreover, edges can be weighted by some weight function,
w : E 7→ R+. The edge weight represents the coupling
strength between nodes.

Agent a has a state xa ∈ R. Without loss of generality,
the overall state of the network is x ∈ Rn where n = |V|.
Agents follow the Laplacian dynamics given by

ẋ = −Lw x+ Bu. (1)

Here, Lw ∈ Rn×n is a weighted Laplacian matrix of
the graph G, and is defined as Lw = −A + ∆, where A

1We use terms node and vertex interchangeably throughout the paper.

is the weighted adjacency matrix in which the ijth entry,
that is Aij is simply the weight on the edge between nodes
i and j if such an edge exists, and is zero otherwise. ∆
is the diagonal matrix whose ith diagonal entry is simply∑n
j=1Aij . At the same time B ∈ Rn×m is an input

matrix, where m is the number of inputs, or simply the
number of leaders—nodes with an external control signal.
Let V` = {`1, `2, · · · , `m} ⊂ V be the set of leaders, then
Bi,j = 1 if node i ∈ V is also a leader `j , otherwise Bi,j = 0.

B. Strong Structural Controllability (SSC)
A state xf ∈ Rn is reachable if an input exists

that can drive the network in (1) from an initial state
x0 = [0 0 · · · 0]

T ∈ Rn to xf in a finite amount of time.
A network is completely controllable if every point in Rn
is reachable. Complete controllability of a network G(V, E)
with given edge weights w and leaders V` can be checked by
computing the rank of the following controllability matrix.

Γ(Lw,B) = [ B (−Lw)B (−Lw)
2B · · · (−Lw)

n−1B ] .

The network is completely controllable if and only if
rank(Γ(Lw,B)) = n, and the pair (Lw,B) is called the
controllable pair. In fact, the rank of Γ defines the dimension
of controllable subspace consisting of all the reachable states.

In a network, if we fix the leaders (B) and the edge set (E),
the rank of controllability matrix can change with a different
choice of edge weights w′, that is the rank(Γ(Lw,B))
might be different from the rank(Γ(Lw′ ,B)). A network
G = ((V, E) is called strong structurally controllable with
a given leader set V` if it is completely controllable for
any choice of edge weights, or in other words (Lw,B) is
a controllable pair for any choice of w. At the same time,
the dimension of strong structurally controllable subspace,
or simply the dimension of SSC is the minimum rank of
the controllablility matrix Γ(Lw,B) over all possible edge
weights w. Roughly, the dimension of SSC quantifies how
much of the network can be controlled by a given leader set
with arbitrary edge weights.

C. Problem Description
Our goal is to add a maximum number of edges within

the network while preserving the dimension of its strong
structurally controllable subspace at the same time. However,
computing the exact dimension of SSC with a given set
of leaders is a computationally hard problem. As a result,
finding good lower bounds on the dimension of such a
subspace has been an active research topic. Our approach is
to select a tight lower bound, and then add maximal edges
within the network while preserving the lower bound on the
dimension of SSC. We discuss the lower bound used in this
work in the next subsection.

Problem Consider a network of agents G = (V, E) with
the dynamics in (1). Let V` ⊂ V be the leaders and the
dimension of SSC of G with V` is at least δ. Then, our task
is to find a maximum size edge set E ′ such that E ⊆ E ′ and
the dimension of SSC of the network induced by V and E ′,
say H = (V, E ′), is also at least δ with the same leaders V`.
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D. A Tight Lower Bound on SSC Based on Graph Distances

We utilize a lower bound proposed in [5] that is based on
the distances between nodes in a graph. Assuming m leaders
V` = {`1, · · · , `m}, we define a distance-to-leader vector for
each node a ∈ V in G as below,

Da =
[
dG(`1, a) dG(`2, a) · · · dG(`m, a)

]T ∈ Zm+ .

The jth component of Da, denoted by Da,j , is the distance
between node a and leader j, that is Da,j = dG(`j , a). Next,
we define a sequence of such vectors, called as pseudo-
monotonically increasing sequence as below.

Definition (Pseudo-monotonically Increasing Sequence
(PMI) A sequence of distance-to-leader vectors D is PMI if
for every ith vector in the sequence, denoted by Di, there
exists some α(i) ∈ {1, 2, · · · ,m} such that

Di,α(i) < Dj,α(i), ∀j > i. (2)

An example of distance-to-leader vectors is illustrated in
Figure 1(a). A PMI sequence of length five is

D =
[[

0©
2

]
,
[

2
0©

]
,
[

1©
2

]
,
[

2©
1

]
,
[

3©
1

]]
.

Note that for each vector in the sequence, there is an
index—of the circled value—such that the values of all the
subsequent vectors at the corresponding index are strictly
greater than the circled value, thus satisfying the condition
in (2).

a

d

`1

`2

[
1
1

]

[
1
2

]
[

0
2

]
[

2
0

]

[
2
1

]
[

3
1

]

b c

Fig. 1: A network with two leaders V` = {`1, `2}. The
distance-to-leader vectors of all nodes are also shown. A
PMI sequence of length five is D = [D1 D2 · · · D5] =
[D`1 D`2 Db Dc Dd].

The length of PMI sequence of distance-to-leader vectors
is related to strong structural controllability as below.

Theorem 2.1: [5] If δ is the length of a longest PMI
sequence of distance-to-leader vectors in a network, then the
dimension of SSC of the network is at least δ.

In [30], we presented a dynamic programming based exact
algorithm and an approximate greedy algorithm that returns
near optimal PMI sequence of distance-to-leader vectors in
O(mn log n) time where m is the number of leaders and n
is the total number of nodes in a graph.

III. EDGE AUGMENTATION WHILE PRESERVING
DISTANCES IN GRAPHS

Our approach is to add a maximal edge set to the original
graph while ensuring that the maximum lengths of PMI

sequences2 of the resulting and the original graphs remain
the same. As a result, we preserve a lower bound on the
dimension of SSC in the original graph even after adding
edges to it. We note that the bound based on the maximum
length of PMI sequence (Theorem 2.1) is tight and numerical
evaluation in [30] shows that it generally performs better
than the other known bounds, such as the one based on
zero forcing sets [16]. Moreover, we provide algorithms to
efficiently compute maximum length PMI sequence in [30].

We proceed by letting G = (V, E) and H = (V, E ′)
respectively denote the original graph and the graph obtained
after adding edges, where E ⊆ E ′. At the same time, consider
D to be a PMI sequence of maximum length in G with
V` leaders. If D is of length δ, then by Theorem 2.1, the
dimension of SSC of G is at least δ. At the same time, if H
is such that dG(`, a) = dH(`, a), where a is any such node
whose distance-to-leader vector is included in D and ` is
an arbitrary leader in V`, then D is also a PMI sequence in
H. Consequently, the dimension of SSC of H is also lower
bounded by δ. Thus, to add edges while preserving a lower
bound on the dimension of SSC, our approach is to add
edges while ensuring that the distance between leaders and
a certain subset of nodes (whose distance-to-leader vectors
are included in a maximum length PMI sequence of G) are
preserved. In fact, if there are m leaders, and the maximum
length PMI sequence is |D| = δ, then we need to preserve
distances between m(m−1)

2 +m(δ−m) node pairs. Thus, the
problem of edge addition while preserving strong structural
controllability becomes the edge augmentation problem in
networks while preserving distances between nodes.

A. Adding Edges While Preserving Distance Between Two
Nodes

We proceed by fixing a node pair a, b ∈ V and finding
a maximal edge set, which if added to the original graph,
preserves the distance between a and b. We call this as the
Distance Preserving Edge Augmentation (DPEA) problem,
formally stated below. We solve the DPEA problem for all
the node pairs v, ` where ` is a leader and v is a node whose
distance-to-leader vector is included in a maximum length
PMI sequence D. Taking an intersection of solutions to all
the instances of DPEA problem then gives a maximal edge
set that can be added to the original graph G to obtain a new
graph H in which distances between leaders and nodes in
the PMI sequence D are preserved. As a result, D is also a
PMI sequence in H and a lower bound on the dimension of
SSC of G also holds for H. Next, we formulate and solve
the DPEA problem.

Distance Preserving Edge Augmentation (DPEA) Given
an undirected graph G = (V, E) and a, b ∈ V such that
dG(a, b) = k, we are interested in H = (V, E ′) where
E ⊆ E ′, such that dG(a, b) = dH(a, b) = k. Our goal is to
find H = (V, E ′) with the maximum |E ′|.

2For brevity, we use the term ‘PMI sequence’ instead of ‘PMI sequence
of distance-to-leader vectors’.
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We show that an optimal solution to the DPEA problem
for a given pair of nodes belongs to a class of graphs known
as clique chains [9], which we define below.

Definition (Clique chain) Let n0, n1, · · · , nk ∈ Z+ and n =∑k
i=0 ni, then a clique chain of n nodes is a graph obtained

from a path graph of length k by replacing each node with
a clique3 of size ni such that the vertices in distinct cliques
are adjacent if and only if the corresponding vertices in the
path graph are adjacent. We denote such a clique chain by
Gk(n0, · · · , nk).

An example of a clique chain is illustrated in Figure 2.
Note that the diameter of Gk(n0, · · · , nk) is k.

Kn0

Kn1 Kn2

Kn3

Fig. 2: A clique chain G3(1, 2, 2, 1) with n0 = 1, n1 = 2,
n2 = 2 and n3 = 1.

Theorem 3.1: For a given G = (V, E), and a, b ∈ V
where dG(a, b) > 1, optimal solution to the DPEA problem
is a clique chain of the form Gk(n0 = 1, n1, · · · , nk−1, nk =
1), where

∑k
i=0 ni = |V|.

Proof: Let G∗ = (V, E∗) be an optimal solution to the
DPEA problem for a given G = (V, E), and a, b ∈ V . Also
let dG(a, b) = k > 1, and note that for every v ∈ V the
following holds

dG∗(a, v) + dG∗(v, b) = k. (3)

Clearly the sum dG∗(a, v)+dG∗(v, b) can not be less than
k since G∗ preserves the distance between a, b. If it is more
than k then at least one edge can be added between v and a
node that is at a distance two from v, which contradicts the
optimality of G∗. For 0 ≤ i ≤ k let’s define levels as

Si := {v ∈ V : dG∗(a, v) = i},

that is, nodes in Si are at distance i from a; also they are
at distance k− i from b. This defines a fixed partition of all
nodes. Observe that for a pair of nodes x ∈ Si and y ∈ Sj
where j−i > 1, we can not have an edge between x and y in
G∗ as otherwise it will violate (3). A clique chain defined on
levels S0, S1 . . . , Sk, that is Gk(|S0|, |S1|, · · · , |Sk−1|, |Sk|)
contains all remaining edges, where |S0| = |Sk| = 1, which
concludes our proof.

Note that when dG(a, b) = 1, optimal solution to the
DPEA problem is trivially a complete graph. Next, we
construct a clique chain for a given pair of nodes a, b. Note
that the original graph G must be a subgraph of this clique
chain.

3All vertices in a clique are pair-wise adjacent.

B. Clique Chain Construction

To construct a clique chain, we define Sai to be the set
of nodes that are at a distance i from a and similarly define
Sbi . If dG(a, b) = k is odd, then the sets Svi where i ∈
{0, 1, · · · , bk/2c} and v ∈ {a, b} are all non-empty and are
pairwise disjoint. Similarly, for even k, the sets Sai where
i ∈ {0, 1, · · · , k/2} and Sbi where i ∈ {0, 1, · · · , k2 − 1} are
all pairwise disjoint and non-empty. Next, we define free and
fixed nodes as below:

Definition (Fixed and free nodes) For a given pair of nodes
a, b ∈ V , all such nodes that are included in some shortest
path between a and b are referred to as fixed nodes, while
the remaining nodes are called free nodes.

We note that every fixed node must lie in Svi , where
v ∈ {a, b}. However, there could be free nodes that might
not be included in any Sai or Sbi . For instance, if k is even,
consider a node x with dG(x, a) > k/2 and dG(x, b) > k

2−1;
and if k is odd, consider x such that dG(x, a) > bk/2c and
dG(x, b) > bk/2c. We can always include such a free node
x into the set Sabk/2c by adding an edge between x and y for
some y ∈ Sabk/2c−1 while preserving the distance k between
nodes a and b. Furthermore, if a free node is already included
in some Sai (or Sbi ), it might be possible to place it in some
Saj (or Sbj ) for some j 6= i by creating an edge between x
and some y ∈ Saj−1 (or y ∈ Sbj−1) as long as the distance
between a and b is maintained. However, if x is a fixed node
in some Sai (or Sbi ), then it can never be placed in Saj (or
Sbj ) for any j 6= i without changing the distance between a
and b. Moreover, each of the Sai and Sbi contains at least one
fixed node. As a result, for given a and b in G = (V, E), we
always have a partition of V into k + 1 subsets given by,

S = {Sa0 , Sa1 , · · · , Sab k2 c, S
b
b k2 c

, · · · , Sb1, Sb0}, (odd k); (4)

and

S = {Sa0 , Sa1 , · · · , Sak/2, S
b
k
2−1

, · · · , Sb1, Sb0} (even k), (5)

where Sa0 = {a} and Sb0 = {b}.
Figures 3(a)–(c) illustrate above notions. Next, we

induce a clique chain over subsets in S, that is
Gk(1, |Sa1 |, |Sa2 |, · · · , |Sb2|, |Sb1|, 1). The distance between a
and b in this clique chain is k, and it contains the original
graph G as a subgraph. We illustrate this in Figure 3(d).

As for the time complexity of constructing such a clique
chain, a breadth-first search (BFS) tree starting at a (similarly
starting at b) gives us distances dG(a, v) (similarly dG(b, v))
for all vertices v. Once these two distances are available for
each node v, we can determine the subset in S to which v
belongs to. Further, we can check if the node is free or fixed
by verifying the equation: dG(a, b) = dG(a, v) + dG(b, v).
Consequently, for a given graph G = (V, E) and a pair
of nodes a, b, we can construct the desired clique chain in
O(|V|+ |E|) time.
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a

b

a

b

Sa
0

Sa
1

Sa
2

Sb
2

Sb
1

Sb
0

x1 x2

a

b

x2x1

a

b

(a) (b) (c) (d)

Fig. 3: All white nodes are fixed nodes as each of them lie on some shortest path between a and b, whereas black nodes do
not lie on any shortest path between a and b and are free nodes. (b) Nodes are partitioned into sets Svi where v ∈ {a, b}
and i ∈ {0, 1, 2}. Note that free nodes x1 and x2 are not included in any Sai or Sbi . (c) Both x1 and x2 are included in Sa2
by creating an edge between x1 and some node in Sa1 , and similarly by an edge between x2 and a node in Sa1 . The distance
between a and b does not change by the addition of these edges. (d) Clique chain is induced over all Sai and Sbi .

IV. EDGE AUGMENTATION WHILE PRESERVING A
LOWER BOUND ON SSC

In this section, we present two algorithms to add maximal
edges in the existing graph while preserving a (PMI based)
lower bound on the dimension of SSC. For a graph G, our
algorithms take PMI sequence of distance-to-leader vectors
D as input and return edges whose addition to G does not
change distance-to-leader vectors of nodes included in D. As
a result, D is also a PMI sequence of the graph even after
adding extra edges.

A. Intersection Algorithm

If D is a PMI sequence and V̄ ⊆ V is the set of nodes
whose distance-to-leader vectors are included in D, then our
goal is to add edges that do not change the distance between
nodes in the node pair (v, `), where v ∈ V̄ and ` ∈ V`.
One way of achieving this is to solve DPEA problem (as
discussed in Section III-A) for each such node pair, and then
select edges that are common in solutions of all such DPEA
instances. These common edges, if added to the graph, will
preserve the distance between any leader node and v ∈ V̄ .
We summarize this scheme in Algorithm 1.

Algorithm 1 Intersection Algorithm

1: Consider a PMI sequence D in G with leaders in V`.
2: Identify nodes whose distance-to-leader vectors are in-

cluded in D, and denote them by V̄ ⊆ V .
3: For each node pair (`, v) where ` ∈ V` and v ∈ V̄ , solve

the DPEA problem. Let E`,v be a solution.
4: Compute

E ′ =
⋂

`∈V`; v∈V̄

E`,v. (6)

Proposition 4.1: If δ is a distance-based lower bound on
the dimension of SSC of G = (V, E) with leaders V` ⊂ V ,

then δ is also a lower bound on the dimension of SSC of a
graph H = (V, E ′), where E ′ is given in (6).

Proof Let D be a PMI sequence of length δ in G = (V, E)
containing distance-to-leader vectors of nodes in V̄ ⊆ V .
Using the above scheme, we compute E ′ and obtain a graph
H = (V, E ′). Note that the distances between leaders and
nodes in V̄ is exactly same in G and H. Consequently, D
is also a PMI sequence in H, and hence δ is also a lower
bound on the dimension of SSC of H.

Since there are at most |V`| × |D| instances of the DPEA
problem, and each such instance takes O(|V| + |E|) time,
Algorithm 1 runs in O(|V`| × |D| × (|V|+ |E|)) time.

Example: As an example, consider the network in Fig-
ure 4(a) with |V| = 15 nodes and |E| = 23 edges. We
consider the cases with one and two leaders as illustrated
in Figures 4(b) and 4(c) respectively. With a single leader
(V` = {v1}), the dimension of SSC is at least 6, as the
maximum length of a PMI sequence is 6 as given below. We
can add 41 extra edges (shown in red in Figure 4(b)), while
ensuring that the distance between the leader node v1 and
each of the node in V̄ = {v2, v3, v4, v5, v6} is preserved in
the new graph.

D =
v1 v5 v4 v3 v2 v6

[ ]0 1 2 3 4 5

Similarly, with two leaders V` = {v1, v4}, the dimension
of SSC is at least 10. A PMI sequence of length 10 is given
below along with the nodes whose distance-to-leader vectors
are included in the sequence.

D =

v1 v4 v5 v9 v7 v15 v3 v11 v2 v6[ ]
0© 2 1© 2 2© 3 3© 4 4© 5©
2 0© 1 1© 2 2© 3 3© 4 5

We can add 21 extra edges in the graph while ensuring that
above sequence is still a PMI sequence in the new graph.
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(a)

1

2

3

4

5

6

7
8

9

10

11

12

13

14
15

(b) V` = {v1}

1

2

3

4

5

6

7
8

9

10

11

12

13

14
15

(c) V` = {v1, v4}

Fig. 4: Extra edges that can be added to the original graph
with one and two leaders while preserving a lower bound on
the dimension of SSC. Edges that are added are colored red.

B. Randomized Algorithm

Next, we present a randomized algorithm to add edges
while preserving distances between certain node pairs in a
graph. Let Ec be the set of edges not included in the original
graph G = (V, E). In other words, Ec∪E induces a complete
graph. The main idea is to randomly select an edge in Ec and
add it to the existing graph if its addition does not decreases
distances between nodes in the desired node pairs. We outline
the algorithm below. As previously, D is a PMI sequence and
V̄ ⊆ V is the set of nodes whose distance-to-leader vectors
are included in D.

Algorithm 2 Randomized Algorithm

1: Given G = (V, E), V`, D, V̄
2: Initialize E ′ ← E
3: Compute Ec .
4: While Ec 6= ∅
5: Randomly select e ∈ Ec, and obtain H = (V, E ′ ∪ {e}).
6: Compute dH(`, v) for all ` ∈ V` and for all v ∈ V̄ .
7: If (dH(`, v) = dG(`, v)) for all ` ∈ V`, and for all v ∈ V̄ ,

then
E ′ ← E ′ ∪ {e}.

8: Update Ec ← Ec \ {e}.
9: End While

10: Return E ′

1) Analysis: In this subsection we analyze the perfor-
mance of the randomized algorithm. Let T ≤ |Ec| be the
number of edges that are (individually) legal to add to the
input graph and let τ ≤ T be the size of an (unknown)
optimal solution that is, the maximum number of edges
from the legal set that can actually be added to the graph.
Algorithm 2 randomly picks τ ′ ≤ τ legal edges, one at
a time, to add to the graph. Next, we show that if the
randomized algorithm is repeated c times, then with a certain
probability we get a solution that is within a factor of α < 1
of the optimal solution.

Proposition 4.2: Algorithm 2 returns an α-approximate
solution with probability at least

(
1− e−c(

τ
T )

ατ)
, when

repeated c times.
Proof: The probability of the event that algorithm picks

a set of legal edges that is as big as the optimal set (that
is when τ ′ = τ ) is at least 1

(Tτ)
. Let S be the event that

algorithm finds a set of legal edges that is at least a fixed
constant α times the size of optimal set, then the probability
of such an event can be bounded as below.

Prob(S) ≥
(
τ
ατ

)(
T
ατ

) ≥ ( τ
T

)ατ
. (7)

This implies that the probability of failure to find a good
enough set can be bounded above as

Prob(S) ≤ 1−
( τ
T

)ατ
. (8)

Now if we repeat our algorithm c times, the probability of
success improves significantly. Owing to the independence
of these trials, we get

Prob(S) ≥ 1−
(

1−
( τ
T

)ατ)c
≈ 1− e−( τT )

ατ
c, (9)

which is the desired result.

We note that (9) provides a rather loose bound on the
probability of success of finding an α-approximate solution
when we repeat randomized algorithm c times. We expect
many suboptimal solutions of required size to exist that are
not subsets of one fixed optimal solution. In any case, this
bound is still helpful in guessing a reasonable value of c. For
instance, if there are T = 100 individually legal edges, τ is
0.92T , and we are interested in a solution that is at least
α = 3/4 times the size of optimal solution, then setting
c > 500 will give us a good chance (success probability of
at least 0.8) of finding a solution of required performance
guarantee.

Regarding the runtime of Algorithm 2, note that in each
iteration we need to compute distances from each leader to
all nodes in the PMI sequence. Since there are at most |E|
iterations, Algorithm 2 runs in O(|E| × |V`| × (|V| + |E|))
time.

V. NUMERICAL EVALUATION

Here, we evaluate our algorithms on Erdős-Rényi (ER)
networks in which any two nodes are adjacent with proba-
bility p, and Barabási-Albert (BA) networks in which each
new node is adjacent to γ existing nodes through a prefer-
ential attachment strategy. For both ER and BA models, we
consider networks of 50 nodes.

Figure 5 illustrates results for ER graphs. For a selected p,
first we plot distance-based lower bound on the dimension of
SSC as a function of the number of leaders selected randomly
(Figures 5(a) and 5(c)). Then, using Algorithms 1 and 2, we
add edges to networks while preserving lower bounds on
their dimensions of SSC. We also compare results against
an upper bound on the optimal number of edges that can
be added without changing PMI sequence. The bound is
obtained by observing that an edge cannot be added between
two such nodes that lie on a shortest path between a leader
and a node whose distance-to-leader vector is included in a
given PMI sequence. This observation gives an upper bound
on the maximum number of edges that can be added in a
graph while preserving a PMI sequence.
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(c) p = 0.3
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Fig. 5: ER–networks: For p = 0.2 and 0.3 respectively, (a) and (c) illustrate lower bound on the dimension of SSC as a
function of number of leaders. In (b) and (d), Algorithms 1 and 2 are compared. Edges in original graphs as well as upper
bound on the maximum number of edges that can be added without changing PMI sequence are also shown.
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Fig. 6: BA–Networks: For γ = 5 and 7 respectively, (a) and (c) illustrate bound on dimension of SSC as a function of
number of leaders. In (b) and (d), a comparison of Algorithms 1 and 2 is illustrated.

Plots in Figures 5(b) and 5(d) indicate that new networks
obtained after applying Algorithms 1 and 2 contain signif-
icantly more edges as compared to the original network.
Algorithm 2 performs slightly better than the Algorithm 1,
especially when the number of leaders increases. However,
as the value of p increases, the difference between two
algorithms is negligible. To obtain results of Algorithm 2,
we perform 150 repetitions (that is c = 150) and then
select the best solution. We also mention that Algorithm 1
takes significantly less time as compared to the Algorithm
2 (based on the choice of c). Similar results are obtained
for BA networks as illustrated in Figure 6. In all the plots,
value at each point is an average of 100 randomly generated
instances.

VI. CONCLUSION

Adding extra links between nodes improves network’s
robustness to noisy information and to structural changes
in the underlying network topology, but at the same time,
these extra links can deteriorate network controllability. We
introduced the problem of improving network robustness
by adding edges while maintaining a lower bound on the
dimension of SSC. By exploring the relationship between
strong structural controllability and distances between nodes
in a graph, we showed that the above problem can be formu-
lated as an edge augmentation problem with the constraint
of maintaining distances between a certain pair of nodes.
To solve the edge augmentation problem, we presented
deterministic and randomized algorithms that approximately
computed densest graphs preserving a given set of pairwise

distances between nodes. We believe that characterizing
densest graphs that preserve distances between certain node
pairs is an interesting problem in its own respect. We aim
to study this problem further and design efficient exact
algorithms to solve it.
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