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a b s t r a c t

Graph representations based on embedding methods allow for easier analysis of the network structure
and can be used for a variety of tasks, such as link prediction and node classification. These methods
have been shown to be effective in a variety of settings and have become an important tool in the
field of graph learning. These methods are easy to implement, and their predictions yield interpretable
results. However, most graph embedding methods rely solely on graph structural information and do
not consider node/edge attributes, limiting their applicability. In this paper, we propose graph-theoretic
designs to incorporate node and edge attributes within the topology, enabling graph-embedding
methods to seamlessly work on attributed graphs. To find ideal representation for a given attributed
graph, we propose augmenting special subgraph structures within original network. We discuss the
potential challenges of the proposed approach and prove some of its theoretical limitations. We test
the efficacy of our approach by comparing state-of-the-art graph classification models on 15 standard
bioinformatics datasets. We observe an encouraging improvement of up to 5% in classification accuracy
on the augmented graphs compared to the results on the original graphs.

© 2023 Elsevier B.V. All rights reserved.
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. Introduction

Graph machine learning methods have proven to be effec-
ive in addressing a wide range of problems in bioinformatics,
ocial network analysis, and network security. Their ability to
odel complex relationships and capture the underlying struc-

ure of biological/social systems makes them a powerful tool
or solving these challenges. A prominent example is the recent
reakthrough on the ‘‘protein folding problem’’ using graph ma-
hine learning. The protein folding problem, also known as the
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protein structure prediction problem, is a longstanding challenge
in the field of bioinformatics. It involves predicting the three-
dimensional structure of a protein from its amino acid sequence,
which is crucial for understanding the protein’s function and po-
tential therapeutic applications. Graph machine learning methods
have been used to tackle this problem and have achieved signifi-
cant progress. These methods represent the protein as a graph,
with the amino acids as nodes and chemical bonds as edges,
and use graph neural networks to learn the protein’s structure
from this representation. This approach has shown promising
results and has the potential to provide new insights into the
protein folding process [1]. Significant progress has been made
on other problems, including toxicity prediction, drug discovery
and development, and drug similarity integration [2–4].

Along with information about the existence of pairwise
interactions, a graph representation may also encode meta-
information available at individual nodes and edges. For example,
in a dataset of molecules, the attributes of a node may include
information about the atomic number, aromaticity ionization, and
metallicity of the corresponding atom. Similarly, the edges may
contain information about bond types. Attributed graphs appro-
priately represent such datasets while preserving the associated
meta-information. In most cases, these attributes can be encoded

in real values. Consequently, an attributed graph can be defined
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a
s a collection, G = (V , E, fv, fe), where fv : V → Rdv (resp.,
fe : E → Rde ) assigns a dv-dimensional (resp., de-dimensional)
attribute vector to each node in V (resp., each edge in E) [5,6].
A graph where the dimensions of these feature vectors are zero,
i.e., dv = de = 0, is referred to as an unattributed graph.

We observe that many state-of-the-art graph embedding ap-
proaches do not use node attributes and rely only on the topo-
logical structure of the graphs for machine learning tasks. These
methods are otherwise well-grounded in graph theory and struc-
tural pattern recognition. They garner special attention from
the research community because of their many merits, like re-
producibility, low variance, explainability, etc. [7–9]. In settings
where attribute information is available, these embedding meth-
ods have been applied by ignoring the attribute information [10–
12]. This is not an ideal scenario as it results in a significant
loss of information potentially affecting the performance of these
methods for the aforementioned applications. In contrast, Graph
Neural Network-based (GNNs) approaches use graphs’ structural
as well as attribute information and thus have shown more
promising results on various graph mining tasks where attribute
information is available albeit with a high variance and less
explainability [13].

In this work, our goal is to design techniques that allow
graph embedding methods to utilize a graph’s structural and
attribute information. Any such approach should treat these rep-
resentation methods as black boxes and refrain from tampering
with their algorithms. Therefore, the problem reduces to aug-
menting a graph’s topology before passing it as an input to
these methods. We propose a framework to encode the node
and edge attribute information within the input graph topology.
The encoding is performed by appending suitable families of
subgraphs at ‘‘appropriate locations’’ while ensuring a one-to-
one correspondence between the attributed input graph and the
augmented unattributed graph. To illustrate this subgraph aug-
mentation, consider the example in Fig. 1. In Fig. 1(a), a molecule
sampled from MUTAG (a nitro-aromatic compounds dataset) is
shown. The molecule consists of ten aromatic and three nonmetal
atoms. Among these, two are ions. In Fig. 1(b), its corresponding
simple, unattributed graph is shown, which is input to graph
representation methods. Note that the transformation from (a)
to (b) loses all the attributes. In Fig. 1(c), a new augmented
unattributed graph is shown where different sizes of cliques (a
subset of vertices that has all pairwise edges) are attached at
suitable locations to encode various node/edge attributes. The
blue nodes are the original nodes, while the rest of colors repre-
sent various cliques used for preserving specific attributes. Unlike
the traditional embedding approaches, which use a simplified
version of the original graph (Fig. 1(b)), we provide the graph
with attribute information that is augmented in the graph topol-
ogy (Fig. 1(c)). Since graph embedding methods mostly rely on
neighborhood information, we argue in this paper that this is a
suitable framework to preserve attribute information and leads to
improved performance of embedding methods. The contributions
of this paper are as follows:

• textcolorblueWe propose an attributed graph augmentation
scheme to translate graph dataset with node/edge attribute
information to a graph dataset with no attributes. The pro-
posed scheme preserves not only the topological structure
of the original but also the values of the attributes of each
node/edge.

• We formally define the problem of finding an ideal
unattributed graph representation of an attributed graph
denoted as k-HFD, and analyze the theoretical complexity

of this problem.

2

Fig. 1. Illustration of subgraph augmentation where a molecule with its corre-
sponding simple and augmented graph is shown. The colors are provided for
visualization purposes only.

• We perform extensive experiments in the graph classifi-
cation setting on 15 standard bioinformatics datasets. We
compare the results of 6 state-of-the-art graph embedding
methods on the original graphs and the augmented graphs.
Through these experiments, we demonstrate an improve-
ment of up to 5% in the classification accuracy using the
augmented graphs.

The rest of the paper is organized as follows: In Section 2, we
briefly describe the existing works in this direction. In Section 3,
we present the proposed procedure for attributed graph aug-
mentation and also provide the analysis of the problem in terms
of feasibility and lower/upper bounds. Section 4 provides a case
study highlighting the applications of the proposed method in
toxicity prediction. It also presents numerical results to evaluate
the efficacy of the proposed method. Finally, Section 6 concludes
the paper.

2. Related work

This section provides a brief overview of graph machine learn-
ing methods under three main categories: graph kernels, graph
descriptors/embeddings, and graph neural networks. Further-
more, we present a summary of the applications of these methods
in the field of bioinformatics.

2.1. Graph kernels

Graph representations were first explored in the context of
graph kernels, many of which study the R-convolution frame-
work [14]. Graph kernels usually decompose the entire graph
into different subgraphs and then define kernels based on the
similarity among those subgraphs [15]. For example, the fam-
ily of graphlet kernels [16] considers fixed-size graphlets while
shortest-path kernels are derived by comparing the paths among
graphs [15]. Similarly, random walk kernels count the number of
common random walks for graph comparison [17]. Alas, these
kernels usually involve subgraph mining, which is a computa-
tionally expensive task, limiting their application to small-sized
graphs. To overcome the computational overhead, faster methods
such as the Weisfeiler–Lehman kernel [8], Neighborhood Hash
Kernel [18,19] and Edge Histogram kernel [20] were introduced.
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hese methods generally compute a kernel matrix based on their
efined procedures, which can then be used for the downstream
achine learning task.

.2. Graph descriptors

The key idea behind graph descriptors is to extract expres-
ive graph representations that fulfill the desired properties of
he embedding method. These methods usually use the spec-
ral and statistical properties of the graph to encode both local
nd global-level information. For example, NetSIMILE [21] uses
raph’s statistical properties such as average degree, clustering
oefficient, and the standard deviation of two-hop neighbors to
ompute fixed-length graph representation. Similarly, FGSD [10]
nd NetLSD [11] use spectral properties such as harmonic dis-
ance and transformed Laplacian traces for computing the graph
epresentations. More recently, the authors in [22] consider the
istribution of node features, while [23] consider the distribution
f smooth graph signals for graph comparison using Wasserstein
istance. Yu et al. [24] introduce a graph comparison framework
ased on optimal transport theory and discrete graph matching
n the continuous domain. The authors in [9] use the Kirchhoff
ndex as a measure of edge centrality for computing pair-wise
istances among nodes to extract graph representations. A similar
air-wise distances based approach was presented in [12] to
nhance the scalability of graph descriptors. The proposed ap-
roach extracts graph representations in both centralized and dis-
ributed environments. More recently, graph embedding methods
ave also been applied for industrial decisions in sewage treat-
ent [25,26]. These methods capture global-level properties of

he graphs with node pairwise similarities to extract the em-
edding vectors. Due to their scalability on large datasets and
ttractive results, descriptor methods have attracted increasing
nterest in the last few years.

.3. Graph representation in bioinformatics

Graphs are a powerful formalism for representing biological
ystems. Many biological systems, such as DNA, RNA, molecules,
etabolites, and proteins, can be naturally represented by graphs

hat capture many of their essential properties [27–29]. Graph
epresentations of biological systems effectively help to under-
tand the events and the processes within these systems that lead
o pathologies and diseases [30–32]. Moreover, graph represen-
ations are widely used in machine learning to perform various
asks and have shown promising results in the last few years.
or example, in [33], an end-to-end deep learning framework is
roposed in which a GNN is adopted to predict properties of the
olecules. Similarly, in [34–36], improved GNN architecture is
roposed to improve predictions on molecular data, especially
n quantum chemistry. For molecular structure generation, Mol-
AN [37] introduces reinforcement learning-based optimization,
hile [38] proposes a GNN architecture for protein interface
rediction. There is a rich literature on similar approaches; the
nterested reader is referred to [39–41] for further reading.

Despite the massive success of graph representation meth-
ds, very few attempts have been made to improve graphical
epresentations for attributed graphs. We consider constructing
nattributed graphs from attributed graphs that incorporate the
ttributive and structural information of the original graph. This
llows deploying graph embedding methods on attributed graphs
nd, thus, bridges the gap between attributed graphs and graph
mbedding methods. Testing on several benchmark algorithms,
3

our empirical results showed improved results on the augmented
graphs.

3. The proposed method

In this section, we present our framework for encoding at-
tribute information using graph topology. We propose a graph
augmentation approach to encode each node and/or edge at-
tribute as a substructure within the topology of the input graph,
as shown in Fig. 2. The goal is to perform lossless encoding to
ensure that no information is lost in the translation, i.e., the
original graph structure as well as the values of the node/edge
attributes should be fully recoverable from the final graph. We
would also like to make sure that the size of the final graph does
not blow up to an extent that standard graph embedding methods
cannot be used anymore. And lastly, the final representations
should be expressive enough to produce comparable results on
standard learning tasks. After such an ideal augmentation is per-
formed, one can apply any graph embedding method to obtain
feature vectors that can be utilized in classical machine learning
algorithms. In this section, we formally define the combinatorial
optimization problem of augmenting an attributed graph to an
unattributed graph keeping in mind the above-mentioned chal-
lenges. We explore the theoretical limitations of any algorithm
that solve the augmentation problem, as well as propose our
solution.

3.1. Preliminaries

We begin with an outline of the necessary definitions, nota-
tions, and terminology.

3.1.1. Graph terminology
An unattributed graph G = (V , E) is defined as a collection of

nodes and edges, where V is a set of nodes, and E ⊆ V ×V is the
set of edges. For a given G, we define mag(G) = |V | + |E| as the
magnitude of the graph. For ease of exposition, all unattributed
graphs discussed in this work are simple, undirected, and un-
weighted. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs,
then G1 and G2 are isomorphic whenever there exists a mapping
φ : V2 → V1 such that E1 = {(φ(u), φ(v))|(u, v) ∈ E2}, i.e., G1 and
G2 represent the same graph modulo permutation of vertices. We
also say G2 is a subgraph of G1 if there exists an induced subgraph
of G1 that is isomorphic to G2. We refer to G1 as G2-free if there
exists no induced subgraph in G1 isomorphic to G2.

3.1.2. Attributed and labeled graphs
An attribute of a node (resp. edge) refers to information rel-

evant to the node (resp. edge). Attributes allow for providing
further details about the entity being modeled. For simplicity, we
assume that all graph attributes take integer values. We argue
that this is a reasonable assumption because there are reasonably
small number values that an attribute can take in a standard
bioinformatics dataset, i.e., all attributes such as element type,
bond type, metallicity, etc., can be efficiently mapped or approx-
imated to the nearest integer. Each node (resp. edge) may have
multiple attributes.

Thus an attributed graph L is a quadruple (V , E, δ, θ ) where V
is a set of nodes and E is a set of edges; δ is a mapping from V to
Ndv that assigns a list of dv integer attributes to each node, and θ

is a mapping from E to Nde that gives a list of de integer attributes
to each edge in E. Either dv or de can be zero, but we assume that
for an attributed graph at least one of them is nonzero. For an
attributed graph L, we use L̄ to refer to the trivial unattributed
graph represented by (V , E) without node or edge attributes.
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Fig. 2. Example of graph augmentation. we take a molecule as input and transform it into an augmented graph before passing it to a graph embedding method.
.2. Encoding labeled graphs as unlabeled graphs

Let L = {L1, L2, L3, . . . , Lk} be a dataset of attributed graphs.
For a given graph Li ∈ L, our goal is to construct an unattributed
graph Gi = (Vi, Ei) such that the attribute information in Li is
encoded in the topological structure of the graph Gi. Let f : L → G
be a function such that f (Li) = Gi. To ensure effective encoding,
we propose that f must fulfill the following design properties:

(P1) The mapping f must be bijective; there must exist a func-
tion f −1 such that f −1(Gi) = Li whenever f (Li) = Gi.

(P2) On average, the increase in magnitude in the graphs, should
be minimized:
1

|L|

∑
Li∈L

mag(Gi) − mag(L̄i)

(P3) The resultant graphs must be ‘‘expressive’’ enough for a
classification model to learn relevant features.

Property P1 ensures that Li can be recovered from Gi, guaran-
eeing a lossless encoding that encapsulates the same information
s the original attributed graph. Note that it also implies that
or any two distinct attributed graphs Li, Lj ∈ L, the augmented
nattributed graphs f (Li) and f (Lj) must not be isomorphic. We
ote that graph magnitudes are extremely important to avoid
xcessive computational overhead for computing graph embed-
ings. Therefore property P2 ensures that the output graphs do

not explode in size.
Unfortunately, these properties are not enough to guarantee

meaningful representations for classification tasks, as indicated
by the lemma below.

Lemma 1. For a given set of attributed graphs L, a bijective
mapping from L to G that minimizes the objective function,

1
|L|

∑
Li∈L

mag(Gi) − mag(L̄i),

is trivial. Furthermore, such a mapping will always return the first
|L| smallest graphs in G, in order of magnitude defined above.

Proof. Let G′
= {G1,G2, . . . ,G|L|} be the family of the |L| smallest

graphs, with respect to magnitude. Note that this set can be
found in exponential time by generating all graphs with up to
|L| nodes, ordering the graphs with respect to their magnitudes,
and keeping the first |L| graphs. It is clear that among all sets of
graphs that can be output by a mapping from L to G, the objective
value cannot be less than
1

|L|

∑
mag(Gi) − mag(L̄i).
Li∈L,Gi∈G′

4

Therefore, any bijective mapping from |L| to G′ is a feasible
solution with an optimal value, as no smaller graphs exist for
the attributed graphs in L to be mapped to. Note that the set
G′ is not unique because multiple graphs may have the same
magnitude, but an arbitrary choice suffices to complete the proof
of the statement. □

The lemma above shows that while there may exist some
trivial graph augmentations, they are not suited for tasks like
classification because we may lose important information in the
process. Therefore, we included property P3, which, although
subjective, is necessary to obtain meaningful embeddings. For a
given graph, utilizing the presence or absence of certain subgraph
structures has proven to be useful in classification settings in
some previous works (e.g., [42,43]). In this vein, we propose ap-
pending ‘‘appropriate’’ subgraphs to nodes, corresponding to the
attributes within L. Formally, let γ : Nd

→ G be a mapping from
attribute vectors to graphs, where d may be equal to dv or de, the
dimensions of the node and edge attribute vectors, respectively.
We present an algorithm, 1, that constructs an unattributed graph
Gi for a given graph Li. We begin by converting an attributed
graph Li to a trivial unattributed graph L̄i by removing all nodes
and edge attributes. In steps 2–4, for each node v, the mapping
function γ (δ(v)) maps node attributes to subgraphs and appends
them to their corresponding nodes. We repeat this process for
each edge attribute as well. In steps 6–9, we append a subgraph
γ (θ (e)) to both end-nodes for an edge (u, v).

Algorithm 1 Attributed Graph Augmentation

Input: Li
Output: Gi
1: transform Li to Gi = L̄i by removing all attributes
2: for each node v in Li do
3: append subgraph γ (δ(v)) to Gi
4: add an edge from each node in the subgraph γ (δ(v)) to the

node v in Gi
5: end for
6: for each edge e = (u, v) ∈ Gi do
7: append the subgraph γ (θ (e)) to Gi
8: add edges from a random node in γ (θ (e)) to both end nodes

u and v in the graph Gi
9: end for

10: return Gi

We note that this mapping satisfies all three sought-out design
properties, given an appropriate function γ . To obtain the original
labeled graph Li from the unattributed graph Gi, one can find all
the appended subgraphs Gi, delete them from Gi, and label the
node it was attached to according to γ . Note that this reverse
construction is independent of the construction method and only
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eeds access to γ . We observe that if γ produces subgraphs
hat already exist as induced subgraphs in some input attributed
raph Li, then we will not be able to completely recover Li
ecause the reverse construction process will delete all copies
ncluding the ones that were not added via the construction
rocess. Therefore, this requires appending graphs that do not
lready exist as subgraphs of any graph Li, i.e., for all Li ∈ L, Li
ust be H-free for any H = γ (k) where k is a label used in L.
nfortunately, attempting to meet property P2 under this setting
s a computationally challenging task. We show this by proving
hat the problem of finding the smallest magnitude subgraph to
ppend even for one value of an attribute in a graph is NP-Hard.
e first formally define the problem:

roblem 3.1 (k-Magnitude H-free Discovery (k-HFD)). Given G,
ind a graph H with magnitude k such that G does not contain
as an induced subgraph, i.e., G is H-free. If there are multiple

uch graphs H , then return the one with the fewest number of
odes. If there is no such H then return NULL.

Note that some instances of k-HFD are trivial. For example,
hen k = 2, a solution will always return NULL because the only
raph with magnitude 2 is two nodes with no edge between them
nd G will always contain such nonadjacent two nodes unless G
s a complete graph. Similarly, when k = 3, there are only two
ossibilities for H , three nodes that do not have any edges with
hem and two nodes that have an edge between them. Such cases
an be easily checked. We show that in general, the k-Magnitude
-free Discovery Problem is NP-hard in the following theorem via
simple reduction.

heorem 3.1. The k-Magnitude H-free Discovery Problem is NP-
ard.

roof. We prove the hardness result by reducing the famous k-
lique problem to k-HFD problem. The k-Clique problem can be
efined as follows: given an (unattributed) graph G, does there
xist a subgraph on k nodes where each pair of nodes is connected
y an edge?
Let (Ĝ, k̂) be an instance of k-Clique problem. We create an

nstance of k-HFD by setting G = Ĝ and k = k̂ +
(k̂
2

)
. Note that

ˆ +
(k̂
2

)
is the magnitude of a complete graph on k̂ nodes. If the

ypothetical black box solution to k-HFD returns a graph H on k̂
odes, then H must be the complete graph on these nodes and Ĝ
ust not contain a copy of such a graph. So, we can be sure that

he original graph G does not contain a clique on the required
umber of nodes. So, we can return NO answer to the k-Clique
roblem. If k-HFD returns NULL, or the H graph returned has
ore than k̂ nodes, then it indicates the graph Ĝ is not k̂-clique

ree, assuming there are enough nodes in the original graph.
herefore, in this case, we can return a YES answer to the original
roblem because the graph G contains a clique on the prescribed
umber of nodes. Note that if the number of nodes in H is more
han k̂, then Ĝ cannot contain a clique on k̂ nodes because the
olution to the k-HFD is required to contain the fewest number
f nodes. This completes the proof of the statement. □

The above theorem implies that there is no polynomial-time
olution for the problem of finding and augmenting attributed
raphs unless P = NP . However, we assert that domain knowl-
dge of bioinformatics can be used to design an efficient so-
ution to this problem. For an instance, it is well-known that
hree-membered rings (3MR) like epoxies are highly uncommon,
trained, and susceptible to ring-opening [44]. Therefore, it is
lausible to use triangles, i.e., three nodes all connected to each

ther by three edges, to represent an attribute in an output a

5

raph. Similarly, the domain knowledge of the particular dataset
an be employed to find structures that are small in size, and
arely exist in the attributed graphs representing the dataset.
e observe that, in general, the graphs in the bioinformatics
atasets are quite sparse in nature and do not contain medium-
ized cliques. Using cliques allow us to efficiently compute γ by
rranging the attributes in order of how many times they appear
n the dataset L and assigning the smallest cliques to the most
requently appearing labels.

Note that due to a clique’s symmetric nature, we can also
ave on extra edges by adding an edge from only one of its
odes to the corresponding nodes in the attributed graph. The
orresponding structure in this case is called a ‘‘lollipop graph’’.
n our experiments, we use both cliques and lollipop graphs.

. Case study: Graph embedding for toxicity prediction

Measuring chemical toxicity is an important task in pharma-
eutical, agricultural, and environmental sciences. In pharmacol-
gy, chemical toxicity plays a key role in drug discovery and
evelopment. Chemical toxicity is considered a major factor in
isqualifying most drug candidates in the discovery process [45].
hus, it is highly desirable to develop new methods for predicting
he toxicity of chemicals.

More recently, Graph Machine Learning (GML) has shown
reat success in molecular generation and drug discovery [46].
ince molecules can be naturally represented by graphs, GML
ethods are known to be suitable candidates to leverage the

opological structure along with attribute information to perform
arious machine learning tasks. The latest developments in the
ML field, graph descriptors, and GNNs have shown promis-
ng results in the application of toxicity prediction on molec-
lar graphs [10,43,47,48]. In the following, we provide a brief
omparison of both types of methods.
GNNs: GNNs are generally based on a message passing mech-

nism where they exploit node feature information along with
raph topology to learn the desired representation. In applica-
ions where expressive attributes are available, GNNs are found to
e superior in terms of classification accuracy. Conversely, in case
f limited or no feature availability, the performance of GNNs is
ominated by that of graph descriptors. The following are some
f the major challenges of GNN-based approaches:

• Require large training data: In applications where large
amounts of training data is unavailable, GNNs may not be
a suitable candidate to perform the desired ML task [49].

• Robustness and guaranteed performance: GNNs usually
report large variance in results which limits its application
where trusted results are necessary [50].

• Interpretability: The results reported by GNNs are, in gen-
eral, not open to interpretation. Therefore, GNNs are not
suitable for real-world applications where interpretability
and explainability are important [51].

• Lack of attribute information: In applications where at-
tribute information is unavailable, the performance of GNNs
methods is quite limited [52].

• Scalability on sufficiently large graphs: Training GNNs is
a computationally expensive task that scales with the order
of the graph. As such, their application is limited to small or
medium-sized graphs [49].

Graph descriptors: Graph descriptors are flexible graph rep-
esentation methods that can be adjusted to fulfill the desired
roperties of the embedding vector. For example, in applications
here subgraphs play an important role, graph descriptors can be

djusted to capture the information of the subgraphs [43]. Graph
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Table 1
Characteristics of the chosen 15 bioinformatics datasets. Attributes |G| indicates simple unattributed
datasets, G indicates augmented datasets, V (.) and E(.) indicate the average number of nodes and
edges in both datasets.
Dataset |G| avg.|V (G)| avg.|E(G)| avg. |V (G)| avg.|E(G)|

MUTAG 186 17.95 19.81 213.63 692.47
PTC 343 14.71 14.72 200.58 701.17
NR-AHR 1900 17.88 18.79 259.93 959.61
NR-AR 756 21.05 22.59 345.69 1375.79
NR-AR-LBD 604 20.45 21.92 340.93 1368.34
NR-Aromates 712 19.58 20.57 298.36 1138.47
NR-ER 1866 17.83 18.70 271.19 1033.58
NR-ER-LBD 882 19.15 20.21 296.61 1142.70
NR-PPAR-GAMMA 442 18.33 19.10 272.07 1023.69
SR-ARE 2188 17.30 18.01 258.96 980.41
SR-ATAD5 674 18.06 18.88 266.26 993.70
SR-HSE 850 17.06 17.72 253.55 955.79
SR-MMP 2246 18.24 19.06 272.44 1028.29
SR-P53 1064 19.71 20.38 298.51 1132.21
NCI1 3474 29.30 31.91 428.41 1513.20
Table 2
Comparison of classification accuracies of seven graph embedding methods on 15 bioinformatics datasets. G indicates the simple undirected graphical
representation of the datasets while G indicates the transformed graphical representation using the proposed method. Augmentation is performed
on cliques of different sizes. Blue indicates improved results using the proposed approach.
Dataset FGSD NetLSD HOSD NetSIMILE SP WL FWL-D

G G G G G G G G G G G G G G
MUTAG 87.77 89.9 81.52 85.56 86.74 89.26 82.49 86.87 87.4 87.0 82.92 83.22 86.49 89.27
PTC 56.25 58.04 58.62 59.5 60.03 59.0 55.1 54.27 57.22 57.32 51.3 51.62 53.97 60.28
NR-AHR 76.04 78.57 71.84 74.54 74.2 74.56 74.96 76.2 70.68 75.53 69.42 72.95 75.95 80.16
NR-AR 77.43 75.65 73.89 73.57 79.69 73.09 76.27 74.28 75.53 75.79 73.44 72.65 76.32 75.93
NR-AR-LBD 81.19 82.45 81.01 77.0 80.98 81.41 81.08 79.54 79.77 80.1 74.36 78.8 83.12 82.64
NR-Aromates 78.14 77.88 72.19 74.6 76.32 79.3 75.03 75.67 75.48 75.78 73.2 76.85 76.56 80.61
NR-ER 67.77 67.94 63.41 65.26 66.49 69.24 64.71 67.66 65.82 67.38 63.57 63.83 67.2 69.94
NR-ER-LBD 72.97 75.89 69.83 71.34 73.38 75.66 70.05 72.45 68.93 70.41 65.53 67.46 71.09 71.52
NR-PPAR-G 67.76 71.57 64.8 61.81 73.48 70.89 69.59 68.47 66.28 71.0 66.76 67.45 74.43 72.63
SR-ARE 68.56 70.99 63.42 67.57 66.19 69.39 66.75 67.4 65.82 68.33 64.13 65.77 67.27 74.13
SR-ATAD5 72.85 74.57 68.65 70.01 73.86 75.47 70.81 71.96 69.21 74.5 71.08 68.11 71.93 75.38
SR-HSE 63.29 66.19 58.09 60.82 61.15 65.12 59.51 63.29 61.22 63.47 61.29 60.71 60.71 64.94
SR-MMP 76.52 78.75 72.47 73.05 74.18 78.79 74.12 77.06 71.97 74.24 70.4 73.07 75.82 80.46
SR-P53 74.64 75.35 72.14 68.93 73.61 72.88 72.37 73.07 71.07 70.7 68.26 68.34 75.57 78.47
NCI1 76.51 75.9 69.64 65.18 72.76 72.77 70.12 70.03 66.26 66.34 65.69 67.24 82.21 82.81
descriptors also allow the end-user to apply machine learning
classifiers of their choice. However, the main limitation of graph
descriptors is that they rely only on graph topology, i.e., they
do not use attribute information. Due to this, it loses valuable
information, hindering the method’s performance. Therefore, it
is highly desirable to incorporate attribute information within
the graph topology so that graph descriptor methods can be
applied. Thus, the main objective of the proposed framework is
to transform attributed graphs into simple unattributed graphs.

Here we consider toxicity prediction as an application to the
roposed framework, as the input datasets are easily modeled
s attributed graphs. In the subsequent sections, we provide the
xperimental setup and numerical results in different settings to
valuate the efficacy of the proposed framework.

.1. Datasets and graph descriptors

We ran multiple experiments to evaluate the performance of
nattributed graph embedding methods on augmented graphs.
e considered the problem of toxicity prediction as a graph clas-

ification task and chose 15 well-known bioinformatics datasets,
mong which the balanced versions of 12 datasets are selected
rom the Tox21 data challenge [53,54]. The remaining three
atasets are MUTAG, PTC, and NCI1, which are well-known bench-
ark datasets for graph classification. The Tox21 data challenge

s a grand challenge on molecule toxicity prediction consisting
f ≈10K compounds with active and inactive class labels and
2 pathway assays. MUTAG is the graphical dataset representing

he mutagenicity correlation among 188 nitro compounds. PTC

6

and NCI1 are chemical compound datasets describing the toxicity
of various cancer cells. Overall, the datasets we chose describe
the toxicity of various molecules and classified either toxic or
non-toxic. The characteristics of these datasets are presented
in Table 1. Note that there is a slight difference between MU-
TAG, PTC, and NCI1’s class distributions. Also, as we preprocess
these datasets from SMILES, two instances in MUTAG and one
in PTC were ignored due to getting ‘‘null objects’’ during the
transformation. For the NCI1 dataset, we used the complete NCI
dataset available on PubChem and compared instances one by
one through a graph isomorphism test. A total of 3474 matched
instances were found among 4110.

We ran seven state-of-the-art graph embedding methods:
FGSD [10], NetLSD [11], NetSIMILE [21], HOSD [43], Shortest-Path
Kernel (SP), [15], Weisfeiler Lehman Kernel (WL) [55] and Graph
Filtration Kernel (FWL-D) [56] on the simple unattributed graphs
(denoted by G) and the transformed graphs (denoted by G) to
compare the results.

Experimental setup: All experiments were conducted on a
machine with an Intel (R) Xeon (R) 4110 CPU 2.10 GHz with 32
logical cores and 512 GB of RAM. We implemented the proposed
method in Python with RDKit to handle molecules and NetworkX
to work with graphs. We used SMILES representations of all the
chosen datasets to convert molecules into the desired graphi-
cal representation with the RDKit library in Python. The code
and collected datasets are made publicly available to encourage
reproducibility of the results.1 We performed experiments on

1 https://github.com/Anwar-Said/Attributed-Graph-Augmentation

https://github.com/Anwar-Said/Attributed-Graph-Augmentation


A. Said, M. Shabbir, S.-U. Hassan et al. Applied Soft Computing 136 (2023) 110104

Fig. 3. The improvement in classification accuracy of state-of-the-art graph embedding methods on the graph classification task. Each figure shows one algorithm’s
performance on 15 benchmark bioinformatics datasets and plots improvement or detriment (%) in the new results.
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Table 3
Comparison of classification accuracy of six graph embedding methods on 15 bioinformatics datasets has been shown. G indicates
the simple undirected graphical representation of the datasets while G indicates the augmented representations using the
proposed method. The augmentation has been performed on lollipop graphs of different sizes. Blue indicates improved results
using the proposed approach.
Dataset FGSD NetLSD NetSIMILE SP WL FWL-D

G G G G G G G G G G G G
MUTAG 87.54 90.82 84.82 87.63 83.35 88.94 85.91 87.02 82.11 86.40 86.49 83.39
PTC 55.09 56.86 56.60 51.60 52.76 51.62 54.59 53.40 50.72 53.69 53.97 58.37
NR-AHR 75.37 77.80 72.58 73.68 74.84 75.84 70.95 74.74 70.16 71.84 75.95 79.95
NR-AR 76.87 75.78 72.78 74.10 76.19 73.68 76.08 76.09 73.18 70.93 76.32 76.05
NR-AR-LBD 81.11 83.24 80.95 79.12 81.11 80.09 80.62 80.96 73.70 74.36 83.12 84.79
NR-Aromates 75.16 77.61 77.84 72.91 74.86 74.58 75.32 74.05 73.49 73.08 76.56 78.08
NR-ER 66.57 68.52 63.41 65.44 64.71 66.04 65.39 66.73 63.25 64.85 67.20 69.13
NR-ER-LBD 74.04 76.84 69.97 72.57 70.13 72.00 69.73 70.87 65.19 64.62 71.09 72.56
NR-PPAR-G 66.75 70.75 64.71 69.22 70.13 71.64 66.07 66.74 67.22 66.51 74.43 70.83
SR-ARE 67.51 70.35 67.32 66.82 66.78 67.20 65.95 68.47 64.08 64.67 67.27 74.45
SR-ATAD5 71.40 75.95 70.05 69.89 70.90 70.28 68.27 72.25 70.04 66.47 71.93 75.81
SR-HSE 62.82 66.64 60.82 63.65 59.81 66.19 59.65 61.76 60.94 60.35 60.71 67.65
SR-MMP 74.72 78.12 70.63 73.83 74.18 76.65 71.38 74.41 69.91 71.74 75.82 80.90
SR-P53 72.96 75.40 71.08 70.69 72.31 71.03 70.98 70.33 68.82 69.09 75.57 75.47
NCI1 75.97 76.64 69.15 64.71 71.19 67.11 68.54 66.04 66.15 63.10 82.21 81.23
cliques and lollipop graphs to evaluate the effectiveness of the
augmented graphs.

We considered four atom attributes and four bond types in
ur experimental setup. Atoms’ attributes are aromaticity, pos-
tive/negative charge, and non-metallicity, for which we choose
liques of sizes 4, 6, 7, and 8 respectively. Similarly, we choose
our bond types: aromatic, single, double, and triple, for which
liques of sizes 5, 9, 10, and 11 are chosen. Parameter settings for
he embedding methods we used are listed below:

• For FGSD we set bin width size = 0.01.
• For NetLSD, we used the heat kernel with a 250-dimensional

vector.
• For HOSD, we use the graphlet version with a limit of 4 and

consider the graphs of magnitude ≤ 500 due to their high
computational load.

For the remaining methods, we kept all parameters as default
as mentioned in the actual papers. We considered the graph
classification task, where we extracted graph embeddings using
these methods. Then, we used a Random Forest classifier with 500
estimators to perform the classification. 10-fold cross-validation
was used for each dataset. Classification accuracy is reported for
all the methods on the original and transformed graphs.

All the datasets in SMILES format [57] were collected from
different sources to create two types of graphical datasets: first,
simple, unattributed graphs G were generated. Recall that G is
constructed by converting each molecule to a simple graph where
nodes represent atoms and edges represent bonds. Second, the
augmented graphical representation G is constructed from G.
Then, each algorithm was run on both datasets. In Table 2, the
performance of 7 algorithms on 15 bioinformatics datasets is
shown, and the classification accuracy on both datasets is re-
ported. To highlight the augmented graphs’ efficacy, we show
the improvements (%) on all the datasets of each algorithm in
Fig. 3. We ran each algorithm on the two versions (G and G)
of each dataset and then plotted the difference in the results
shown in Fig. 3. The green bars represent an improvement in the
results, while the red bars represent a detriment. We observed
an improvement on each dataset by at least one embedding
method. In particular, the short-path kernel performed quite well
and improved results on all the datasets except MUTAG and
NCI1. The highest improvement achieved was 6.86% on SR-ARE
and 6.31% on PTC datasets. Similarly, the WL, FWL-D, and FGSD
obtained improvements on 12 datasets, while the HOSD achieved
improvements over 11 datasets. Overall, we found on average of
2% improvement on each dataset by every embedding method.
8

Results on Lollipop graphs: To show the capability and ex-
pressiveness of augmenting different graph structures, we also
report results on lollipop graphs in Table 3. We chose lollipop
graphs of magnitude 10, 11, 12, and 13 for atoms’ attributes and
6, 7, 8, and 9 for bonds’ attributes. We note that because of the
small difference among cliques and lollipop graphs, we consider
graphs of magnitudes greater than those of the cliques chosen
in the first experiment. As before, each embedding method’s im-
provement in each dataset is shown in Fig. 4. FGSD has performed
quite well and improved on all the datasets except NR-AR with an
average 2.49% improvement on all the datasets. Similarly, other
algorithms have also shown improved results on most of the
datasets. We observed an improvement on each dataset by at
least one embedding method. Note that in Figs. 3 and 4 dataset
labels are omitted. However, the sequence of datasets (left to
right) is the same as presented in Table 1.

5. Discussion

Our empirical results support our theory that the proposed
augmentation framework is powerful enough to encapsulate at-
tribute information in unattributed graphs, and significantly im-
prove the performance of graph embedding methods. Having
numerous applications to graph embedding methods, our frame-
work also allows encapsulating information that may not aid
classification using GNNs. For example, adding atoms’ labels to
the feature set may not improve learning models’ performance.
However, using our framework, the augmentation function can
produce a quite suitable transformation from the input molecule.
Such transformed data can then be fed to any graph embedding
or graph learning model to perform the desired task. To conclude,
in light of the aforementioned results, the proposed framework is
quite useful for applying to any type of attributed graph dataset to
construct expressive simple graph representations. In particular,
it can be used in settings where: (1) training data is limited;
(2) computational resources are limited; (3) reliable results are
required; and (4) the size of the graphs is huge, where other
learning methods cannot be deployed.

6. Conclusions

This paper presented a framework for subgraph augmentation,
which constructs unattributed graphs from attributed graphs
while still preserving the attribute information. The proposed
framework considers particular types of small graphs aiming at
augmentation with minimum magnitude resultant graphs. We
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Fig. 4. Attributed graph augmentation results on lollipop graphs have been shown. Each figure shows one algorithm’s performance on 15 benchmark bioinformatics
datasets and plots improvement or decrements (%) in the new results.
analyzed the theoretical limitations of the problem and propose
an algorithm. Using extensive experimentation on bioinformatics
datasets, we showed that such augmentation improves graph
embedding methods by at least 5%.
 W
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