
Journal of Systems Architecture 125 (2022) 102420

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Moving target defense for the security and resilience of mixed time and event
triggered cyber–physical systems
Bradley Potteiger a,∗, Abhishek Dubey b, Feiyang Cai b, Xenofon Koutsoukos b, Zhenkai Zhang c

a Johns Hopkins Applied Physics Lab, Laurel, MD, United States of America
b Vanderbilt University, Nashville, TN, United States of America
c Texas Tech University, Lubbock, TX, United States of America

A R T I C L E I N F O

Keywords:
Moving target defense
Time triggered
Event triggered
Cyber–physical systems

A B S T R A C T

Memory corruption attacks such as code injection, code reuse, and non-control data attacks have become
widely popular for compromising safety-critical Cyber–Physical Systems (CPS). Moving target defense (MTD)
techniques such as instruction set randomization (ISR), address space randomization (ASR), and data space
randomization (DSR) can be used to protect systems against such attacks. CPS often use time-triggered architec-
tures to guarantee predictable and reliable operation. MTD techniques can cause time delays with unpredictable
behavior. To protect CPS against memory corruption attacks, MTD techniques can be implemented in a mixed
time and event-triggered architecture that provides capabilities for maintaining safety and availability during
an attack. This paper presents a mixed time and event-triggered MTD security approach based on the ARINC
653 architecture that provides predictable and reliable operation during normal operation and rapid detection
and reconfiguration upon detection of attacks. We leverage a hardware-in-the-loop testbed and an advanced
emergency braking system (AEBS) case study to show the effectiveness of our approach.
1. Introduction

Safety-critical CPS often contain memory corruption vulnerabilities
such as buffer overflows that allow for the remote exploitation of soft-
ware. Cyber-attacks such as code injection, code reuse, and non-control
data attacks allow for adversaries to hijack safety-critical functionality,
potentially resulting in severe damage to the system and the surround-
ing environment. Memory corruption attacks pose a serious threat since
they allow adversaries to remotely control and alter sensor data or
execute unsafe actuation behavior while making it look like normal
behavior to monitoring subsystems.

Instruction set randomization (ISR) [1,2], address space randomiza-
tion (ASR) [3], and data space randomization (DSR) [4] are all very
effective moving target defense techniques (MTD) that mitigate these
types of attacks [5]. However, when disrupting the attack process, these
techniques result in the software crashing due to an exception such
as an invalid instruction, invalid address, or unsafe data value, thus
resulting in a denial of service which is not acceptable in CPS.

Safety-critical CPS often utilize time-triggered architectures to en-
sure predictable and reliable operation [6]. However, in the event
of an attack, it is necessary to respond as fast as possible instead
of waiting until the following period of the static schedule. As such
event triggered functionality is necessary to provide rapid detection,

∗ Corresponding author.
E-mail address: bpottei1@umbc.edu (B. Potteiger).

and reconfiguration at the point of the attack. By combining time
triggered and event triggered functionality into a mixed approach, the
predictability benefits of time triggered systems, and the rapid response
benefits of event triggered systems can be maintained.

Mixed time-triggered and event triggered functionality is often im-
plemented through the use of partitioned operating systems, which en-
sure that the tasks being triggered across separate temporal boundaries
do not impact each other. Operating Systems such as LynxOS-178 [7]
and Tresos [8] have been used in the avionics and automotive do-
mains. One of the side affects of using the partitioned system concept,
codified in the ARINC-653 standard [9], is the ability to launch appli-
cations belonging to different criticality levels and security domains.
The partitioned operating systems also include a comprehensive health
management architecture that can handle errors at the level of the
application as well as temporal groupings called partitions.

While partitioned architectures provide robust protection against
known faults, they are not necessarily robust against security threats
that may be present in the applications as shown by recent enhance-
ments to the standard [10]. In this paper we study this problem and
provide a robust approach to protect against code injection, code reuse,
and non-control data attacks for such partitioned systems using a MTD
security architecture. Specifically, we look at how to integrate MTD
vailable online 5 February 2022
383-7621/© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.sysarc.2022.102420
Received 7 October 2020; Received in revised form 16 January 2022; Accepted 20
 January 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:bpottei1@umbc.edu
https://doi.org/10.1016/j.sysarc.2022.102420
https://doi.org/10.1016/j.sysarc.2022.102420
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102420&domain=pdf

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
techniques with the ARINC 653 architecture to support additional
security protections within mixed time triggered and event triggered
systems. Further, we consider how to limit the overhead of the ap-
proach and we explain how to reconfigure the system upon detection
of an attack to limit the amount of missed deadlines. Our hypothesis
is that by integrating ISR, ASR, and DSR (previously explored MTD
techniques used in isolation) with the ARINC 653 standard [9], we
can protect against code injection, code reuse, and non-control data
attacks while rapidly performing reconfiguration to maintain system
safety. This paper is an extension of our previous work in [11]. The
contributions of this paper are as follows:

• We develop and implement a mixed time and event-triggered
MTD security architecture that provides predictable and reliable
operation during normal circumstances as well as rapid detection
of attacks and reconfiguration to maintain safety. The security
architecture includes ISR, ASR, and DSR to protect against code
injection, code reuse, and non-control data attacks. Furthermore,
we leverage the benefits of the ARINC 653 standard such as
isolation, static schedule creation, and health monitoring for our
architecture.

• We present an extended threat model and present how our de-
veloped architecture presents a comprehensive defense-in-depth
approach against a broad array of attacks.

• We design and develop a novel reconfiguration scheme to main-
tain CPS safety and static schedule integrity during a cyber-attack.

• We implement the architecture using a hardware-in-the-loop
testbed representative of modern CPS to evaluate the approach.
Our implementation includes detection and recovery capabili-
ties to limit missed deadlines and maintain safe and reliable
operation.

• We present an autonomous vehicle case study to demonstrate the
effectiveness in limiting the impact of attacks in the context of
an advanced emergency braking system (AEBS). We provide a
through evaluation and discussion based on domain specific sim-
ulation results, computation execution times, and reconfiguration
times.

The rest of this paper is outlined as follows: Section 2 introduces the
threat model utilized as motivation for our paper, Section 3 provides
an overview of the system architecture, Section 4 presents the security
architecture of our approach, Section 5 illustrates the evaluation of
our architecture through the use of an autonomous vehicle case study,
Section 6 provides a discussion of our architecture security capabilities,
Section 7 discusses related work, and Section 8 ends the paper with
concluding remarks.

2. Threat model

The modern-day vehicle is essentially a ‘‘computer on wheels’’, with
dozens of electronic control units (ECUs), millions of lines of code,
and hundreds of vulnerabilities. Furthermore, there are several points
of entry that allow attackers to launch potentially devastating attacks
remotely. Once a foothold is obtained, attackers can have free reign to
manipulate actuation, and potentially divert control to unsafe behavior.

An exemplary vehicle system model that our threat model is based
on includes 6 components: a sensor cluster, actuator cluster, driving
controller, telematics control unit (TCU), remote function actuator
(RFA), and RFID sensor (Fig. 1). The sensor cluster provides critical
data representing the current state of the vehicle such as the speed, and
front facing camera image. The actuator cluster provides the ability to
manipulate the vehicular acceleration through the throttle and brake,
and vehicle angle through steering. The driving controller is responsible
for performing computation based on the provided sensor cluster input,
and outputting commands to the actuation cluster. In this paper, the
driving controller is an AEBS controller that is responsible for braking
the vehicle to avoid colliding with upcoming objects. Both the TCU, and
2

Fig. 1. Example vehicle system model.

RFA are responsible for providing the external interface for the vehicle.
The TCU monitors the various metrics of the system, transmitting data
to a remote operating station for maintenance and emergency purposes.
The RFA is responsible for determining the presence of a key fob for
allowing the vehicle to be turned on.

The threat model in this paper considers memory corruption attacks
such as code injection, code reuse, and non-control data attacks on a
vehicle network. An example attack vector consists of the adversary
compromising the telematics control unit (TCU) through the remote
cellular interface and pivoting to hijack the remote function actuator
(RFA). With access to a direct communication channel with the driving
controller, the adversary can craft a message payload to take advantage
of the memory corruption vulnerability and alter control. At this point,
an attacker can perform an attack where they can leverage the buffer
overflow to affect safety-critical behavior in the driving controller.

The following assumptions are made in the proposed security ar-
chitecture. First, the sensor and actuator clusters are fully secure. The
driving controller electronic control unit (ECU) contains the buffer
overflow vulnerability utilized for control hijacking, while the TCU and
RFA contain vulnerabilities allowing for key fob message spoofing. Sec-
ond, the attacker knows the relative address of a safety-critical variable
relative to the start of the input buffer. Finally, the attacker knows
the underlying software architecture of the safety-critical controllers,
allowing them to target the most impactful variables and functions.
These assumptions are not impractical given examples demonstrated
in the literature [12].

It is important to note that our threat model makes the assump-
tion of a trusted computing base, meaning that the only vulnerable
component is the driving controller (CPS controller). Other components
in our architecture such as partitions, the Dynamic Binary Translators,
and the health monitor are assumed to be secure, and only the driving
controller partition will include MTD defense protections. The first
assumption is valid because ARINC 653 contains one-way communica-
tion constraints [13] that make it impossible for the attacker to pivot
into any other partition from the driving controller. With regards to
the second assumption, CPS software is normally legacy code without
modern day compiler security protections. To add to this, source code
is normally unavailable, meaning that it becomes very difficult to verify
the lack of vulnerabilities within the driving controller. In comparison,
the health monitor is a relatively simple program containing a few
hundred lines of C++ code. Since the source code is readily available,
and compiled from source by the designer, security vulnerabilities can
be identified and coding best practices can be established before the
deployment of the architecture. This assumption can be justified by
the requirement of highest level of certification required for compo-
nents that monitor the health of system [14]. As such, within our
architecture we can assume that the designer has previously identified
and patched vulnerabilities within the health monitor, making that
component secure.

To evaluate the effectiveness of our architecture within the context
of an autonomous vehicle case study, we utilize a developed hardware-
in-the-loop testbed. We further utilize physical metrics such as vehicle

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.

p
i
t
r
t
s
c
e
o

3

i
a
p
p
a
t
i

s
g
m
a
t
m

a
a
c
t
b
b

t
d
p
(

u
a
t
T
s
g
t

i

Fig. 2. Time triggered application architecture.

osition combined with software metrics like performance overhead
n both normal operation and attack scenarios. Finally, to conclude
hat our hypothesis is true two observations need to be clear from the
esults: (1) The performance overhead needs to be minimal enough
o ensure that execution times do not exceed designed real time con-
traints and (2) Vehicles need to follow safe driving behavior, stopping
ompletely before colliding with the parked vehicle on the road. In the
vent that both of these observations are true, we can conclude that
ur architecture is successful.

. System architecture

ARINC 653, the backbone of our architecture, is a popular standard
mplemented for aerospace and other safety-critical CPS applications
imed at maintaining safety and predictability within critical com-
onents [13]. ARINC 653 is comprised of two types of components:
artitions, and processes. These components have various types of
ttributes, states, and communication methods that can be configured
hroughout the design process. These components are briefly described
n Fig. 2.

Partitions are the highest level of abstraction in the ARINC 653
tandard and include a shared memory space running tasks. At any
iven time, a partition can be defined with one of several possible
odes. A mode controls the behavior of the respective partition, such

s whether tasks can execute, how long it will take for the partition
o start up, and whether memory can be accessed. The modes that are
ost relied upon are the idle and normal modes.

In a partition, there exists multiple processes that correspond to the
ctual tasks in an application. Multiple processes can run concurrently
nd are reliant on the operating system for their respective scheduling
apabilities. Similar to regular applications, processes can be initialized,
erminated, reinitialized, and paused through control commands sent
y the parent partition. At any given time, processes can be described
y one of several states: dormant, ready, running, and waiting.

Communication within the ARINC 653 framework is conducted
hrough the use of unidirectional channels, ports and messages. Ad-
itionally, communication is possible both between partitions (inter-
artition), as well as within a partition between multiple processes
intra-partition).

At the backbone of the ARINC 653 standard is the temporal sched-
le. The temporal schedule, also referred to as a static schedule, is
sequence of consecutive partition time allotments that build up

o create one large periodic time allotment called the hyper-period.
he partitions themselves are constrained to only execute within their
pecific time allotment within the overall hyper-period. As such, at any
iven time this schedule is deterministic, improving the reliability of
he overall system.

It is important to note that the partitions themselves are scheduled
n a static manner, processes within partitions do not necessarily have
3

to execute every iteration. It is also possible for processes in partitions
to remain idle until triggered by a specific event. As such, this behavior
can allow designers to replicate event triggered behavior and create
sporadic components within the larger time triggered architecture.

Finally, ARINC 653 contains a health monitor that analyzes the
behavior of the underlying partitions and processes for anomalies. In
our approach, the health monitor is also responsible for the reconfig-
uration of child processes when a cyber-attack is detected. The health
management architecture in ARINC 653 provides prescriptive lookup
tables and an ordered mitigation plan for handling errors at the level
of the applications, partitions and the whole module (a collection of
partitions). These tables are setup during system initialization. Every
process when it detects an error can raise an alert that is successively
passed through the levels and handled as specified. An example of
the architecture implementation is available in [15,16]. We use this
architecture in this paper.

4. MTD architecture

The MTD techniques used in our architecture include ISR [1],
ASR [17], and DSR [4]. Legacy CPS software often contains numerous
memory corruption vulnerabilities such as buffer overflows that allow
attackers to remotely perform code injection, code reuse, and non-
control data attacks [18]. By randomizing the internal structure of
software, attacker reconnaissance efforts are ineffective, resulting in
failed cyber-attack attempts.

In a code injection attack, adversaries leverage a memory corruption
vulnerability to inject and execute code remotely on the program
stack [19]. To successfully execute code, the injected instructions for-
mat must be consistent with the native system processor format (x86,
ARM, etc.). By randomizing the representation of native instructions
at runtime using ISR, attacker injected code will be of an invalid
representation resulting in an invalid instruction exception.

In a code reuse attack, adversaries leverage a memory corruption
vulnerability to divert control flow to another location within the
program memory such as a safety-critical function [20]. To be suc-
cessful, attackers must know the memory location of their target to
divert program control flow effectively. By randomizing the address
layout using ASR, the location of target functions will no longer be
as expected by the attacker, resulting in diverting control flow to the
wrong location. Hence, any code reuse attack attempts will result in an
invalid memory access exception.

In a non-control data attack, adversaries leverage a memory corrup-
tion vulnerability to overwrite adjacent safety-critical variables [21].
To be successful, attackers must know the variable format, allowing
them to correctly alter the variable value. With DSR, the variable
representations will be randomized, and any attacker manipulation will
result in a value wildly different than expected. This increases the
ease of detecting any malicious data tampering activity, preventing the
attacker from successfully overwriting critical variables.

It is not enough to detect and stop cyber-attacks in CPS where it is
also required to maintain safe operation. Availability is a key property
that can be maintained using reconfiguration. A popular approach to
control reconfiguration in safety-critical CPS is the simplex architec-
ture [22]. Simplex contains two controllers: a default controller for
normal execution, and a safety controller that serves as a backup in case
of failure in the default controller. The default controller is designed
to be high performance, while potentially containing vulnerabilities.
The safety controller, on the other hand, may not provide optimal
performance but guarantees safe, and secure operation. Additionally,
Simplex includes a decision module that determines when to switch
between the two controllers and perform the execution transitioning
process.

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
Fig. 3. MTD initialization process.

4.1. Components

The key components in our approach are: (1) CPS Controllers which
control the physical plant, (2) Dynamic Binary Translator (DBT) which
uniquely customizes the runtime environment for each CPS controller,
(3) points-to-analysis graph (PAG) which describes the relationship
between pointers and variables within a program, and (4) Health
Monitor which controls the reconfiguration upon detection of an attack.
The components are described below.

4.1.1. CPS controllers
This component is the actual software that controls the CPS appli-

cation. The controller receives sensor inputs from the system, performs
computation operations, and outputs actuation commands. Our archi-
tecture supports a broad array of control techniques and applications.

4.1.2. Dynamic Binary Translator (DBT)
This component is responsible for providing a unique randomiza-

tion backend for each spawned CPS controller in the architecture. In
other words, the DBT is a virtual sandbox layer that serves as an
intermediary between the executing binary and the processor. The DBT
intercepts instructions as they are fetched and alter program semantics
before execution by the processor. The open-source instrumentation
tool Mambo [23] is utilized to support the DBT implementation.

4.1.3. Points-to-analysis
This component is responsible for using static analysis techniques

to identify the variable relationships within a program. By feeding
this information into the DSR implementation, we can identify correct
randomization keys to utilize for various memory locations.

4.1.4. Health monitor
This component is responsible for detecting an attack and rapidly

reconfiguring the system to spawn backup controllers to take over
functionality and minimize safety-critical component downtime. Ad-
ditionally, the Health Monitor is responsible for executing the static
time-triggered schedule. This component is a requirement specified in
the ARINC 653 standards [13].

We assume that the DBT and the Health Monitor are not susceptible
to cyber-attacks. Therefore, the variable key storage table in each DBT
is assumed to be secure against integrity attacks.

4.2. Design time

4.2.1. Component selection
For component selection, it is important to consider several proper-

ties including memory usage, slack time, and deadlines. The security
architecture introduces some overhead in both memory usage and
performance. For safety-critical components that have strict and tight
deadlines, a comprehensive assessment is required to determine if there
4

is enough flexibility within the current implementation to support the
introduced overhead. Furthermore, the approach provides several com-
binations of MTD security protections allowing designers to optimize
the trade-off between security and performance.

4.2.2. Time-triggered design
ARINC 653 allows us to distribute the application into separate,

isolated partitions executing in sequential order. In our design, we
first have to perform an execution analysis of the relevant system
components identifying the maximum time required for the processes
to complete. After this step, we build in slack time and assign the
required time allotments for each partition in the system. The assigned
time allotment must be larger than the maximum execution time of the
underlying process. Otherwise, system processes may not fully finish,
and the behavior of the system could be consequentially affected. For
our implementation we leverage the open source ARINC 653 software
emulator [24].

4.2.3. Moving Target Defense (MTD)
In the ISR implementation, we randomize instructions with a 32-

bit key dynamically generated at runtime, creating a high degree of
entropy protection. For the ASR implementation, we shuffle functions
and randomize base memory addresses, significantly decreasing the
probability of success of code reuse and return-oriented programming
attacks. Finally, for the DSR implementation, we XOR stack-based vari-
ables with a 64-bit key, while also utilizing a redundancy comparison
check for determining the presence of a non-control data attack.

Both ISR and ASR have different degrees of granularity to optimize
the trade-off between security and performance. ISR can use different
types of randomization based on XOR or AES 256 encryption. Fur-
thermore, different memory ranges can be randomized with different
keys, reducing the likelihood of the adversary correctly guessing the
randomization key. ASR by default is defined with coarse-grained
granularity meaning that the base addresses of the program, stack,
heap, and shared libraries are different for every runtime instance.
However, fine-grained granularity is built-in meaning that not only the
base addresses are unique but function locations are shuffled as well.

4.2.4. Lift target binary
For static analysis, it is optimal to convert the binary program

into an intermediate representation (IR) format. The low-level virtual
machine (LLVM) compiler bit code is utilized for this purpose [25].
To convert a native binary to LLVM bit code, we utilize Binary Ninja
for disassembly and control flow recovery [26] and Mcsema for IR
instruction translation [27,28].

4.2.5. Points-to-analysis
In a program, an object can either be an instruction or a memory

location. Points-To-Analysis is utilized to produce the associations be-
tween instructions and the memory locations that they access through
load and store instructions. By recording the associations between
memory locations and instructions, we can create a map corresponding
to what randomization keys to utilize for respective program instruc-
tions. The Points-To-Analysis process produces a Points-To-Analysis
Graph (PAG) as output which allows for identifying the relationships
between instructions and memory locations. For our implementation
we leverage the SVF library [29].

4.3. Runtime

The runtime environment is integrated into the DBT component
which encapsulates the vulnerable CPS controller as shown in Fig. 3.
There are two inputs to the DBT: the binary executable itself and a
text file defining the instruction and memory associations from the
PAG. Once these inputs are received by the DBT, the binary will be
randomized at load time with the ISR, ASR, and DSR randomization

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
Fig. 4. MTD runtime instruction pipeline.
Fig. 5. Reconfiguration setup.

modules while being derandomized as instructions are accessed with
the runtime module.

During the randomization process, a 32-bit key is dynamically
generated and each instruction in the program is randomized through
an XOR operation. After this step, the binary is pushed through the
ASR module where the functions are shuffled. Since after this step,
the program instructions have different addresses compared with the
program after DSR, we adjust the DSR table with the updated addresses
of the respective load/store instructions. Finally, we start the execution
of the newly randomized binary. After every instruction is fetched, it
is derandomized by performing another XOR operation before being
decoded by the pipeline. Anytime there is a store instruction a random-
ization instruction is inserted which XORs the value with the respective
associated key from the lookup table and stores the variable at the
appropriate location on the stack. Additionally, a duplicate copy with a
duplicate randomization key is also stored in an adjacent location to the
newly randomized variable. When a load instruction is encountered,
both copies of the variable are loaded and derandomized with their
respective keys found from the lookup table. After derandomization,
the plain text values are compared for equivalence. If both values are
equal then the program can proceed as normal. However, if the values
are different, an ‘‘Attacked Variable’’ exception is generated and the
program is terminated (Fig. 4).

4.4. Control reconfiguration

For reconfiguration, we leverage the Simplex architecture [22].
Our reconfiguration scheme is triggered when an attacker attempts to
perform a code injection, code reuse, or non-control data attack. Since
the attack vector has been moved due to MTD, any attack attempt
results in an invalid instruction, invalid memory access, or invalid vari-
able comparison exception respectively. This exception is then detected
5

Fig. 6. AEBS case study.

from a signal handler within the Health Monitor component which
triggers the reconfiguration process, transitioning program execution
to the backup controller [16,30]. Based on our threat model, the only
step where this process can fail is during the execution of the backup
controller. As such, we make the assumption that there are no bugs in
the backup controller. Our reconfiguration setup is illustrated in Fig. 5.

5. Evaluation

The case study in this paper is based on an Advanced Emergency
Braking System (AEBS) which safely and comfortably stops a host ve-
hicle to avoid collision with a lead car. The automotive system contains
ECUs that receive sensor measurements such as camera images, speed
and send actuation commands such as braking, steering, and throttle.
A convolutional neural network is used for perception to compute
an estimated distance to the lead vehicle. Then a braking controller
feed-forward neural network, and a PID throttle controller are used
to compute the actuation signals. Both the controller and perception
neural networks are created using the Tensorflow Lite library.1 We
consider a scenario where the lead vehicle brakes at a stoplight, thus
requiring the host vehicle’s AEBS system to be activated. The goal is to
brake and avoid a collision. The system is illustrated in Fig. 6.

5.1. Attack scenario

The host vehicle contains several ECUs for the various components.
External interfaces that include cellular communications from the TCU
for remote monitoring services and RFID sync with the vehicle key
fob can be used for deploying cyber-attacks. The driving controller
constantly polls for the key fob signal to determine if the engine should
remain on. Since the TCU is connected remotely through a cellular

1 https://www.tensorflow.org/lite.

https://www.tensorflow.org/lite

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
Fig. 7. HIL testbed.

interface, this component is at risk of compromise. The attacker can
exploit the TCU, pivot to the RFA, and then transmit malicious packets
to the driving controller, exploiting a buffer overflow vulnerability in
the input processing function.

Once the adversary injects malicious input into the driving con-
troller, we consider 3 attack scenarios. First, a code injection attack
can occur where the attacker injects a malicious payload to open a
remote shell, disabling the driving controller and starting a malicious
controller to fully accelerate into the lead car. Second, a code reuse
attack can occur where the attacker utilizes the buffer overflow to
divert control flow to a steering function within the driving controller
software, causing the vehicle to turn left off of the road. Third, a non-
control data attack can occur where the attacker utilizes the buffer
overflow to overwrite an adjacent safety-critical variable (distance to
the lead vehicle). At this point, the AEBS algorithm will believe that
the lead vehicle is further ahead than its real location, resulting in a
collision.

5.2. Experiment setup

To evaluate the impact of cyber-attacks, we develop a hardware-
in-the-loop testbed. The testbed includes embedded hardware repre-
senting typical CPS infrastructure and a simulation workstation to
represent the vehicle and the physical environment. The architecture
of the testbed provides the capability to implement real-time CPS
control algorithms to interact with and operate an autonomous car in
a connected simulator. Our testbed configuration is illustrated in Fig. 7
with the specific components illustrated in Fig. 8.

5.2.1. Autonomous vehicle simulator
The autonomous vehicle simulator used in our testbed is the CARLA

autonomous vehicle simulator [31]. In the testbed, the simulator runs
on Ubuntu 18.04. Socket-based communication is provided to access
variables in the simulation. We also use a customized python API in-
terface for easing variable access from external processes. The simulator
can be customized to output sensor data such as lidar, speed, images,
distance to objects, orientation, and GPS locations. Actuation input can
change variables that affect steering, acceleration, and braking.

5.2.2. CPS controllers
The software for the controllers is executed on an NVIDIA Jetson

TX2 board. The board is configured with the Linux4Tegra 28.2 operat-
ing system, GPU libraries such as CUDA, and machine learning libraries
such as Tensorflow.

5.2.3. Communication
Communication between the simulator NVIDIA Jetson TX2 board

is implemented via Ethernet and the ZeroMQ (ZMQ) communication
library.2

2 https://zeromq.org/.
6

Fig. 8. Testbed setup.

Table 1
Execution time analysis.

Process execution times

Min Avg Max

Sensors 200 us 221 us 256 us
State estimation 31.2 ms 45.6 ms 52.1 ms
Compute 118 us 138 us 160 us
Compute w/ rand 182 us 218 us 258 us
Health monitor recon. 320 us 467 us 489 us
Fail safe 30 us 42 us 51 us
Actuation 183 us 209 us 231 us

5.3. ARINC 653

We have 4 partitions comprising the static schedule: sensor data
receipt, state estimation, processing, and actuation transmission. The
sensor partition is responsible for receiving the updated image, and
speed data from the CARLA simulator. The state estimation partition
contains a perception process that computes an estimated distance
based on the provided images. Furthermore, the processing partition
contains a computation process determines an optimal throttle and
braking value the neural network and PID controllers. Finally, the
actuation partition transmits the requested command to the CARLA
simulator. It is important to note that the only vulnerable partition
in this setup is the processing partition due to its interaction with
the external facing ECUs within the automotive network. As such,
we harden all processes within this partition with our MTD security
protections (see Fig. 9).

5.3.1. Static schedule
To accurately establish the static schedule, we must conduct ex-

ecution time analysis to determine the appropriate allocated amount
of time for each partition. Too much allocated time can result in
inefficiency in the approach while too little allocated time can result in
system failure. To identify a reasonable estimate of the execution time
of each process, we resorted to measurement-based WCET analysis,
recording 100,000 iterations under varying conditions. With this data,
we can identify the average, as well as outlier values. After performing
the execution time analysis, we identify the statistics for each process
shown in Table 1.

Based on the execution analysis, we use the static schedule shown in
Fig. 10. The superframe period is defined to be 100 ms and will repeat
continuously throughout the system’s lifetime. This period is small
enough to support the functionality of the vehicle but also provides
enough slack time to support various system processes.

To verify that our static schedule is correct, we need to analyze
worst-case scenarios by determining if the aperiodic attack detection
and recovery processes executed by the Health Monitor fit within the
critical slots of the Partition 3 schedule. If this is shown to be true,
then the designed schedule is guaranteed to be fully schedulable [32].
In the designed schedule, the default controller is in Partition 3 and the
recovery processes and fail-safe controller are triggered by an attack.
This means that at the earliest, the Health Monitor attack detector will
be triggered from the beginning of Partition 3 to the end of Partition 3.
Since the default controller is the only initial process in Partition 3, the
Health Monitor and fail-safe controller processes will have full access

https://zeromq.org/

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
Fig. 9. Autonomous vehicle processes.
Fig. 10. Static schedule.

Table 2
ARINC 653 experiment configuration.

ARINC 653 configuration

Part1 Part2 Part3 Part3

of processes 1 1 2 1
Length 10 ms 60 ms 20 ms 10 ms
Base priority 99 99 99 99
Stack size 4 kB 4 kB 4 kB 4 kB
Deadline type Soft Soft Soft Soft

to the CPU for the remainder of partition 3. However, as a worst-case
scenario, we consider the case of the attack occurring at the end of
the Partition 3 time allotment. In this case, the fail-safe controller will
not complete its execution until a full period later during the next time
allotment of Partition 3 and during the current period, the previous
actuation value is used.

5.4. Results

For the purpose of replicating the experiment results, the ARINC
653 configuration for our setup is specified in Table 2. It is important
to note that the total period of the super frame equates to 100 ms which
is a realistic value for modern day autonomous vehicles. Furthermore,
the stack size is the default value for the ARINC 653 implementation
which is 4096. Additionally, both the sensor value receipt and actuation
transmission capabilities have been combined into one process in their
respective partition instead of segmenting each sensor and actuation
value into separate processes. This is why Partition 1 contains 1 process
instead of 2, and Partition 4 contains 1 process instead of 3. Finally,
the deadline types for each partition have been set to a soft real time
constraint, meaning that if the deadline is missed, the process will finish
at the next partition instance. This is in contrast to the hard real time
constraint option in which case would terminate when a deadline is
missed.
7

5.4.1. Static analysis
For the case study a 3 layer Neural Network is used for the AEBS

controller and a PID component is responsible for speed and steering
control. However, these two components are negligible in size so will
focus our efforts mainly on the neural network performance. In the
implementation, there are 1025 variables with a file size of approxi-
mately 220 Kilobytes. Additionally, there are two shared libraries that
we need to secure: Tensorflow Lite, and libm. Static analysis in this case
is performed on a combination of a desktop host and the target system.

The first stage in the static analysis pipeline is binary lifting, which
is performed on a remote desktop host. This process averages approxi-
mately 17 ms of execution time for 1000 executions. The second stage
is points-to-analysis. To evaluate the scalability of the points-to-analysis
implementation, we run 100 iterations of generating PAGs, averaging
execution times of approximately 250 ms. This time is to an extent
dependent on the target platform that static analysis is performed on,
but will in effect be negligible in the overall framework due to only
requiring a one time performance cost before runtime.

5.4.2. Runtime performance
The second stage focuses on analyzing runtime performance over-

head on the target system to ensure accurate design time constraints
are maintained. In our scenarios, we have three combinations enabled
including one with only ISR, a second with ISR and ASR, and a final
combination with all three MTD techniques enabled. The results are
illustrated in Fig. 12. With only ISR enabled, there is an overhead of
approximately 28% while with ISR and ASR there is a little higher
overhead at approximately 31%. However, with the significant increase
in overhead created by DSR, the final combination with all three
techniques enables results in overhead at approximately 59%. Although
this performance overhead can be acceptable, in cases where significant
overhead is unacceptable, performing a risk assessment is necessary
to determine the optimal combination of MTD techniques. With the
introduced overhead and complexity, it is important to ensure that the
system model is adjusted and verified at design time to maintain safety
and functionality of the system. Furthermore, the designer has to ensure
that there is enough slack time allocated to handle the reconfiguration
necessary during a cyber-attack. Finally, the results from the system
response to the attack attempts are illustrated in Fig. 11. The dashed
lines in the subfigures represent the point in time when the cyber attack
occurs, conveying the respective system response to the code injection,
code reuse, and non-control data attacks.

During a code injection attack, a malicious payload is injected to
spawn a remotely accessible root shell within the vehicle operating
system. The attacker will then terminate the default controller and
spawn a malicious controller that will fully accelerate the vehicle in a
straight path. At this point, as can be observed in Fig. 11(a), the vehicle
speeds up and crashes into the back of the lead vehicle. However,
with ISR enabled, the instructions of the controller are randomized
resulting in an inaccurate instruction format in the payload that will
cause an invalid instruction execution exception. After that, the sys-
tem switches to a backup controller which fully brakes the vehicle.

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
Fig. 11. Vehicle case study attack results.
Fig. 12. Controller execution times.

Fig. 11(d) shows that the system can successfully recover to the backup
failsafe controller in time to brake the vehicle before crashing into the
lead car.

During a code reuse attack, the attacker leverages a buffer overflow
vulnerability to redirect control-flow to an existing turn left function
implemented using the steering controller. At this point, control flow
executes a left turn resulting in the vehicle turning left (Fig. 11(b)).
However, with ASR enabled, the memory layout of the control software
is different, resulting in the function no longer exist in the target
memory address, and consequently leading in an invalid memory ac-
cess exception. At this point, recovery transitions execution to the
backup failsafe controller where the car brakes before unsafe behavior
(Fig. 11(e)).

During the case of a non-control data attack, the adversary can
manipulate the controller operation by altering the perceived distance
to the lead vehicle. With this adjustment, the new distance value is set
to 100 m causing the host vehicle to maintain its speed and crash into
8

Fig. 13. Control reconfiguration example time record.

the lead car as illustrated in Fig. 11(c). However, with DSR and variable
integrity checking enabled, the attempt by the attacker to overwrite
the distance variable will result in an incorrect variable comparison
consequently flagging the attack. At this point, a failsafe controller
takes over execution and fully brakes the vehicle. As a result, safety is
preserved and the host vehicle avoids a collision as shown in Fig. 11(f).

Finally, Fig. 13 illustrates the time record of an example reconfig-
uration process. As such, the recovery process consists of four possible
stages: attack detection, Health Monitor send resume POSIX signal, start
Backup Controller process, and execute Backup Controller to compute
a new actuation value. As observed, the attack detection, and POSIX
signal stages are relatively negligible while the controller start and
execution times consume most of the reconfiguration time. Therefore,
the reconfiguration time from attack detection to transmission of a new
actuation command directly correlates to the size and execution time
of the backup controller.

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
6. Discussion

When considering the threat model for this paper, it is important
to note that there are two layers of defenses within our architecture:
one builtin to the ARINC 653 architecture, and the second layer within
the MTD framework. Looking at remote attacks in general, once ac-
cess is obtained to a system, the adversary normally pivots between
components to discover sensitive data, manipulate other processes,
and generate backdoors to the system. However, due to the memory
segmentation of partitions within the ARINC 653, it is necessary for
attackers to leverage inter-partition communication for their pivoting
exercises. Furthermore, due to the uni-directional properties of ARINC
636 inter-partition communication, it is not possible for attackers to
communicate from a destination to source partition. As such, if an
architecture is designed with security in mind, partitions with remote
connectivity will not have inter-partition communication capabilities
with partitions storing safety-critical processes, mitigating against this
pivoting approach. In this case the security principles of the archi-
tecture will remain true as long as the remote interface partitions
remain a ‘‘destination’’ of any inter-partition connection with partitions
containing safety-critical processes. If this is not the case, designers
have to take the assumption of compromise into account and build
extra security precautions into the safety-critical partitions to mitigate
against attack damage and access. To accomplish this goal, MTD tech-
niques within our architecture are integrated to effectively mitigate
against the probability of vulnerability discovery and exploit mitigation
within the respective safety-critical partition.

MTD techniques, in general, are designed to limit the ability of
adversaries to collect accurate reconnaissance knowledge on a system,
consequently failing to craft a valid exploit. The security approach in
our architecture is designed specifically to protect against any stack-
based remote injection attack, the most common technique leveraged
for remote autonomous vehicle attacks. Our architecture specifically
protects against buffer overflow based exploits, including code injec-
tion, code reuse, and non-control data attacks. However, our approach
also has the potential to protect against other vulnerabilities such as
heap overflows, integer overflows, and dangling pointers. There are
limiting factors for the applicability. For example, when the attacker
has direct access to system program execution, denial of service attacks
will result in constant reconfiguration. However, these factors are
limited from the underlying communication structure of the ARINC 653
architecture.

The evaluation of our architecture conveys the successful ability to
disrupt remote attacks within autonomous vehicles while recovering
rapidly and reliably enough to ensure the safety of three different
scenarios. Furthermore, looking at the analysis, there is a significant
degree of overhead that is presented with all three MTD techniques
enabled. However, our architecture can be fine tuned to minimize
performance overhead through the configuration of the security setup
and recovery process. First, the MTD techniques ISR and DSR are the
primary drivers of overhead within our security architecture, while
ASR presents minimal overhead. As such, to optimize security with
minimal overhead, ASR should be solely leveraged, limiting overhead
to approximately 1%, a more acceptable amount to fit within existing
slack time. The second configuration decision is based on the recovery
process. Looking at the breakdown of the recovery process, the startup
time for the backup controller takes up the majority of the overall
recovery time. As such, to minimize the recovery time, the backup
controller should be started with the default controller but remain in
an idle state until needed. As such, this approach will involve more
memory, but when recovery is needed, execution transference will be
more rapid, decreasing the underlying instability of the CPS controller
and improving safety and reliability.
9

7. Related work

Moving target defense implementations have traditionally been in-
dependent with ISR including both hardware [33] and software ver-
sions [1], ASR including coarse grained [34] and fine grained ver-
sions [35], and DSR including source code [4] and IR implementa-
tions [21]. Additionally, control reconfiguration algorithms such as
Simplex have normally focused on the aspect of fault tolerance with
regard to maintaining the safety of CPS [36]. Our work over the
last couple of years has built upon these two principles by showing
the viability of MTD integration with control reconfiguration to sup-
port security while ensuring the reliable operation of the respective
safety-critical CPS [37,38].

When introducing moving target defense techniques such as ISR,
ASR, and DSR into existing real time software implementations, perfor-
mance overhead is created that was not taken into account during the
initial design of the system. As such, with the added performance over-
head of security mechanisms, controller execution times can increase to
the point of exceeding their previously assigned deadlines. In this case,
it is imperative that the system be dynamically readjusted to adapt the
associated sampling rates of underlying controllers. Generally, as the
sampling rate decreases, the input-feedforward passivity index of the
system decreases. In order to ensure stability and safety of the closed
loop system for adaptive sampling rates, passivation methods described
by input–output transformations that generalize typical methods of
series, feedback and parallel (or feedforward) interconnections to passi-
vate a system need to be considered [39–41]. The range of appropriate
sampling rates needs to be defined at design time to establish a safe
bounds of operation for the system.

To ensure proper real time operation of CPS, run time assurance
monitoring is necessary. This involves the checking of complicated
properties that involves analyzing many system variables. Thus, this
procedure produces a significant overhead to the system. To reduce this
overhead, a lot of previous work has focused on combining static anal-
ysis techniques with dynamic analysis runtime checking. Additionally,
symbolic techniques in the compiler optimization process have been
explored. The main tradeoff that must be taken into account is between
monitoring accuracy, and system overhead [42]. The designer must
take into account whether it is acceptable to miss occasional execution
events that potentially could effect accuracy, or check every execution
event for maximum accuracy, but consequently increase the probability
of missing a deadline due to the higher overhead. Simplex based archi-
tectures rely on recovery mechanisms that make the assumption that
the fail safe controller will be effective in all scenarios once a violation
is detected by the monitoring module. To solve this problem, developed
architectures have focused on incorporating diagnostic capabilities, and
user specified recovery plans to determine the appropriate path to take
once a violation is detected [43–45]. Another approach taken instead
of recovery is called runtime enforcement which attempts to prevent
potential violations by delaying and reordering events leading to vari-
ous unsafe states. Runtime enforcement architectures have been proven
to be effective for security applications, but rely on the ability to block
events to allow for real time checking [46–48]. Runtime enforcement
produces a higher overhead compared to a strictly recovery based
system under normal conditions, but produces a higher level of security
for the specified property violation. A proper balance between security,
and overhead can be established by utilizing runtime enforcement for
the most critical security violations, while relying on recovery for
unexpected less critical violations.

In the past, time and event triggered architectures were generally
considered mutually exclusive. However, recent research has focused
on combining the predictability and reliability of time triggered archi-
tectures with the flexibility of event triggered architectures to support
optimal operation of safety critical CPS [32]. This hybrid approach
utilizes a time triggered periodic schedule for normal system operation,

while event triggered sporadic events are reserved for less frequent

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
event occurrences such as error detection or an aperiodic communi-
cation event. By building in enough slack into the static schedule at
design time, these systems can be verified to be fully schedulable,
meaning that at any point a sporadic process can execute without
disrupting the timing requirements of the time triggered tasks. One of
the most popular implementations of this approach is the ARINC 653
standard which is commonly found in aviation, automobile, and space
designs [49–51]. In our approach we utilize a component based ARINC
653 implementation to support time triggered and event triggered
capabilities in our architecture [13].

With regards to time triggered implementations within the liter-
ature, work has focused on the obfuscation of the static schedule,
randomizing the order of tasks to prevent reconnaissance against ap-
plication secrets [52,53]. Additionally, software defined networking
techniques such as Openflow [54] have become popular to mitigate
against the interception of communication and targeting of hosts. We
propose that all of these techniques are complementary, integrating
defenses at different layers of abstraction to provide comprehensive
protection against a maximal amount of attacks. Our approach comple-
ments this work by providing protections at the application layer, mit-
igating against software related exploits that can lead to the hijacking
of safety-critical controllers.

Redundancy has played a vital role for fault tolerance in safety-
critical applications. Traditional past examples include airplanes [55],
military protocols [56], and cloud servers [57]. However, the most
visible recent example of redundancy is illustrated within the au-
tonomous vehicle domain where multiple controllers, sensors, and
communication busses are utilized to ensure that if one component
fails, the behavior of the overall system is not compromised. Even
though redundancy has traditionally been utilized for safety in high
availability systems, the same fundamental properties can be applied
to application security. N-version programming has long been used to
mitigate compromised controller effects [58], and multithreaded based
implementations have demonstrated the ability detect violations in
application consensus [59]. We leverage this previous work by applying
redundancy to the program local variables on the stack, inserting
variable comparison checking before usage to ensure data integrity.

Simplex, which is the primary motivator of our security architec-
ture, has been a widely utilized fault tolerant architecture [60]. Several
previous simplex based implementations include Secure System Sim-
plex [22], Net Simplex [61], and L1 Simplex [62]. Furthermore, sim-
plex architectures have been popular in safety-critical applications such
as flight control systems [36], medical devices [63], and unmanned
aerial vehicles [64].

8. Conclusion

In this paper, we have shown how ISR, ASR, and DSR can be
integrated to support protections against code injection, code reuse,
and non-control data attacks in the context of safety-critical CPS ap-
plications. The MTD architecture was successfully used in a mixed
time-triggered and event-triggered architecture to support predictable
operation during normal circumstances while maintaining rapid detec-
tion and reconfiguration during a cyber-attack. Finally, by developing
a hardware-in-the-loop testbed, we can demonstrate the approach in
a realistic setting. Experimentation produced positive security protec-
tions against all three classes of attacks considered. Also, we were able
to recover to failsafe control rapidly. In conclusion, the proposed MTD
approach can be used for CPS runtime environments that are resilient
to buffer overflow based cyber-attacks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
10

influence the work reported in this paper.
Acknowledgments

This work is supported in part by the National Security Agency,
United States of America (H98230-18-D-0010), the National Science
Foundation, United States of America (CNS-1739328), and by NIST,
United States of America (70NANB18H198). Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of NSA,
NSF, or NIST.

References

[1] G.S. Kc, A.D. Keromytis, V. Prevelakis, Countering code-injection attacks with
instruction-set randomization, in: Proceedings Of The 10th ACM Conference On
Computer And Communications Security, 2003, 272–280.

[2] A.N. Sovarel, D. Evans, N. Paul, Where’s the FEEB? The Effectiveness of
Instruction Set Randomization, in: USENIX Security Symposium, vol. 10, 2005.

[3] K.Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, A.-R. Sadeghi, Just-
in-time code reuse: On the effectiveness of fine-grained address space layout
randomization, in: 2013 IEEE Symposium on Security and Privacy, IEEE, 2013,
pp. 574–588.

[4] S. Bhatkar, R. Sekar, Data space randomization, in: International Conference On
Detection Of Intrusions And Malware, And Vulnerability Assessment, Springer,
2008, pp. 1–22.

[5] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow,
W. Streilein, Survey of cyber moving target techniques, Technical report,
MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, 2013.

[6] G. Heiner, T. Thurner, Time-triggered architecture for safety-related distributed
real-time systems in transportation systems, in: Digest Of Papers. Twenty-
Eighth Annual International Symposium On Fault-Tolerant Computing (Cat. No.
98CB36224), IEEE, 1998, pp. 402–407.

[7] LynuxWorks, RTOS for Software Certification: LynxOS-178. http://www.
lynuxworks.com/rtos/rtos-178.php.

[8] Autosar GbR, AUTomotive Open System ARchitecture. http://www.autosar.org/.
[9] P.J. Prisaznuk, ARINC 653 Role in integrated modular avionics (IMA), in: 2008

IEEE/AIAA 27th Digital Avionics Systems Conference, IEEE, 2008, pp. 1–E.
[10] A. Baker, P. Parkinson, Cyber security enhancements for a safety-critical arinc

653 avionics platform, in: Twenty-Sixth Safety-Critical Systems Symposium,
2018.

[11] B. Potteiger, F. Cai, A. Dubey, X. Koutsoukos, Z. Zhang, Security in Mixed Time
and Event Triggered Cyber-Physical Systems using Moving Target Defense. In:
2020 IEEE 23rd International Symposium on Real-Time Distributed Computing
(ISORC), 89–97, 2020. http://dx.doi.org/10.1109/ISORC49007.2020.00022.

[12] C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle,
Black Hat USA 2015 (2015).

[13] A. Dubey, G. Karsai, N. Mahadevan, A component model for hard real-time
systems: CCM with ARINC-653, Softw. - Pract. Exp. 41 (12) (2011) 1517–1550.

[14] L.A. Johnson, et al., DO-178B, software considerations in airborne systems and
equipment certification, Crosstalk 199 (1998).

[15] A. Dubey, G. Karsai, N. Mahadevan, A component model for hard real-time
systems: CCM with ARINC-653, Softw. - Pract. Exp. 41 (12) (2011) 1517–1550,
http://dx.doi.org/10.1002/spe.1083.

[16] A. Dubey, W. Emfinger, A. Gokhale, P. Kumar, D. McDermet, T. Bapty, G. Karsai,
Enabling strong isolation for distributed real-time applications in edge computing
scenarios, IEEE Aerosp. Electron. Syst. Mag. 34 (7) (2019) 32–45.

[17] S. Bhatkar, D.C. DuVarney, R. Sekar, Address Obfuscation: An Efficient Approach
to Combat a Broad Range of Memory Error Exploits, in: USENIX Security
Symposium. Vol. 12, 2003, 291–301.

[18] R.N. Charette, This car runs on code, IEEE Spectr. 46 (3) (2009) 3.
[19] A. One, Smashing the stack for fun and profit (1996), 2007, See http://www.

phrack.org/show.php.
[20] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, T. Holz, Counterfeit

object-oriented programming: On the difficulty of preventing code reuse attacks
in C++ applications, in: Security And Privacy (SP), 2015 IEEE Symposium On,
IEEE, 2015, pp. 745–762.

[21] B. Potteiger, Z. Zhang, X. Koutsoukos, Integrated data space randomization and
control reconfiguration for securing cyber-physical systems, in: Proceedings of
The 6th Annual Symposium on Hot Topics in the Science of Security, ACM,
2019, p. 3.

[22] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, M. Caccamo, S3A: Secure system
simplex architecture for enhanced security and robustness of cyber-physical
systems, in: Proceedings Of The 2nd ACM International Conference On High
Confidence Networked Systems, ACM, 2013, pp. 65–74.

[23] C. Gorgovan, A. D’antras, M. Luján, MAMBO: A low-overhead dynamic binary
modification tool for ARM, ACM Trans. Archit. Code Optim. 13 (1) (2016) 14.

[24] Adubey14/arinc653emulator: This code base contains a linux emulator for
the ARINC-653 operating system services, 2019, https://github.com/adubey14/

arinc653emulator. (Accessed on 07/07/2019).

http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb3
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb4
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb4
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb4
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb4
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb4
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb5
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb5
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb5
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb5
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb5
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb6
http://www.lynuxworks.com/rtos/rtos-178.php
http://www.lynuxworks.com/rtos/rtos-178.php
http://www.lynuxworks.com/rtos/rtos-178.php
http://www.autosar.org/
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb9
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb9
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb9
http://dx.doi.org/10.1109/ISORC49007.2020.00022
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb12
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb12
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb12
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb13
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb13
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb13
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb14
http://dx.doi.org/10.1002/spe.1083
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb16
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb16
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb16
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb16
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb16
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb18
http://www.phrack.org/show.php
http://www.phrack.org/show.php
http://www.phrack.org/show.php
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb20
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb22
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb23
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb23
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb23
https://github.com/adubey14/arinc653emulator
https://github.com/adubey14/arinc653emulator
https://github.com/adubey14/arinc653emulator

Journal of Systems Architecture 125 (2022) 102420B. Potteiger et al.
[25] C. Lattner, et al., The LLVM compiler infrastructure, 2010, http://llvm.org.
[26] M. Capelletti, Unlinker: an approach to identify original compilation units in

stripped binaries, POLITesi (2017).
[27] A. Dinaburg, A. Ruef, Mcsema: Static translation of x86 instructions to llvm, in:

ReCon 2014 Conference, Montreal, Canada, 2014.
[28] F. Markl, Case Study on LLVM as suitable intermediate language for binary

analysis, Ret, 32.
[29] Y. Sui, J. Xue, SVF: Interprocedural static value-flow analysis in LLVM, in:

Proceedings of The 25th International Conference on Compiler Construction,
ACM, 2016, pp. 265–266.

[30] N. Mahadevan, A. Dubey, G. Karsai, Application of software health management
techniques, in: Proceedings Of The 6th International Symposium On Software
Engineering For Adaptive And Self-Managing Systems, ACM, 2011, pp. 1–10.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: AN open urban
driving simulator, 2017, arXiv preprint arXiv:1711.03938.

[32] D. Isovic, G. Fohler, Handling sporadic tasks in off-line scheduled distributed
real-time systems, in: Proceedings Of 11th Euromicro Conference On Real-Time
Systems. Euromicro RTS’99, IEEE, 1999, pp. 60–67.

[33] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, S. Ioannidis, ASIST: architec-
tural support for instruction set randomization, in: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, 2013, 981–992.

[34] K. Lu, C. Song, B. Lee, S.P. Chung, T. Kim, W. Lee, ASLR-Guard: Stopping address
space leakage for code reuse attacks, in: Proceedings Of The 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, 280–291.

[35] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen, C.
Liebchen, M. Perry, A.-R. Sadeghi, Selfrando: Securing the tor browser against
de-anonymization exploits, Proc. Priv. Enhanc. Technol. 2016 (4) (2016)
454–469.

[36] D. Seto, E. Ferreira, T.F. Marz, Case study: Development of a baseline con-
troller for automatic landing of an f-16 aircraft using linear matrix inequalities
(lmis), Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 2000.

[37] B. Potteiger, Z. Zhang, X. Koutsoukos, Integrated instruction set randomization
and control reconfiguration for securing cyber-physical systems, in: Proceedings
of the 5th Annual Symposium and Bootcamp on Hot Topics in The Science of
Security, ACM, 2018, p. 5.

[38] B.D. Potteiger, A Moving Target Defense Approach Towards Security and
Resilience in Cyber-Physical Systems, (Ph.D. thesis), 2019.

[39] M. Xia, P.J. Antsaklis, V. Gupta, Passivity indices and passivation of systems
with application to systems with input/output delay, in: 53rd IEEE Conference
on Decision and Control, 2014, 783–788.

[40] X. Koutsoukos, N. Kottenstette, J. Hall, E. Eyisi, H. Leblanc, J. Porter, J.
Sztipanovits, A passivity approach for model-based compositional design of
networked control systems, ACM Trans. Embed. Comput. Syst. 11 (4) (2012)
75.

[41] N. Kottenstette, J.F. Hall, X. Koutsoukos, J. Sztipanovits, P. Antsaklis, Design of
networked control systems using passivity, IEEE Trans. Control Syst. Technol. 21
(3) (2013) 649–665.

[42] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S.A. Smolka, S.D. Stoller,
E. Zadok, Software monitoring with controllable overhead, Int. J. Softw. Tool.
Technol. Transf. 14 (3) (2012) 327–347.

[43] A. Bauer, M. Leucker, C. Schallhart, Model-based runtime analysis of distributed
reactive systems, in: Software Engineering Conference, 2006. Australian, IEEE,
2006, p. 10.
11
[44] S. Tripakis, A combined on-line/off-line framework for black-box fault diagno-
sis, in: International Workshop on Runtime Verification, Springer, 2009, pp.
152–167.

[45] M. Wagner, P. Koopman, J. Bares, C. Ostrowski, Building safer UGVs with
run-time safety invariants, in: National Defense Industrial Association Systems
Engineering Conference, 2009.

[46] F.B. Schneider, Enforceable security policies, ACM Trans. Inf. Syst. Secur. 3 (1)
(2000) 30–50.

[47] J. Ligatti, L. Bauer, D. Walker, Run-time enforcement of nonsafety policies, ACM
Trans. Inf. Syst. Secur. 12 (3) (2009) 19.

[48] Y. Falcone, J.-C. Fernandez, L. Mounier, What can you verify and enforce at
runtime? Int. J. Softw. Tool. Technol. Transf. 14 (3) (2012) 349–382.

[49] A. Zuepke, M. Bommert, D. Lohmann, AUTOBEST: A united AUTOSAR-OS and
ARINC 653 kernel, in: 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, IEEE, 2015, pp. 133–144.

[50] P.J. Prisaznuk, ARINC 653 Role in integrated modular avionics (IMA), in: 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, IEEE, 2008, pp. 1–E.

[51] N. Diniz, J. Rufino, ARINC 653 in space, in: DASIA 2005-Data Systems in
Aerospace, vol. 602, 2005.

[52] M.-K. Yoon, S. Mohan, C.-Y. Chen, L. Sha, Taskshuffler: A schedule randomization
protocol for obfuscation against timing inference attacks in real-time systems, in:
2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), IEEE, 2016, pp. 1–12.

[53] K. Krüger, G. Fohler, M. Volp, Improving security for time-triggered real-time
systems against timing inference based attacks by schedule obfuscation, 2017.

[54] J.H. Jafarian, E. Al-Shaer, Q. Duan, Openflow random host mutation: transparent
moving target defense using software defined networking, in: Proceedings of The
First Workshop on Hot Topics in Software Defined Networks, 2012, 127–132.

[55] T.W. Yellman, Redundancy in designs, Risk Anal. Int. J 26 (1) (2006) 277–286.
[56] B. Blair, Strengthening checks on presidential nuclear launch authority, Arms

Control Today 48 (1) (2018) 6–13.
[57] J. Barr, A. Narin, J. Varia, Building fault-tolerant applications on aws, Amaz.

Web Serv. (2011) 1–15.
[58] A. Avizienis, The N-version approach to fault-tolerant software, IEEE Trans. Soft.

Eng. (12) (1985) 1491–1501.
[59] C. Wang, H.-s. Kim, Y. Wu, V. Ying, Compiler-managed software-based redundant

multi-threading for transient fault detection, in: Proceedings of The International
Symposium on Code Generation and Optimization, IEEE Computer Society, 2007,
pp. 244–258.

[60] L. Sha, Using simplicity to control complexity, IEEE Soft. 18 (4) (2001) 20–28.
[61] J. Yao, X. Liu, G. Zhu, L. Sha, NetSimplex: COntroller fault tolerance architecture

in networked control systems, IEEE Trans. Indus. Infor. 9 (1) (2013) 346–356.
[62] X. Wang, N. Hovakimyan, L. Sha, L1simplex: fault-tolerant control of cyber-

physical systems, in: Proceedings of the ACM/IEEE 4th International Conference
on Cyber-Physical Systems, ACM, 2013, pp. 41–50.

[63] S. Bak, D.K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, L. Sha, The system-
level simplex architecture for improved real-time embedded system safety, in:
Real-Time And Embedded Technology And Applications Symposium, 2009. RTAS
2009. 15th IEEE, IEEE, 2009, pp. 99–107.

[64] M.-K. Yoon, B. Liu, N. Hovakimyan, L. Sha, Virtualdrone: virtual sensing,
actuation, and communication for attack-resilient unmanned aerial systems, in:
Proceedings of the 8th International Conference on Cyber-Physical Systems, ACM,
2017, pp. 143–154.

http://llvm.org
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb26
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb26
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb26
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb29
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb29
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb29
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb29
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb29
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb30
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb30
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb30
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb30
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb30
http://arxiv.org/abs/1711.03938
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb32
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb32
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb32
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb32
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb32
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb35
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb36
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb37
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb38
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb38
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb38
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb40
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb42
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb42
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb42
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb42
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb42
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb43
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb43
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb43
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb43
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb43
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb44
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb44
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb44
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb44
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb44
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb46
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb46
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb46
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb49
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb49
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb49
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb49
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb49
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb50
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb50
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb50
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb52
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb53
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb53
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb53
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb55
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb56
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb56
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb56
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb57
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb57
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb57
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb58
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb58
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb58
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb59
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb60
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb61
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb61
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb61
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb62
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb62
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb62
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb62
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb62
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb63
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64
http://refhub.elsevier.com/S1383-7621(22)00021-2/sb64

	Moving target defense for the security and resilience of mixed time and event triggered cyber–physical systems
	Introduction
	Threat model
	System architecture
	MTD architecture
	Components
	CPS controllers
	Dynamic Binary Translator (DBT)
	Points-to-analysis
	Health monitor

	Design time
	Component selection
	Time-triggered design
	Moving Target Defense (MTD)
	Lift target binary
	Points-to-analysis

	Runtime
	Control reconfiguration

	Evaluation
	Attack scenario
	Experiment setup
	Autonomous vehicle simulator
	CPS controllers
	Communication

	ARINC 653
	Static schedule

	Results
	Static analysis
	Runtime performance

	Discussion
	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

