
Journal of Systems Architecture 107 (2020) 101710

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

URMILA: Dynamically trading-off fog and edge resources for performance

and mobility-aware IoT services

Shashank Shekhar a , 1 , Ajay Chhokra

b , Hongyang Sun

b , Aniruddha Gokhale

b , ∗ , Abhishek Dubey

b ,

Xenofon Koutsoukos b , Gabor Karsai b

a Siemens Corporate Technology, Princeton, NJ 08540, USA
b Vanderbilt University, Nashville, TN 37235, USA

a r t i c l e i n f o

Keywords:

Fog computing

Edge computing

Cloud computing

User mobility

Latency-sensitive

IoT

Resource management

Performance interference

Latency

Offloading

a b s t r a c t

The fog/edge computing paradigm is increasingly being adopted to support a range of latency-sensitive IoT ser-

vices due to its ability to assure the latency requirements of these services while supporting the elastic properties

of cloud computing. IoT services that cater to user mobility, however, face a number of challenges in this con-

text. First, since user mobility can incur wireless connectivity issues, executing these services entirely on edge

resources, such as smartphones, will result in a rapid drain in the battery charge. In contrast, executing these

services entirely on fog resources, such as cloudlets or micro data centers, will incur higher communication costs

and increased latencies in the face of fluctuating wireless connectivity and signal strength. Second, a high degree

of multi-tenancy on fog resources involving different IoT services can lead to performance interference issues

due to resource contention. In order to address these challenges, this paper describes URMILA, which makes dy-

namic resource management decisions to achieve effective trade-offs between using the fog and edge resources

yet ensuring that the latency requirements of the IoT services are met. We evaluate URMILA’s capabilities in the

context of a real-world use case on an emulated but realistic IoT testbed.

1

l

p

d

r

c

c

t

p

c

t

f

a

v

m

S

g

a

r

a

a

c

a

o

d

f

m

o

t

o

t

c

t

t

b

h

R

A

1

. Introduction

Traditional cloud computing is proving to be inadequate to host

atency-sensitive Internet of Things (IoT) applications due both to the

ossibility of violating their quality of service (QoS) constraints (e.g.,

ue to the long round-trip latencies to reach the distant cloud) and the

esource constraints (e.g., scarce battery power that drains due to the

ommunication overhead and fluctuating connectivity). The fog/edge

omputing paradigm [1] addresses these concerns, where IoT applica-

ion computations are performed at either the edge layer (e.g., smart-

hones and wearables) or the fog layer (e.g., micro data centers or

loudlets, which are a collection of a small set of server machines used

o host computations from nearby clients), or both. The fog layer is ef-

ectively a miniaturized data center and hence supports multi-tenancy

nd elasticity, however, at a limited scale and with significantly less

ariety.

Despite the promise of fog/edge computing, many challenges re-

ain unresolved. For instance, IoT applications tend to involve sensing
∗ Corresponding Author.

E-mail addresses: shashankshekhar@siemens.com (S. Shekhar), ajay.d.ch

un), a.gokhale@vanderbilt.edu (A. Gokhale), abhishek.dubey@vanderbilt.ed

abor.karsai@vanderbilt.edu (G. Karsai).
1 Work performed by the author during doctoral studies at Vanderbilt University.

ttps://doi.org/10.1016/j.sysarc.2020.101710

eceived 5 August 2019; Received in revised form 26 November 2019; Accepted 6 Ja

vailable online 15 January 2020

383-7621/© 2020 Elsevier B.V. All rights reserved.
nd processing of information collected from one or more sources in

eal-time, and in turn making decisions to satisfy the needs of the

pplications, e.g., in smart transportation to alert drivers of congestion

nd take alternate routes. Processing this information requires sufficient

omputational capabilities. Thus, relying exclusively on edge resources

lone for these computations may not always be feasible because one

r both of the computational and storage requirements of the involved

ata may exceed the edge device’s resource capacity. Even if it were

easible, the battery power constraints of the edge device limit how

uch intensive and for how long such computations can be carried

ut. In contrast, exclusive use of cyberforaging, i.e., always offloading

he computations to the fog layer is not a solution either because

ffloading of data incurs communication costs, and when users of

he IoT application are mobile, it is possible that the user may lose

onnectivity to a fog resource and/or may need to frequently hand-off

he session between fog resources. In addition, the closest fog resource

o the user may not have enough capacity to host the IoT application

ecause other IoT applications may already be running at that fog
hokra@vanderbilt.edu (A. Chhokra), hongyang.sun@vanderbilt.edu (H.

u (A. Dubey), xenofon.koutsoukos@vanderbilt.edu (X. Koutsoukos),

nuary 2020

https://doi.org/10.1016/j.sysarc.2020.101710
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2020.101710&domain=pdf
mailto:shashankshekhar@siemens.com
mailto:ajay.d.chhokra@vanderbilt.edu
mailto:hongyang.sun@vanderbilt.edu
mailto:a.gokhale@vanderbilt.edu
mailto:abhishek.dubey@vanderbilt.edu
mailto:xenofon.koutsoukos@vanderbilt.edu
mailto:gabor.karsai@vanderbilt.edu
https://doi.org/10.1016/j.sysarc.2020.101710

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

r

[

s

e

Q

d

a

v

t

s

l

p

p

L

r

S

t

p

t

a

t

t

o

a

2

s

2

u

(

s

c

a

i

b

t

o

s

a

Fig. 1. System infrastructure model.

t

a

[

2

p

a

a

s

M

[

s

u

p

a

q

e

v

s

d

s

t

o

o

q

t

i

i

c

p

b

p

b

d

b

o

o

s

t

o
esource, which will lead to severe performance interference problems

2–5] and hence degradation in QoS for all the fog-hosted applications.

In summary, although the need to use fog/edge resources for latency-

ensitive IoT applications is well-understood [6,7] , a solution that relies

xclusively on a fog or edge resource is unlikely to deliver the desired

oS of the IoT applications, maintain service availability, minimize the

eployment costs and ensure longevity of scarce edge resources, such

s battery. These requirements are collectively referred to as the ser-

ice level objectives (SLOs) of the IoT application. Thus, an approach

hat can intelligently switch between fog and edge resources while also

upporting user mobility is needed to meet the SLO by accounting for

atency variations due to mobility and execution time variations due to

erformance interference from co-located applications. To that end, we

resent URMILA (Ubiquitous Resource Management for Interference and

atency-Aware services) , which is a middleware solution to manage the

esources across the cloud, fog and edge spectrum

2 and to ensure that

LO violations are minimized for latency-sensitive IoT applications, par-

icularly those that are utilized in mobile environments. Specifically, this

aper significantly extends our earlier work on URMILA [9] and makes

he following key contributions:

• We provide an a priori estimate of the received signal strength that

is then used at runtime to predict the energy consumption and net-

work latency in the mobile environment by choosing an appropriate

computing resource, i.e., edge or fog device.

• We formulate an optimization problem that minimizes the cost to

the fog provider and energy consumption on edge devices while ad-

hering to SLO requirements.

• We propose an algorithm to select the most suitable fog server that

will be used to execute the IoT application remotely, when the com-

putation can be executed on the fog resource. The algorithm ac-

counts for performance interference due to co-located but competing

IoT applications on multi-tenant fog servers and deliver a run-time

control algorithm for application execution that ensures SLOs are

met in real time.

• We evaluate our solution in a laboratory-sized real testbed using two

emulated real-world IoT applications that we developed.

The rest of this paper is organized as follows: Section 2 discusses the

pplication and the system models; Section 3 formulates the optimiza-

ion problem and describes the challenges we address. Section 4 explains

he URMILA solution in detail; Section 5 provides empirical validation

f our work; Section 6 describes related work in comparison to URMILA;

nd finally Section 7 provides concluding remarks.

. System model and assumptions

This section presents the system and application models for this re-

earch along with the assumptions we made.

.1. System model

Fig. 1 is representative of a setup that our system infrastructure

ses, which comprises a collection of distributed wireless access points

WAPs). WAPs leverage micro data centers (MDCs), which are fog re-

ources. URMILA maintains a local manager at each MDC, and they all

oordinate their actions with a global, centralized manager. The WAPs

re interconnected via wide area network (WAN) links and hence may

ncur variable latencies and multiple hops to reach each other. The mo-

ile edge devices have standard 2.4 GHz WiFi adapters to connect to

he WAPs and implement well-established mechanisms to hand-off from

ne WAP to another. The edge devices are also provisioned with client-

ide URMILA middleware components including a local controller. We

ssume that mobile clients do not use cellular networks for the data
2 The use of the terms fog and edge, and their semantics are based on [8] .

s

m

S

ransmission needs due to the higher monetary cost of cellular services

nd the higher energy consumption of cellular over wireless networks

10,11] .

.2. Application model

We describe our IoT application model via a use case, which com-

rises a soft real-time object detection, cognitive navigational assistance

pplication targeted towards the visually impaired. Advances in wear-

ble devices and computer vision algorithms have enabled cognitive as-

istance and augmented reality applications to become a reality, e.g.,

icrosoft’s SeeingAI (www.microsoft.com/en-us/seeing-ai) and Gabriel

1] that leverage Google Glass and cloudlets. However, because these

olutions are either still not available to the users or use discontin-

ed technologies such as Google Glass, we have developed two ap-

lications, which are also used in empirically validating our research

nd described in Section 5.1 . As the user moves, the application fre-

uently captures video frames of the surroundings using the wearable

quipment, processes and analyzes these frames, and subsequently pro-

ides feedback (e.g., audio and haptics) to the user in real-time to en-

ure safe navigation. Note that our objective is not to replace service

ogs or white canes but to augment the user’s understanding of the

urroundings.

Our use case belongs to a class of latency-sensitive IoT applications

hat are interactive or streaming in nature, such as augmented reality,

nline gaming, and cognitive assistance applications. The service level

bjective (SLO) for the service comprises multiple parts. First, since

uality of user experience is critical, feedbacks are needed in (soft) real-

ime and hence we have tight deadlines for each step. Our application

s modeled as a composition of individual tasks or steps; for instance,

n the case of computer vision applications, these steps can be frame

apturing, frame processing and actuation actions.

Since image processing is a compute- and memory-intensive ap-

lication, it consumes the already scarce battery resources on a mo-

ile device and hence the longevity of resources on edge devices is

aramount. Although cyber-foraging enables a mobile application to

e offloaded from the edge device to a fog/cloud node where it gets

eployed and processed [12] , this process itself is energy consuming

ecause application state and logic needs to be transferred, and more-

ver it can be a platform-dependent issue, e.g., application binaries

n different platforms may be different. Hence, in this work, we con-

ider an approach where we have different versions of the service: one

hat can be deployed in containerized form at the fog node and an-

ther that runs on the edge device, albeit a less accurate but more re-

ource efficient, so the service execution can switch between these two

odes in order to maintain a highly available service and to meet the

LOs.

http://www.microsoft.com/en-us/seeing-ai

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Table 1

Primary notations used in problem formulation.

For application execution of a user u at a period p

𝜙(u) bound on total response time or length of period

𝐼(𝑢) =
{1(𝑢) , … , 𝐿 (𝑢)}

sequence of periods, where L is the number of periods in the

user’s path

t total (u, p) total response time

t process (u) local pre/post-processing time of application

t execute (u, p) general execution time of application

t local (u) execution time when application is run locally

t network (u, p) network latency

For MDCs, servers and wireless access points

gm global manager

lm local manager

M set of MDCs

s a server in an MDC

𝐴𝑃 =
{ 𝑎𝑝 1 , … , 𝑎𝑝 𝑛 }

set of wireless access points

ap 0 virtual access point when user has no connection

ap (s) access point that hosts server s

ap (u, p) access point user u connects to at period p

t ap (s), s server latency between ap (s) and server s

𝑡 𝑎𝑝 𝑖 ,𝑎𝑝 𝑗 or

t ap (u,p), ap (s)

latency between ap i or ap (u, p) and ap j or ap (s)

t u,ap (u,p) last-hop latency between user u and ap (u, p)

For deployments of user u ’s application and associated costs

x u,s ∈ {0, 1} deployment variable of user u on server s

y u,s,p ∈ {0, 1} execution variable of user u on server s at period p

t remote (u, s, p) execution time of user u on server s at period p

t network (u, s, p) total latency of user u on server s at period p

U (s) set of existing users on server s

L max (s) maximum duration U (s) will run on server s

T deploy (u, s) cost of deploying user u on server s

T transfer (u, s) cost of state transfer of user u on server s

w (u, s) waiting time of user s when deployed on server s

T user (u, s) no. of local periods for deploying user u on server s

𝛼(s) unit-time cost of powering on server s

𝛽(s) unit-time cost of transferring state to server s

𝜅(u) per-period energy cost of local execution for user u

C (u) total cost of deploying user u

2

e

a

w

n

p

r

s

H

(

a

i

m

a

m

W

c

s

3

i

a

e

w

p

s

3

b

a

r

a

l

𝑡

w

t

o

o

o

e

f

t

a

p

t

S

t

f

h

i

t

c

𝜙

v

t

c

r

t

t

u

P

f

a

w

c

h

o

a

h

a

d

t

t

t

a

c

c

n

W

t

t

l

w

3 Since the mobile user is engaged using the features of a single application,

we will use the terms “user ” and “application ” interchangeably.
.3. User mobility and client session

To make effective resource management decisions, URMILA must

stimate user mobility patterns. Although there exist both probabilistic

nd deterministic user mobility estimation techniques, for this research

e focus on the deterministic approach, where the source and desti-

ation are known (e.g., via calendar events) or provided by the user a

riori . Our solution can then determine a fixed route (or alternate sets of

outes) for a given pair of start and end locations by leveraging external

ervices such as Open Street Maps (http://www.openstreetmap.org),

ere APIs (https://developer.here.com/) or Google Maps APIs

 https://cloud.google.com/maps-platform/). These are reasonable

ssumptions for services like navigational assistance to the visually

mpaired or for students in or near college campuses who are using

obility-aware IoT applications where user mobility is restricted to

 relative small geographical area, e.g., a couple of miles of user

ovement. Our future work will explore the probabilistic approach.

hen a user wants to use the application, a session is initiated, and the

lient-side application uses a RESTful API to inform URMILA about the

tart time, source and destination for the trip.

. URMILA problem formulation

This section presents a formal description of the problem we solve

n this paper. The aim is to meet the SLO for the user (which includes

ssuring the response time and minimizing the energy costs for the

dge device by ensuring longevity of resources such as battery power)

hile minimizing the deployment and operational costs for the service

rovider. The primary notations we have used in the description are

ummarized in Table 1 .
.1. Formal notation for the system parameters

For each user (or application 3), u , let 𝜙(u) denote the user-specific

ound on the acceptable response time in each service period, which

lso defines the length of the period. For our consideration, the total

esponse time experienced by the user at each period p can be expressed

s the sum of the (local or remote) execution time and the network

atency (if executed remotely), i.e.,

 𝑡𝑜𝑡𝑎𝑙 (𝑢, 𝑝) = 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑢) + 𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑢, 𝑝) + 𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑢, 𝑝) (1)

here t process (u) is the required total time of all the tasks associated with

he application running locally. This duration is fixed and independent

f the execution mode and period, t execute (u, p) is the total execution time

f all the compute intensive tasks related to the application that can be

ffloaded to the remote server. This duration depends on whether the

xecution is on-device or remote, and t network (u, p) is the network latency

or period p (which is included only if remote execution is involved). In

he rest of the paper, t execute is referred to as the execution time of the

pplication and t process as pre/post processing time of the application.

The goal is to meet the SLO for the user, i.e., to ensure t total (u,

) ≤ 𝜙(u) for each period p in the user’s anticipated duration of applica-

ion usage, while minimizing the total cost (formulated in Section 3.2).

ince we consider user mobility, this duration is typically from the start

o the end of the user’s trip. Nonetheless, there is nothing to prevent us

rom applying the model even in the stationary state or after the user

as reached his/her destination.

Let t local (u) denote the execution time when the application of user u

s run locally, which is fixed regardless of the period and no network la-

ency will be incurred in this case. Additionally, we assume that the SLO

an always be satisfied with local executions, i.e., 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑢) + 𝑡 𝑙𝑜𝑐𝑎𝑙 (𝑢) ≤
(𝑢) for all u and p . This could be achieved by a lightweight mobile

ersion of the application, such as MobileNet for real-time object de-

ection on the mobile device, which is less compute-intensive and time-

onsuming, thereby ensuring the SLO albeit with a low detection accu-

acy.

In our model, applications and fog resources are managed by a cen-

ralized authority known as the global manager (gm) hosted at a cen-

ralized cloud data center (CDC). This serves as URMILA’s portal for the

sers. We denote by 𝐴𝑃 = { 𝑎𝑝 1 , 𝑎𝑝 2 , … , 𝑎𝑝 𝑛 } the set of Wireless Access

oints (WAPs) with a subset of them also hosting fog resources in the

orm of micro data centers (MDCs) or cloudlets. A WAP, ap ∈ AP , hosting

n MDC, m ∈ M , implies that the access point ap is directly connected to

ired local area network involving all the servers of m . Such capabilities

ould be offered by college campuses or internet providers as wireless

otspots. We assume that the gm owns or has exclusive lease to a set M

f MDCs. Note that M is a subset of AP since only some WAPs have an

ssociated MDC. Each MDC contains a set of compute servers (possibly

eterogeneous) that are connected to their MDC’s associated WAP. From

 traditional cloud computing perspective, since an application can be

eployed and executed on the CDC, we model the CDC as a special MDC

hat is also contained in set M , and correspondingly, the set AP contains

he access point that hosts the CDC as well.

In this architecture, the network latency between any ap (s) ∈ AP

hat hosts a server s and the server itself is negligible, i.e., t ap (s), s ≈ 0,

s they are connected via fast local area network (LAN). The WAPs are

onnected to each other over a wide area network (WAN) and may in-

ur significant latency depending on the distance, connection type and

umber of hops between them. If a mobile user is connected to a nearby

AP, say ap i , which has an MDC that hosts the user’s application, then

here is no additional access point involved. Otherwise, if the applica-

ion is deployed on another MDC hosted by, say ap j , then the round trip

atency 𝑡 𝑎𝑝 𝑖 ,𝑎𝑝 𝑗 can be significant since the request/response will be for-

arded from ap i to ap j . Moreover, due to mobility, the user could at

http://www.openstreetmap.org
https://developer.here.com/
https://cloud.google.com/maps-platform/

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

t

c

u

t

t

e

a

h

f

m

c

e

c

t

e

s

c

u

u

s

b

v

t

t

a

3

d

d

u

o

s

a

o

3

r

t

d

r

o

i

e

T

t

t

p

i

i

c

𝑡

I

c

f

w

a

r

t

c

t

𝑡

I

p

l

r

3

t

o

u

t

s

m

t

o

w

T

t

𝑇

s

t

a

𝑇

w

b

i

q

b

i

T

c

c

w

t

c

l

a

𝑇

t

s

c

e

a

f

a

e

𝐶

(7)
imes have no connection to any access point (e.g., out of range). In this

ase, we assume the presence of a virtual access point ap 0 to which the

ser is connected and define 𝑡 𝑎𝑝 0 ,𝑎𝑝 𝑖 = ∞ for any ap i ∈ AP . Obviously,

he application will have to run locally to avoid SLO violations.

In addition to the round trip latency, the selection of MDC and server

o deploy the application can also significantly impact the application

xecution time, since the MDCs can have heterogeneous configurations

nd each server can host multiple virtualized services, which do not

ave perfect isolation and hence could interfere with each other’s per-

ormance. Each MDC, also contains a local manager lm responsible for

aintaining a database of applications it can host, their network laten-

ies for the typical load, and server type and load-specific application

xecution time models. Note that there could be a varying number of

o-located applications and hence a varying load on each server over

ime, but we assume that individual application’s workload does not

xperience significant variation throughout its lifetime, which is a rea-

onable assumption for many streaming applications, such as processing

onstant size video frames.

For our mobility model, we divide the travel duration for each user

 into a sequence 𝐼(𝑢) = {1(𝑢) , 2(𝑢) , … , 𝐿 (𝑢)} of periods that cover the

ser’s path of travel. The length of each period p ∈ I (u) is the same and

ufficiently small so that the user is considered to be constantly and sta-

ly connected to a particular WAP 𝑎𝑝 (𝑢, 𝑝) ∈ 𝐴𝑃
⋃
{ 𝑎𝑝 0 } (including the

irtual access point). Moreover, the last hop latency, t u,ap (u,p) between

he user and this access point can be estimated based on the user’s posi-

ion, channel utilization, and number of active users connected to that

ccess point.

.2. Developing the problem statement

To formalize the optimization problem we solve in this work, we

efine two binary variables that indicate the decisions for application

eployment and execution mode selection. Specifically, 𝑥 𝑢,𝑠 = 1 if user

 is deployed on server s and 0 otherwise, and 𝑦 𝑢,𝑠,𝑝 = 1 if user u executes

n server s at period p and 0 otherwise. Using these two variables and our

ystem model, we now express the total response time of an application

nd the total cost, and then present the complete formulation of the

ptimization problem.

.2.1. Characterizing the total response time

Recall from Eq. (1) that the total response time for a user u at a pe-

iod p consists of three parts, and among them the pre/post-processing

ime t process (u) is fixed. To express the execution time, let t remote (u, s, p)

enote user u ’s execution time if it is run remotely on server s at pe-

iod p . Note that, due to the hardware heterogeneity and co-location

f multiple applications on the server which can result in performance

nterference [4,13,14] , this execution time will depend on the set of

xisting applications that are running on the server at the same time.

his property is known as sensitivity [3,13,15] . Similarly, the execution

imes for these users may in turn be affected by the application execu-

ion of user u were it to execute on this server – a property known as

ressure [3,13,15] . Techniques to estimate t remote (u, s, p) are described

n Section 4.4 .

For the network latency, let t network (u, s, p) denote the total latency

ncurred by running the application remotely on server s at period p . We

an express it as:

 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑢, 𝑠, 𝑝) = 𝑡 𝑢,𝑎𝑝 (𝑢,𝑝) + 𝑡 𝑎𝑝 (𝑢,𝑝) ,𝑎𝑝 (𝑠) + 𝑡 𝑎𝑝 (𝑠) ,𝑠 (2)

n particular, it includes the latency from the user to the connected ac-

ess point t u,ap (u,p) , which we refer to as the last-hop latency ; the latency

rom the connected access point to the serving access point t ap (u,p), ap (s) ,

hich we refer to as the WAN latency; and the latency from the serving

ccess point to the server that deploys the application t ap (s), s , which we

efer to as the server latency . The last latency is negligible, and the first

wo depend on the user’s location at period p . Latency estimation is dis-

ussed in Section 4.3 . The total response time of user u at period p can
hen be expressed as:

 𝑡𝑜𝑡𝑎𝑙 (𝑢, 𝑝) = 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑢) +

(
1 −

∑
𝑠

𝑦 𝑢,𝑠,𝑝

)
𝑡 𝑙𝑜𝑐𝑎𝑙 (𝑢)

+

∑
𝑠

𝑦 𝑢,𝑠,𝑝

(
𝑡 𝑟𝑒𝑚𝑜𝑡𝑒 (𝑢, 𝑠, 𝑝) + 𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑢, 𝑠, 𝑝)

)
(3)

n the above expression, the first line includes the constant pre/post-

rocessing time as well as the execution time when the application runs

ocally, and the second line includes the execution time when it is run

emotely as well as the incurred total network latency.

.2.2. Characterizing the total cost

The total cost consists of two parts: the server deployment cost and

he user energy cost. On the deployment side, running a server incurs

perational costs, such as power and cooling. Thus, the provider want to

se as few server-seconds as possible, so the deployment cost depends on

he duration a server remains running. For a server s , let U (s) denote the

et of existing users whose applications are deployed on it, and the maxi-

um time up to which a server will run these applications depends upon

he longest running application, i.e., L (v), where L is the number of peri-

ds in the user v ’s path. We define L max (s) to be the maximum time up to

hich these existing applications will run, i.e., 𝐿 max (𝑠) = max 𝑣 ∈𝑈 (𝑠) 𝐿 (𝑣) .
he cost for deploying a new application u on server s is proportional to

he extra duration the server has to be on and can be expressed as:

 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑢, 𝑠) = max
(
0 , 𝐿 (𝑢) − 𝐿 max (𝑠)

)
(4)

In addition to the operational cost, deploying an application on a

erver requires transferring its state over the backhaul network from

he repository in the CDC to the MDC. The time to transfer the state of

n application u to a server s can be expressed as:

 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (𝑢, 𝑠) =

𝑠𝑡𝑎𝑡𝑒 (𝑢)
𝑏 (𝑠)

+ 𝑐𝑖 (𝑢, 𝑠) (5)

here state (u) is the size of application u ’s state, b (s) is the backhaul

andwidth from CDC to the MDC that hosts server s , and ci (u, s) is the

nitialization time of the application before it can start processing re-

uests on the server. Hence, the waiting time (in terms of the num-

er of periods) of the application before it can be executed remotely

s 𝑤 (𝑢, 𝑠) =

⌈
𝑇 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (𝑢, 𝑠)∕ 𝜙(𝑢)

⌉
, where 𝜙(u) is the duration of a period.

hus, we must have 𝑦 𝑢,𝑠,𝑝 = 0 for 𝑝 ∈ [1(𝑢) , 1(𝑢) + 𝑤 (𝑢, 𝑠)] .
On the user side, we know that executing the application locally in-

urs higher power consumption than executing it remotely. Hence, the

ost for user u can be measured in terms of the total number of periods

hen the application is being run locally, which is directly proportional

o the additional energy expended by the mobile device had the appli-

ation been run remotely throughout the user’s travel. The number of

ocal periods by deploying application u on server s can be expressed

s:

 𝑢𝑠𝑒𝑟 (𝑢, 𝑠) =

𝐿 (𝑢) ∑
𝑝 =1(𝑢)

(
1 − 𝑦 𝑢,𝑠,𝑝

)
(6)

To combine the costs from different sources, we define 𝛼(s) and 𝛽(s)

o be the unit-time costs of powering on server s and transferring the

tate to server s , respectively. Both values depend on the server and its

orresponding MDC. In addition, we define 𝜅(u) to be the per-period

nergy cost of local execution for user u (relative to remote executions),

nd its value depends on the user’s application and mobile device. Thus,

or a given solution that specifies the application deployment (i.e., x u,s)

nd its execution mode for each period (i.e., y u,s,p), the total cost can be

xpressed as:

(𝑢) =

∑
𝑠

𝑥 𝑢,𝑠

(
𝛼(𝑠) ⋅ 𝑇 𝑑𝑒𝑝𝑙𝑜𝑦 (𝑢, 𝑠) + 𝛽(𝑠) ⋅ 𝑇 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (𝑢, 𝑠) + 𝜅(𝑢) ⋅ 𝑇 𝑢𝑠𝑒𝑟 (𝑢, 𝑠)

)

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

3

(

u

a

t

s

b

s

I

a

d

t

t

t

n

l

a

p

a

g

h

4

d

4

t

s

U

d

m

l

s

c

p

t

o

a

o

c

c

u

o

Fig. 2. URMILA’s Component-based Architecture and Deployment.

Fig. 3. URMILA’s Architecture for Decision Making.

n

U

g

b

p

i

t

a

t

p

a

t

t

i

s

4

p

p

b

p

a

l

k

i

4

c

e

m

t

t

E

t

W

c

p

a

t

c

.3. Optimization problem

Given the expressions for total response time (Eq. (3)) and total cost

 Eq. (7)), the optimization problem needs to decide, for each new user

 , where to deploy the application and which execution mode to run the

pplication in order to minimize the total cost subject to the response

ime constraints. Let V denote the set of all existing applications on all

ervers at the time of deploying u , i.e., 𝑉 =

⋃
𝑠 𝑈 (𝑠) . The problem can

e formulated by the following integer nonlinear program (INLP):

minimize 𝐶(𝑢)

ubject to 𝑡 𝑡𝑜𝑡𝑎𝑙 (𝑢, 𝑝) ≤ 𝜙(𝑢) , ∀𝑝 (8)

𝑡 𝑡𝑜𝑡𝑎𝑙 (𝑣, 𝑝) ≤ 𝜙(𝑣) , ∀𝑝, 𝑣 (9)

𝑥 𝑢,𝑠 , 𝑦 𝑢,𝑠,𝑝 ∈ {0 , 1} , ∀𝑠, 𝑝 (10)

∑
𝑠

𝑥 𝑢,𝑠 ≤ 1 (11)

𝑦 𝑢,𝑠,𝑝 ≤ 𝑥 𝑢,𝑠 , ∀𝑠, 𝑝 (12)

𝑦 𝑢,𝑠,𝑝 = 0 , ∀𝑠, 𝑝 ∈ [1(𝑢) , 1(𝑢) + 𝑤 (𝑢, 𝑠)] (13)

n particular, Constraints (8) and (9) require meeting the SLOs for user u

s well as for all existing users at all times. Constraint (10) requires the

ecision variables to be binary. Constraint (11) requires the application

o be deployed on at most one server. We enforce this constraint because

here is a high cost in transferring the application state from the CDC

o an MDC server, initializing and running it. Note that an application

eed not be deployed on any server, in which case it will be executed

ocally throughout the user’s travel duration. Constraint (12) allows the

pplication to run remotely only on the server it is deployed at each

eriod and Constraint (13) restricts the remote executions to start only

fter the application state has been transferred.

Due to the NP-hardness of the above INLP problem, we rely on a

reedy-based heuristic to solve it. Section 4.4.2 describes the proposed

euristic for server deployment and execution mode selection.

. URMILA design and implementation

This section presents the design and implementation of our URMILA

ynamic resource management middleware.

.1. Overview of URMILA’s expected runtime behavior

To better understand the rationale for URMILA’s design and its archi-

ecture, let us consider the runtime interactions that ensue once a user

ession is initiated. The client-side application is assumed to be aware of

RMILA and communicates with it to provide the start time, source and

estination for the trip. URMILA computes the set of routes that the user

ay take using the provided trip details. Then, based on instantaneous

oads on all fog nodes of the MDCs on the path, URMILA determines a

uitable fog server (i.e., node) in an MDC on which the IoT application’s

loud/fog-ready task can be executed throughout the session, and de-

loys the corresponding task on that server. URMILA will not change

his selected server for the rest of the session even if the user may go

ut of wireless range from it because the user can still reach it through

 nearby WAP and by traversing the WAN links. This is reasonable for

ur approach due to the relatively smaller size of the geographical area

overed by the mobile user.

This approach and the architectural components involved in the pro-

ess are depicted in Fig. 2 . This sequence is repeated whenever a new

ser is added to the system. Selecting the appropriate fog server based

n the instantaneous utilizations of the available resources, which are
ot known statically, while ensuring SLOs are met is a hard problem.

RMILA’s key contribution lies in addressing this challenge, and intelli-

ently adapting between the fog and edge resources based on user mo-

ility and application SLO.

As time progresses, for each period (or a well-defined epoch) of ap-

lication execution, the client-side URMILA middleware determines the

nstantaneous network conditions and determines whether to process

he request locally or remotely on the selected fog server such that the

pplication’s SLO is met. This process continues until the user reaches

he destination and terminates the session with the service, at which

oint the provisioned tasks on the fog resources can be terminated. The

rchitecture for these interactions is presented in Fig. 3 , where the con-

roller component on the client-side middleware is informed by URMILA

o opportunistically switch between fog-based or edge-based execution

n a way that meets application SLOs. The remainder of this section de-

cribes how URMILA achieves these goals.

.2. Route computation

This component is responsible for determining the user’s mobility

attern based on the methodology described in Section 2.3 . In this pa-

er, we leverage the Google Maps APIs for finding the shortest route

etween the user’s specified start and destination locations. It takes a tu-

le comprising the start and destination GPS coordinates, and produces

 list of GPS coordinates for the various steps along the route. This raw

ist of route points is re-sampled as per a constant velocity model (5

ilometers per hour, which is a typical average walking speed) with an

nterval equal to the response time deadline enforced by the SLO.

.3. Latency estimation

Recall that URMILA will choose to execute task(s) of the IoT appli-

ation on the fog server if it can assure its SLO, which means that for

very user and for every period/epoch of that user’s session, URMILA

ust be able to estimate the expected latency as the user moves along

he route. Hence, once the route (or set of alternate routes) taken by

he user is determined using mechanisms like Google Maps, the Latency

stimator component of Fig. 2 will estimate the expected latencies along

he route.

This is a hard problem to address due to the dynamic nature of the

i-Fi channels and the dynamically changing traffic patterns (due to

hanging user densities) throughout the day. To that end, URMILA em-

loys a data-driven model that maps every route point on the path to

n expected latency to be observed at that point. One of the salient fea-

ures of this estimation model is its adaptability, i.e., the model is refined

ontinuously in accordance with the actual observed latencies.

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

l

t

t

f

s

o

s

a

p

e

k

d

𝑝

p

d

p

t

o

𝑝

s

c

s

W

s

[

l

r

a

n

t

p

p

4

i

a

a

T

a

e

d

t

c

f

t

c

p

f

o

t

a

a

m

m

Fig. 4. URMILA’s Fog Server Selection Process.

i

i

p

o

f

U

e

p

F

m

i

4

m

m

t

t

d

s

p

s

w

s

w

s

𝐗

w

a

m

p

m

The estimated latency is made up of three parts (see Eq. (2)): the

ast-hop latency to a WAP along the route, the WAN latencies to reach

he fog server from the ingress WAP by traversing the WAN links, and

he task execution time on the fog server (See Section 4.4).

Estimating Last-hop Latency t u,ap (u,p) : The last hop latency itself is af-

ected primarily by channel utilization, number of active users and received

ignal strength [16] . This component estimates the latency t network (u, s, p)

bserved by user u at any period p along the route on any given server

 . Initially, we assume that the channel utilization and the number of

ctive users do not impact the latency significantly. As the routes get

rofiled, we maintain a database that stores network latencies for differ-

nt coordinates and times of the day. Whenever a request arrives with

nown route segments, the latency can be estimated by querying this

atabase.

Eq. (14) can be used to compute the signal strength, where �̂� (resp.

 ̂0) is the mean received power at a distance d (resp. d 0) from the access

oint, and 𝛾 is the path loss exponent. Among these parameters, 𝑝 0 and

 0 depend on the access point and are known a priori for typical access

oints. The path loss exponent 𝛾 depends on the environment, and its

ypical values for free space, urban area, sub urban area and indoor (line

f sight) are 2, 2.7 to 3.5, 3 to 5 and 1.6 to 1.8, respectively [17] .

̂ (𝑑) = 𝑝 0 (𝑑 0) − 10 𝛾 log 𝑑
𝑑 0

(14)

The client device selects a WAP with the highest signal strength and

ticks to it till the strength drops below a threshold. The network be-

omes unreliable if the received signal strength falls below -67dBm for

treaming applications [16] , which we use as the threshold for URMILA.

e also use existing well-known methods for determining the signal

trength based on received power and distance from an access point

17] . Using this together with the calculated route and WAP’s data, the

atency estimator is able to calculate the last-hop latency for each pe-

iod/epoch along the route.

Estimating WAN Latency t ap (u,p), ap (s) : The WAN latency between two

ccess points depends on the link capacity connecting the nodes and the

umber of hops between them. We use another database to maintain

he latencies between different access points.

Estimating Total Latency: Based on the computed individual com-

onents, a map of total network latency can then be generated for every

eriod/epoch along the route.

.4. Fog server selection

To avoid the high cost involved in transferring application state and

nitialization, URMILA performs a one-time fog server selection within

 fog layer, and reserves the resource for the entire trip duration plus

 margin to account for the deviation from the ideal mobility pattern.

o determine the right fog server to execute the task, besides having

ccurate latency estimates, we also need an accurate estimate for task

xecution on the fog server that will end up being selected, which will

epend on the instantaneous co-located workloads on that server and

he incurred performance interference.

To accomplish this, we leverage the INDICES [7] performance metric

ollection and interference modeling framework. However, the INDICES

ramework has a few limitations. In particular, it was designed for vir-

ual machines (VMs). In this work, in order to have lower initialization

ost compared to VMs [18] , we rely on Docker containers. Hence, as a

art of URMILA, we integrated INDICES while extending the framework

or interference-aware Docker container deployment.

In addition, modern hardwares are equipped with non uniform mem-

ry access (NUMA) architecture which forces the performance estima-

ion and scheduling techniques to consider memory locality. Different

pplications have different levels of performance sensitivity on NUMA

rchitectures [19] . Thus, we needed a mechanism that is able to bench-

ark applications on different NUMA nodes and predict their perfor-

ance and schedule them accordingly. Moreover, recent advancement
n Resource Director Technology (RDT) [20] that includes Cache Mon-

toring Technology (CMT) and Memory Bandwidth Monitoring (MBM)

rovides further insights about system resource consumption for mem-

ry bandwidth and last-level cache utilization, which can be leveraged

or better performance estimation. We account for all of these factors in

RMILA. Our recent work on the FECBench framework addresses sev-

ral of the limitations in INDICES and provides a holistic, end-to-end

erformance monitoring and model building framework [21] , however,

ECBench was not ready for use in the URMILA research.

URMILA’s fog server selection process consists of an offline perfor-

ance modeling stage and an online server selection stage as depicted

n Fig. 4 .

.4.1. Offline performance model learning

URMILA uses a data-driven approach [22] in its run-time decision

aking for which it requires an offline training stage to develop a perfor-

ance model for each latency-sensitive application task that is expected

o be executed on the fog server. More precisely, in order to calculate

 execute (u, p) in Eq. (1) , we need to develop a performance model to pre-

ict t remote (u, s, p), the remote execution time of the application on a

erver. This model depends on the following two factors:

1. Hardware Heterogeneity : Our edge and fog resources are composed

of heterogeneous hardware with different server architectures

and configurations. Each applications performance can vary sig-

nificantly from one platform to another [2] . Therefore, we need

an accurate benchmark of performance for each hardware plat-

form.

2. Performance Interference : Although hypervisors/ virtual machine

monitors and cgroups in case of Linux containers provide a high

degree of security, fault, and environment isolations, there still

exist a number of interference sources [4,13,14] , such as shared

last-level cache, interconnect network, disk and memory band-

width which are difficult to partition. This has a profound im-

pact on the remote execution time (t remote (u, s, p)), arising from

the sensitivity to the co-located applications and its pressure on

those applications [3,13,15] .

To develop a performance model required for determining t remote (u, s,

), we first benchmark the execution time t isolation (u, w) of each latency-

ensitive application u on a specific hardware type w in isolation. This

ay, we can account for the hardware heterogeneity of our resource

pectrum. We then execute the application with different co-located

orkload patterns and learn its impact, denoted by function g u , on the

ystem-level and obtain micro-architectural metrics as follows:

𝑛𝑒𝑤
𝑤

= 𝑔 𝑢 (𝐗

𝑐𝑢𝑟
𝑤

) (15)

here 𝐗

𝑐𝑢𝑟
𝑤

and 𝐗

𝑛𝑒𝑤
𝑤

denote the vectors of the selected metrics before

nd after running application u on hardware w , respectively.

Modern hardware architectures provide access to many performance

etrics. Based on our sensitivity analysis and to provide a broadly ap-

licable and easily reproducible approach, we selected the following

etrics in vector 𝐗

𝑐𝑢𝑟
𝑤

for performance modeling:

• System Metrics : CPU utilization, memory utilization, network I/O,

disk I/O, context switches and page faults.

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Fig. 5. Execution Time Comparison due to Core Pinning and NUMA.

i

s

s

n

d

D

m

s

t

o

v

t

p

m

f

𝑡

t

s

o

t

c

a

h

f

p

4

i

a

s

a

R

a

i

S

f

a

c

t

p

f

t

m

c

i

p

i

w

T

l

o

(

d

a

d

r

a

t

e

e

i

c

r

s

a

t

a

o

c

i

m

e

w

r

m

u

o

1

N

a

g

p

c

a

4

w

a

m

s
• Hardware Counters : Retired instructions per second (IPS), cache uti-

lization, cache misses, last-level cache (LLC) bandwidth and memory

bandwidth.

• Scheduler Metrics : Scheduler wait time and scheduler I/O wait time.

Another key consideration that we applied for performance model-

ng is NUMA-awareness with CPU core pinning. On modern multi-chip

ervers, the memory is divided and configured locally for each proces-

or. The memory access time is lower when accessed from local NUMA

ode compared to when accessed from remote NUMA node. Hence, it is

esirable to model the performance per NUMA node and schedule the

ocker containers accordingly. We achieve this by collecting the perfor-

ance metrics per NUMA node and then, wherever possible, developing

ensitivity and pressure profiles at the NUMA node level instead of at

he system level. The benefit of this approach is validated in Fig. 5 . We

bserve from the figure that CPU core pinning reduces the performance

ariability, however, if NUMA node is not accounted for, it could lead

o worse performance due to data locality issues.

Lastly, we learn the performance deterioration (compared to isolated

erformance), denoted by function f u , for application u under the new

etric vector 𝐗

𝑛𝑒𝑤
𝑤

on hardware w to predict its execution time on the

og server under the same conditions:

 𝑟𝑒𝑚𝑜𝑡𝑒 (𝑢, 𝑤) = 𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (𝑢, 𝑤) ⋅ 𝑓 𝑢 (𝐗

𝑛𝑒𝑤
𝑤

) (16)

We apply supervised machine learning techniques to learn both func-

ions g u and f u using the following sequence of steps:

• Feature Selection : We adopted the Recursive Feature Elimination

(RFE) approach using Gradient Boosted Regression Trees [23] as a

way to select the optimal set of features and reduce training time. We

performed RFE in a cross-validation loop to find the optimal number

of features that minimizes a loss function (mean squared).

• Correlation Analysis : To further reduce the training time by decreas-

ing the dimensions of the feature vector, we used the Pearson Co-

efficient to eliminate highly dependent metrics with a threshold of

± 0.8.

• Regression Analysis : We used the off-the-shelf Gradient Tree Boost-

ing curve fitting method due to its ability to handle heterogeneous

features and its robustness to outliers.

Note that Eqs. (15) and (16) can be applied together to model both

ensitivity and pressure for application deployment on each server in

rder to calculate t remote (u, w), which is then used as an estimate for

he remote execution time t remote (u, s, p) of application u on server s

ontaining hardware w . The learned performance models for different

pplications are then distributed to the different MDCs for each of the

ardware type w that they contain. Since MDCs typically contain just a

ew heterogeneous server types, we do not anticipate a large amount of

erformance model dissemination.

.4.2. Online server selection

The online stage performs server selection for an application, which

s done in a hierarchical fashion as follows. First, when a user initiates

 session, the global manager gm residing at the CDC initiates the fog

erver selection process as soon as it receives a request from the client
pplication. It calculates the route of the user as described in Section 4.2 .

ecall that the goal is to determine the expected execution time of the

pplication task on each fog server in the most appropriate MDC us-

ng the performance model developed in the offline stage such that the

LOs for the existing applications can still be met despite expected per-

ormance interference. Thus, once URMILA knows the route and the

ccess points the user will be connected to, the gm then queries the lo-

al manager lm of each MDC, which in turn queries each of their servers

o find the expected execution time of the target application using the

erformance model developed in the offline stage such that the SLOs

or the existing applications can still be met. Finally, the gm combines

his information with the latency estimates from Section 4.3 to deter-

ine the execution mode of the application to satisfy the response time

onstraints at each step of the route. This allows us to estimate the cost

ncurred by the user (i.e., T user in Eq. (6)).

To solve the optimization problem, we still need to estimate the de-

loyment cost (i.e., T deploy in Eq. (4)) and the transfer cost (i.e., T transfer

n Eq. (5)). The deployment cost is based on the trip duration, which

e can again obtain from the user mobility as described in Section 4.2 .

o reduce transfer cost, we use Docker container images that consist of

ayers, and each layer other than the last one is read only and is made

f a set of differences from the layer below it. Thus, with a base image

such as Ubuntu 16.04) already present on the server, we only need the

elta layers (that dictate state (u) in Eq. (5)) to be transferred for the

pplication to be reconstructed at the fog location.

Algorithm 1 shows the pseudocode for selecting a fog server s ∗ and

eciding a tentative execution-mode plan y ∗ [p] for a user u at each pe-

iod/epoch p in the route, where 𝑦 ∗ [𝑝] = 1 indicates remote execution

nd 𝑦 ∗ [𝑝] = 0 indicates local execution. Besides deciding on the server

o deploy the target application, the algorithm also suggests a tentative

xecution-mode plan at each step of the application execution. This ex-

cution plan will be used for cost estimation by the global manager and

s subject to dynamic adjustment at run-time (See Section 4.5).

Specifically, the algorithm goes through all servers (Line 3), and first

hecks whether deploying the target application u on a server s will

esult in SLO violation for each existing application v on that server, as

pecified by the user’s response time bound 𝜙(v) (Lines 4-15). For each

pplication v , its total response time consists of a fixed pre-processing

ime t process , an execution time and a network latency. Since it may have

 variable network latency and a variable execution time depending

n the user’s location and choice of execution mode, we should ideally

heck for its SLO at each period of its execution. However, doing so may

ncur unnecessary overhead on the global manager since the execution-

ode plan for v is also tentative. Instead, the algorithm considers the

stimated network SLO percentile latency 𝑡 𝑆𝐿𝑂
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(e.g., 90 th , 95 th , 99 th)

hile assuming that in the worst case the application always executes

emotely for the execution time, i.e., t remote . This approach provides a

ore robust performance guarantee for existing applications in case of

nexpected user mobility behavior.

Subsequently, for each feasible server, the algorithm evaluates the

verall cost of deploying the target application u on that server (Lines

6-29) and chooses the one that results in the least cost (Lines 30-33).

ote that the overall cost consists of the server deployment cost T deploy

nd application state transfer cost T transfer , both of which are fixed for a

iven server, as well as the user’ energy cost T user , which could vary de-

ending on the execution mode vector y . Hence, to minimize the overall

ost, the algorithm offloads the execution to the remote server as much

s possible subject to its SLO being met (Lines 22-27).

.5. Runtime phase

The deployment phase outputs the network address of the fog server

here the application will be deployed and a list of execution modes

s shown in Algorithm 1 . This information is relayed to the client-side

iddleware, which then starts forwarding the application data to the fog

erver as per the execution mode at every step. However, the execution

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Algorithm 1: Fog Server Selection.

Input : Target application 𝑢 and other information on the user’s

route, networks, servers and their loads

Output : Server 𝑠 ∗ to deploy 𝑢 and a tentative execution mode

vector 𝑦 ∗ [𝑝] ∈ {0 , 1} for each period 𝑝 during the user’s

route

1 begin

2 Initialize 𝑐𝑜𝑠𝑡 min ← ∞, 𝑠 ∗ ← ∅, and 𝑦 ∗ [𝑝] ← 0∀𝑝 ;
3 for each server 𝑠 do

4 𝐗

𝑐𝑢𝑟 ← 𝐺𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑒𝑡𝑟𝑖𝑐𝑠 (𝑠) ;
5 𝐗

𝑛𝑒𝑤 ← 𝑔 𝑢 (𝐗

𝑐𝑢𝑟) ;
6 𝑉 ← 𝐺 𝑒𝑡𝐿𝑖𝑠𝑡𝑂 𝑓𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐴𝑝𝑝𝑙 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝑠) ;
7 for each application 𝑣 ∈ 𝑉 do

8 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ← 𝐺𝑒𝑡𝑃 𝑟𝑒𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 (𝑣) ;
9 𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐺 𝑒𝑡𝐼𝑠𝑜𝑙 𝑎𝑡𝑒𝑑 𝐸 𝑥𝑒𝑐𝑇 𝑖𝑚𝑒 (𝑣, 𝑠) ;

10 𝑡 𝑟𝑒𝑚𝑜𝑡𝑒 ← 𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑓 𝑣 (𝐗

𝑛𝑒𝑤) ;
11 𝑡 𝑆𝐿𝑂

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
← 𝐺 𝑒𝑡𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙 𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑣, 𝑠) ;

12 if 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑡 𝑟𝑒𝑚𝑜𝑡𝑒 + 𝑡 𝑆𝐿𝑂
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

> 𝜙(𝑣) then

13 skip 𝑠 ;

14 end

15 end

16 Initialize 𝑦 [𝑝] ← 0∀𝑝 ; // execute locally by default;

17 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ← 𝐺𝑒𝑡𝑃 𝑟𝑒𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 (𝑢) ;
18 𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐺 𝑒𝑡𝐼𝑠𝑜𝑙 𝑎𝑡𝑒𝑑 𝐸 𝑥𝑒𝑐𝑇 𝑖𝑚𝑒 (𝑢, 𝑠) ;
19 𝑡 𝑟𝑒𝑚𝑜𝑡𝑒 ← 𝑡 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑓 𝑢 (𝐗

𝑛𝑒𝑤) ;
20 𝑇 𝑑𝑒𝑝𝑙𝑜𝑦 ← 𝐺 𝑒𝑡𝐷𝑒𝑝𝑙 𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 (𝑢, 𝑠) ;
21 𝑇 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ← 𝐺𝑒𝑡𝑆𝑡𝑎𝑡𝑒𝑇 𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡 (𝑢, 𝑠) ;
22 for each period 𝑝 in the route do

23 𝑡 𝑆𝐿𝑂
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

(𝑝) ← 𝐺 𝑒𝑡𝑃 𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙 𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑢, 𝑠, 𝑝) ;
24 if 𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑡 𝑟𝑒𝑚𝑜𝑡𝑒 + 𝑡 𝑆𝐿𝑂

𝑛𝑒𝑡𝑤𝑜𝑟𝑘
(𝑝) ≤ 𝜙(𝑢) then

25 𝑦 [𝑝] ← 1 ; // execute this period remotely;

26 end

27 end

28 𝑇 𝑢𝑠𝑒𝑟 ← 𝐶 𝑜𝑚𝑝𝑢𝑡𝑒𝑈𝑠𝑒𝑟𝐶 𝑜𝑠𝑡 (𝑦) ;
29 𝑐𝑜𝑠𝑡 ← 𝛼 ⋅ 𝑇 𝑑𝑒𝑝𝑙𝑜𝑦 + 𝛽 ⋅ 𝑇 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝜅 ⋅ 𝑇 𝑢𝑠𝑒𝑟 ;
30 if 𝑐𝑜𝑠𝑡 ≤ 𝑐𝑜𝑠𝑡 min then

31 𝑐 𝑜𝑠𝑡 min ← 𝑐 𝑜𝑠𝑡 ;

32 𝑠 ∗ ← 𝑠 and 𝑦 ∗ ← 𝑦 ;

33 end

34 end

35 end

m

h

p

t

s

p

a

c

a

b

i

m

I

t

f

t

e

t

t

Fig. 6. Mode Selector State Machine.

I

c

e

n

c

t

c

j

p

t

t

v

s

m

j

c

s

S

d

n

E

E

a

c

t

h

S

5

p

q

5

a

r

e

i

a

e
ode list is based on the expected values of the network latencies, and

ence can be different from the actual value.

The runtime phase minimizes the SLO violations due to inaccurate

redictions by employing a robust mode selection strategy that updates

he decision at any step based on the feedback from previous steps. As

hown in Fig. 3 , the Controller obtains sensor data and selects appro-

riate mode for processing the data. The processed data is transformed

nd fed back to actuators which provides the user with output using the

hosen medium (voice description of the classified object in our use case

pplication).

The Controller consists of a process, Mode Selector, which is responsi-

le for gathering sensor data, selecting appropriate mode and monitor-

ng the timing deadline violations. Mode Selector is modeled using Mealy

achine, M sel as shown in Fig. 6 . M sel consists of 7 symbolic states with

dle being the initial state. From Idle state, the state machine transi-

ions to SyncWithSLO state after receiving Start event. The transition

rom SyncWithSLO is caused by the activation of TimeOut (t 2) event

hat pushes the state machine into GatheringSensorData while

mitting GetSensorData event. This event activates a system level process

o pull data from various sensors. If this task is not completed in t 3 secs,

he TimeOut (t 3) event forces the state machine back to SyncWithSLO .
f the task of acquiring sensor data finishes before deadline, the state ma-

hine transitions to SelectingMode while producing EvaluateConn

vent.

EvaluateConn starts another asynchronous process, p , to acquire sig-

al strength level and check the estimated execution mode. If the exe-

ution mode is remote and signal strength is above the threshold, only

hen remote mode is selected at run time, which is signaled by this asyn-

hronous task by emitting SwitchToRemote event, that enables M sel to

ump to SendingData . However, in the past if for the same access

oint, both the conditions were met and yet timing deadline had failed,

hen local mode will be selected as long as client device is connected to

he same access point.

After getting SwitchToRemote event, M sel initiates data sending ser-

ice by producing SendData event and moves to SendingData . The

tate machine waits for t 0 to receive the acknowledgment for the trans-

itted data by the server. If the acknowledgment does not arrive, it

umps to ExecutingLocal , whereas in the other case, the state ma-

hine transitions to ExecutingRemote and waits for the final re-

ponse. If the response comes within t 4 secs, state machine jumps to

yncWithSLO and waits for the next cycle. However, if the response

oes not come within the deadline, an SLO violation is noted.

If the asynchronous process, p , produces SwitchToLocal or does

ot emit any signal within time interval t 5 then M sel jumps to

xecutingLocal from SelectingMode . While transitioning to

xecutingLocal , the state machine generates an event, ProcessDat-

Local to trigger local data processing service. If the data is not pro-

essed with in t 1 secs, TimeOut(t 1) forces the state machine to move

o SyncWithSLO and SLO violation is noted again. On the other

and if t 1 deadline is not violated, state machine also moves to back

yncWithSLO and waits till the next cycle starts.

. Experimental validation

We now present the results of empirically evaluating URMILA’s ca-

abilities and validating the claims we made by answering the following

uestions:

• How effective is URMILA’s execution time estimation on heteroge-

neous hardware? Section 5.3.1

• How effective is URMILA’s connectivity and network latency estima-

tion considering user mobility? Section 5.3.2

• How effective is URMILA in assuring SLOs? Section 5.3.3

• How much energy can URMILA save for mobile user? Section 5.3.3

• How does URMILA compare to other algorithms? Section 5.3.3

.1. IoT application use case

We assume the applications are containerized and can be deployed

cross edge and fog/cloud thereby eliminating the need to continuously

e-deploy the application logic between the fog and edge devices. How-

ver, for platforms such as Android cannot yet run containers, a separate

mplementation for Android device and fog/cloud are used and it is just

 matter of dynamically (de)activating the provisioned task on either the

dge or fog device based on URMILA’s resource management decisions.

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

a

i

n

w

m

S

i

s

b

a

t

t

w

o

w

k

N

s

r

5

f

m

c

a

O

b

f

a

f

1

r

e

f

w

o

a

t

W

s

t

b

o

a

n

m

i

W

t

c

U

a

o

p

p

L

a

t

[

fl

e

d

a

W

fi

s

s

o

M

W

c

S

u

4

t

r

c

l

(

l

f

t

o

f

5

t

(

s

t

t

u

f

V

1

p

s

5

e

t

g

t

t

i

m

p

w

For the experimental evaluation, we use the cognitive navigational

ssistance use case from Section 2.2 . Since similar use cases reported

n the literature are not available for research or use obsoleted tech-

ologies, and also to demonstrate the variety in the edge devices used,

e implemented two versions of the same application. The first imple-

entation uses an Android smartphone that inter-operates with a Sony

martEyeGlass, which is used to capture video frames as the user moves

n a region and provides audio feedback after processing the frame. The

econd version comprises a Python application running on Linux-based

oard devices such as MinnowBoard with a Web camera. The edge-based

nd fog-based image processing tasks implement MobileNet and Incep-

ion V3 real-time object detection algorithms from Tensorflow, respec-

ively.

For our evaluations we assume that users of URMILA will move

ithin a region, such as a university campus, with distributed WAPs

r wireless hotspots owned by internet service providers some of which

ill have an associated MDC. We also assume an average speed of 5

ms/h or 3.1 miles/h for user mobility while accessing the service. 4

ote that URMILA is not restricted to this use case alone nor to the con-

idered user mobility speeds. Empirical validations in other scenarios

emain part of our future work.

.2. Experimental setup

We create two experimental setups to emulate realistic user mobility

or our IoT application use case as follows:

First Setup: We create an indoor experimental scenario with user

obility emulated over a small region and using our Android-based

lient. The Android client runs on a Motorola Moto G4 Play phone with

 Qualcomm Snapdragon 410 processor, 2 GB of memory and Android

S version 6.0.1. The battery capacity is 2800 mAh. It is connected via

luetooth to Sony SmartEyeglass SED-E1 which acts as both the sensor

or capturing frames and the actuator for providing the detected object

s feedback. The device can be set to capture the video frames at variable

rames per second (fps). We used a Raspberry Pi 2B running OpenWRT

5.05.1 as our WAP, which operates at a channel frequency of 2.4 GHz.

We set the application SLO to 0.5 s based on a previous study, which

eported mean reaction times to sign targets to be 0.42-0.48 s in one

xperiment and 0.6-0.7 s in another [24] . Accordingly, we capture the

rames at 2 fps, while the user walking at 5 kms/h expects an update

ithin 500 ms if the detected object changes.

Second Setup: We emulate a large area containing 18 WAPs, four

f which have an associated MDC. We experiment with different source

nd destination scenarios and apply the latency estimation technique

o estimate the signal strength at different segments of the entire route.

e then use three OpenWRT-RaspberryPi WAPs to emulate the signal

trengths over the route by varying the transmit power of the WAPs at

he handover points, i.e., where the signal strength exceeds or drops

elow the threshold of -67 dBm. We achieve this by creating a mapping

f the received signal strength on the client device at the current location

nd varying the transmit power of the WAP from 0 to 30 dBm.

For the client, we use our second implementation comprising Min-

owboard Turbot, which has an Intel Atom E3845 processor with 2 GB

emory. The device runs Ubuntu 16.04.3 64-bit operating system and

s connected to a Creative VF0770 webcam and Panda Wireless PAU06

iFi adapter on the available USB ports. In this case too, we capture

he frames at 2 fps with a frame size of 224x224. To measure the energy

onsumption, we connect the Minnowboard power adapter to a Watts

p Pro power meter. We measure the energy consumption when our

pplication is not running, which on average is 3.37 Watts. We then run

ur application and measure the power every second. By considering the

ower difference in both scenarios, we derive the energy consumption

er period for a duration of 500 ms.
4 https://goo.gl/cMxdtZ

a

m

Application Task Platform: The Android device runs Tensorflow

ight 1.7.1 for the MobileNet task. The Linux client runs the task in

 Docker container. We use this model so that we can port the applica-

ion across platforms and benefit from Docker’s near native performance

25] . We use Ubuntu 16.04.3 containers with Keras 2.1.2 and Tensor-

ow 1.4.1.

Micro Data Center Configuration: For the deployment, we use het-

rogeneous hardware configurations shown in Table 2 . The servers have

ifferent number of processors, cores and threads. Configurations F, G

nd H also support hyper-threads but we disabled them in our setting.

e randomly select from a uniform distribution of the 16 servers speci-

ed in Table 2 and assign four of them to each MDC. In addition, for each

erver, the interference load and their profiles are selected randomly

uch that the servers have medium to high load without any resource

ver-commitment, which is typical of data centers [26] . Although the

DCs are connected to each other over LAN in our setup, to emulate

ANs with multi-hop latencies, we used www.speedtest.net on intra-

ity servers for ping latencies and found 32.6 ms as the average latency.

o, we added 32.6 ms ping latency with a 3 ms deviation between WAPs

sing the netem network emulator.

The Docker guest application has been assigned 2 GB memory and

 CPU-pinned cores. For our experimentation, we use a server applica-

ion that listens on TCP port for receiving the images and sending the

esponse. Please note, our framework is independent of the communi-

ation mechanism as long as we have an accurate measure of network

atency for the size of data transferred. Thus, we could also support UDP

unreliable) and HTTP (longer latency).

The size of a typical frame in our experiment is 30 KB. For the co-

ocated workloads that cause performance interference, we use 6 dif-

erent test applications from the Phoronix test suite (www.phoronix-

est-suite.com/), which are either CPU, memory or disk intensive, and

ur target latency-sensitive applications, which involve Tensorflow in-

erence algorithms.

.3. Empirical results

To obtain the response time, we need the edge-based task execution

ime, and the fog-based execution time plus network delay. In Equation

3) , there are three main components, t local (u), t remote (u, s) and t network (u,

, p) and we need accurate estimates of all three at deployment time such

hat we could adhere to SLO requirements. t local (u) has negligible varia-

ions as long as the client device is running only the target application

 which is a fair assumption for the mobile devices.

When the MinnowBoard Linux client device processes a 224 ×224

rame, the measured mean execution times for MobileNet and Inception

3 are 434 ms and 698.6 ms, with standard deviations of 8.6 ms and

2.9 ms, respectively.

Since we have already measured the efficacy of NUMA-aware de-

loyment in Fig. 5 , we employ NUMA-awareness in all the experimental

cenarios.

.3.1. Accuracy of performance estimation

We report on the accuracy of the offline learned performance mod-

ls. For t remote (u, s), in addition to hardware type w , we also consider

he server load. We first measure t isolation (u, w) for each hardware type

iven in Table 2 , and the results are shown in Fig. 7 a. We observe that

he CPU speed, memory and cache bandwidth and the use of hyper-

hreads instead of physical cores play a significant role in the result-

ng performance. Thus, the use of a per-hardware configuration perfor-

ance model is a key requirement met by URMILA. We also profile the

erformance interference using gradient tree boosting regression model

ith tools we developed in [7] .

Fig. 7 b shows the estimation errors on different hardwares, which

re well within 10% and hence can be used in our response time esti-

ations by allowing for a corresponding margin of error.

https://goo.gl/cMxdtZ
http://www.speedtest.net
http://www.phoronix-test-suite.com/

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Table 2

Server architectures.

Conf sockets/cores/ threads/ GHz L1/L2/L3 Cache(KB) Mem Type/ MHz/GB Count

A 1/4/2/2.8 32/256/8192 DDR3/1066/6 1

B 1/4/2/2.93 32/256/8192 DDR3/1333/16 2

C 1/4/2/3.40 32/256/8192 DDR3/1600/8 1

D 1/4/2/2.8 32/256/8192 DDR3/1333/6 1

E 2/6/1/2.1 64/512/5118 DDR3/1333/32 7

F 2/6/1/2.4 32/256/15360 DDR4/2400/64 1

G 2/8/1/2.1 32/256/20480 DDR4/2400/32 2

H 2/10/1/2.4 32/256/25600 DDR4/2400/64 1

Fig. 7. Performance Estimation Model Evaluations.

5

m

c

t

s

i

n

E

e

s

s

i

a

r

l

g

t

W

s

w

c

a

u

a

l

a

m

f

Fig. 8. Signal Strength and Network Latency Variations with Distance.

f

i

5

e

d

a

a

t

c

o

t

i

s

(

g

h

(

i

l

U

9

e

9

P
.3.2. Accuracy of latency estimation

We evaluate the accuracy of URMILA’s network latency estimation

odule that calculates t network (u, s, p). From Eq. (2) , there are two main

omponents to it: last-hop latency, t u,ap (u,p) and WAN latency, t ap (u,p), ap (s) .

 ap (u,p), ap (s) remains stable over a duration of time [27,28] which is

ufficient for URMILA scenarios and we emulate these as described

n Section 5.2 . Thus, we are left with t u,ap (u,p) . As the received sig-

al strength is a key factor for last hop latency, we determine 𝛾 for

q. (14) for a typical access point described in Section 5.2 for the indoor

nvironment of our lab. We used the Android device to measure signal

trength and network latency for the used data transfer size. Fig. 8 a

hows the results where we found 𝛾 to be 1.74, inline with the expected

ndoor value of 1.6-1.8 as described in Section 4.3 . Fig. 8 b, affirms our

ssertion that network latency remains near constant within a fixed

ange of received signal strength.

Next, we measure network latency for five different routes on our se-

ected campus area with 18 WAPs. We chose 𝛾 = 2 for outdoors [17] and

enerated varied signal strengths for the entire path on five routes. Using

hese values, we setup the WAPs such that the client device experiences

AP handovers and regions with no connectivity. Fig. 9 shows the re-

ults for the five routes (R1–R5). The shaded areas show the regions

ith no network connectivity and regions with different colors show

onnectivity to different WAPs. The green line is the signal strength

nd the black line is the mean latency. There are gaps in latency val-

es, which indicate that the client device is performing handover to the

ccess point. We observe from these plots that even though the mean

atency values are low when connected to the wireless network, there

re large latency deviations. For example, on route R1 at 𝑡 = 400 s, the

ean latency is 52ms but the 99th percentile latency is 384ms. Hence,

or ensuring SLOs, we need to use the required SLO percentile values
rom our database of network latencies on the user’s route as described

n Algorithm 1 .

.3.3. Efficacy of URMILA’s fog server selection

We evaluate how effective is URMILA’s server selection technique in

nsuring that SLOs are met. We evaluate the system for the five routes

escribed above and set four of the 18 available access points as MDCs

nd assign servers as described in Section 5.2 . We compare URMILA

gainst different mechanisms. One approach is when we perform every-

hing locally (Local), and another approach is the maximum network

overage (Max Coverage) algorithm, where the server is selected based

n the network connectivity.

For this set of experiments, we keep the deployment (Eq. (4)) and

ransfer (Eq. (5)) costs constant in our Algorithm 1 for all the scenar-

os. We also set the required SLO at 95 th percentile of the desired re-

ponse time of 500ms (2 fps). We then optimize for energy consumption

 Eq. (6)) while meeting the constraints (Eqs. (8) - (13)).

Fig. 10 a reveals that if we run higher accuracy Inception as the tar-

et application, the Local mode always misses the deadline of 500ms,

owever, the lower accuracy MobileNet always meets the deadline

 Fig. 10 b). Nevertheless, from Fig. 11 we observe that while execut-

ng higher accuracy Inception V3 algorithm, URMILA consumed 39.61%

ess energy compared to Local mode on an average. Fig. 10 d shows that

RMILA meets the SLO 95% of the time for all routes while consuming

.7% less energy in comparison to Max Coverage (Fig. 10 c).

The Max Coverage algorithm performed worse than URMILA for en-

rgy consumption and on 4 out of 5 routes for response time consumes

.7%. For these experiments Least loaded performs at par with URMILA.

lease note as URMILA considers both the server load and and network

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Fig. 9. Observed Mean, Std Dev, 95 th and 99 th Percentile Network Latencies and Received Signal Strengths on Emulated Routes.

Fig. 10. Response Time for Different Techniques on the Routes. and depict the 95 th and 99 th percentile, respectively.

Fig. 11. Energy Consumption Comparison.

c

a

t

i

h

t

1

p

s
overage, it will perform at least at par to the other two techniques for

ssuring SLOs.

We now demonstrate the scenario when URMILA performs better

hat Least loaded . In our current experimental setup, we considered there

s similar latencies between the access points 𝑡 𝑎𝑝 (𝑢, 𝓁) ,𝑎𝑝 𝑖 and for the last

op, t u,ap (u , 𝓁) channel utilization and connected users are less. However,

his is not usually the case. Thus, we introduce use a latency value of

00.0ms with 10% deviation for some of the access points. In real de-

loyments, URMILA will be aware of this latency by WAP to WAP mea-

urements. Thus, as depicted in Fig. 12 , for Least Loaded , SLOs will be

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Fig. 12. Response Time Comparison for Route R5 when one of the WAP is Ex-

periencing Larger Latency.

Table 3

Transfer and initialization cost measurements.

Image Size (MB) Duration at 10 Mbps Duration at 1 Mbps

Cached - 13.2s 13.46s

Overlay 1 111 31.6s 127.08s

Overlay 2 440 50.26s 261.87s

v

t

c

c

b

i

a

s

f

t

6

t

e

a

s

c

p

o

k

t

6

m

F

f

u

a

s

a

i

b

g

(

i

o

p

m

e

h

a

f

a

a

6

d

t

b

d

h

u

a

r

m

d

c

a

u

a

p

c

c

f

p

c

c

l

m

a

6

j

s

r

i

t

p

e

m

p

t

p

t

P

b

a

t

w

u

b

o

L

a

f

n

c
iolated even for best performing server due to the ignorance about

he network communication delay. However, URMILA’s robust runtime

omponent is aware of the deployment plan and performs execution lo-

ally for the WAPs that cannot meet the constraints.

In the above experiments, we considered that there is sufficient gap

etween when the user requests the service and when she actually needs

t. However, this may not be true and we need to consider the transfer

nd initialization costs of Eq. (5) . We setup Docker private registry and

haped the network bandwidth such that we could do the measurements

or image overlays being transferred of different sizes. Table 3 depicts

he same.

. Related work

Since URMILA considers the three dimensions of performance in-

erference issues, mobility-aware resource management and exploiting

dge/fog holistically, we provide a sampling of the prior work in these

reas and compare the URMILA solution with these efforts. An earlier,

horter version of the URMILA work appears in [9] . This paper signifi-

antly improves upon the earlier version by providing an optimization

roblem formulation, more details on the latency estimation and effects

f corepinning, and detailed steps during run-time. To the best of our

nowledge, we have not found any prior efforts that consider all these

hree dimensions simulataneously.

.1. Performance interference-aware resource optimization

There have been a number of prior efforts that account for perfor-

ance interference during server selection to host cloud jobs. Bubble-

lux [4] is a dynamic interference measurement framework that per-

orms online QoS management while maximizing server utilization and

ses a dynamic memory bubble for profiling by pausing other co-located

pplications. Freeze’nSense [29] is another approach that performs a

hort duration freezing of interfering co-located tasks. The advantage of

n online solution is that an a priori knowledge of the target application

s not required and it does not need additional hardware resources for

enchmarking. Although in these works, a priori knowledge of the tar-

et application is not required nor extra benchmarking efforts, pausing

even for short duration) of co-located applications is not desirable and

n several cases not even possible as these applications will have their

wn SLOs to be met.

DeepDive [30] is a benchmarking based effort that identifies the

erformance interference profile by cloning the target VM and bench-

arking it when QoS violations are encountered. However, this is too

xpensive an operation to be employed at run-time. Paragon [2] is a
eterogeneity- and interference-aware data center scheduler the applies

nalytical techniques to reduce the benchmarking workload. URMILA

alls in this category of work, nevertheless, it goes a step further and

lso considers scheduler-specific metrics which play a significant role in

ccurate performance estimation on multi-tenant platforms.

.2. Mobility-aware resource management

MOBaaS [31] is a mobile and bandwidth prediction service based on

ynamic Bayesian networks. Sousa et al. [6] utilize MOBaaS to enhance

he follow-me cloud (FMC) model, where they first perform mobility and

andwidth prediction with MoBaaS and then apply a multiple attribute

ecision algorithm to place services. However, this approach needs a

istory of mobility patterns by monitoring the users. URMILA currently

ses a deterministic path for the user, which provides a more accurate

nd efficient solution. However, future work will explore probabilistic

outes taken by the mobile user.

MuSIC defines applications as location-time workflows, and opti-

izes their QoS expressed as the power of the mobile device, network

elay and price [32] . Like MuSIC, URMILA aims to minimize energy

onsumption of edge devices, communication costs, and cost of oper-

ting fog resources. Unlike MuSIC, which evaluates its ideas via sim-

lations, URMILA has been evaluated empirically. In addition, MuSIC

ssumes certain variations in network patterns without applying any

rediction/estimation methodology, while URMILA provides concrete

apabilities to predict/estimate network behavior.

Additional prior work includes [33] , which considers different

lasses of mobile applications and apply three scheduling strategies on

og resources. Likewise, Wang et al. [34] account for user mobility and

rovide both offline and online solutions for deploying service instances

onsidering a look-ahead time-window. Both these approaches do not

onsider edge resources for optimization as we do in URMILA. Simi-

arly, ME-VoLTE [35] is an approach to offload video encoding from

obile devices to cloud for reducing energy consumption. However, the

pproach does not consider latency issues when offloading.

.3. Resource management involving fog/edge resources:

Cloudlet [1] is a miniature data center closer to the user, possibly

ust one wireless hop away, that is meant to overcome the latency is-

ues faced by edge-based applications that must use centralized cloud

esources that are many network hops away. This vision was refined

nto a three tier architecture [8] comprising the edge, fog and cloud

iers. This is the model used by URMILA.

CloudPath [36] expands on the cloud-fog-edge architecture [8] by

roposing the notion of path computing comprising n tiers between the

dge and the cloud, where applications can be dynamically hosted to

eet their processing and storage requirements. CloudPath requires ap-

lications to be stateless and made up of short-lived functions – similar

o the notion of function-as-a-service , which is realized by serverless com-

uting solutions with state in externalized databases. We believe that

he research foci of CloudPath and URMILA are orthogonal; the Cloud-

ath platform and its path computing paradigm can potentially be used

y URMILA to host its services and by incorporating our optimization

lgorithm in CloudPath’s platform.

The LAVEA project [37] comes close to our vision of URMILA yet

heir goals are complementary. LAVEA supports a video analytics frame-

ork that executes in the fog/edge hierarchy similar to URMILA. They

se a slightly different terminology referring to the edge devices as mo-

ile devices, and fog devices as edge devices. “Edge-first ” (i.e., execute

n the fog resources) is the main philosophy for LAVEA. Like CloudPath,

AVEA also leverages serverless computing thereby requiring stateless

pplications. LAVEA focuses on scheduling and prioritizing tasks on the

og resources when multiple, independent client jobs get offloaded to fog

odes. It also supports coordination among fog nodes. While URMILA

an certainly benefit from LAVEA’s fog node scheduling algorithms, it

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

f

t

e

U

e

e

n

t

U

t

d

f

s

c

i

g

U

i

g

m

7

a

s

h

p

E

r

h

s

a

7

p

u

r

t

t

a

t

s

a

f

w

p

s

7

c

e

l

t

a

o

w

e

a

o

a

b

s

o

a

p

m

H

m

n

h

t

l

t

a

p

c

a

a

b

l

v

o

b

D

i

t

A

1

t

o

a

R

ocuses on ensuring SLOs of individual services and makes every effort

o maintain high availability of the service by executing it either on the

dge or the fog node, and moreover, also allows mobility of users.

Precog [38] is another edge-based image recognition system. Like

RMILA they also recognize the need to conserve battery resources on

dge devices and hence can perform selective image recognition on the

dge devices. To speed up execution on fog nodes, they support the

otion of the so called recognition cache, which prefetch only parts of

he trained models that are used to recognize images. Unlike Precog,

RMILA performs these tasks by maintaining two different versions of

he service: one that can execute on the edge and one on the fog, and

ynamically switches between them to meet the SLOs.

Our prior work called INDICES [7] is an effort that exploits the cloud-

og tiers. INDICES decides the best cloudlet (i.e., fog resource) and the

erver within that cloudlet to migrate a service from the centralized

loud so that SLOs are met. INDICES does not handle user mobility and

ts focus is only on selecting an initial server on a fog resource to mi-

rate to. It does not deal with executing tasks on the edge device. Thus,

RMILA’s goals are to benefit from INDICES’ capabilities by exploit-

ng its initial server selection in the fog layer and extend it by intelli-

ently adapting between fog and edge resources while supporting user

obility.

. Conclusion

Although fog/edge computing have enabled low latency edge-centric

pplications by eliminating the need to reach the centralized cloud,

olving the performance interference problem for fog resources is even

arder than traditional cloud data centers. User mobility amplifies the

roblem further since choosing the right fog device becomes critical.

xecuting the service at all times exclusively on the edge devices or fog

esources is not an alternative either. This paper presented URMILA to

olistically address these issues by adaptively using edge and fog re-

ources to make trade-offs while satisfying SLOs for mobility-aware IoT

pplications.

.1. Discussion and broader impact

URMILA has broader applicability beyond cognitive assistance ap-

lication that is evaluated in this work. For instance, URMILA can be

sed in cloud gaming (such as Pokemon GO), 3D modeling, graphics

endering, etc. We could apply URMILA for energy efficient route selec-

ion and navigation. For that, we can easily modify Algorithm 1 to find

he most energy efficient route.

By no means does URMILA address all the challenges in this realm

nd our future work will involve: (a) considering probabilistic routes

aken by the user; (b) evaluating URMILA in other applications, e.g.,

mart transportation where the speed is higher and distances covered

re larger so choosing only one fog server at initialization may not be

easible; (c) leveraging the benefits stemming from upcoming 5G net-

orks; and (d) showcasing URMILA’s strengths in the context of multi-

le competing IoT applications.

The software and experimental setup of URMILA is available in open

ource at github.com/doc-vu .

.2. Opportunities for future work

The following form the dimensions of our future work.

Last Hop latency: For un-profiled routes, we only considered re-

eived signal strength for wireless network latency estimation. How-

ver, channel utilization and connected users play a significant role in

atency variations. To overcome this potentially less accurate latency es-

imation, we can collect these metrics from WAPs, but this will require

ccess to their data. Other option is to use a predictive approach based

n data collected for other profiled routes.
Speed of mobility and route determination: For the user mobility,

e considered constant speed mobility and deterministic routes, how-

ver, in general the user can deviate from the ideal route and have

 varying velocity. This may render the initial deployment plan sub-

ptimal. We account for this in our server allocation, but, the runtime

lgorithm can further be improved to intelligently adjust the route plan

ased on current dynamics and probabilistic routes.

Overhead: URMILA incurs cost for both the client device and the

ervice provider due to metric collection on each server. The overhead

f INDICES monitoring agents [7] is ≈ 1%. We also need to maintain

 database of performance metrics at each MDC and the gm needs to

erform learning. In addition, the cost of profiling each new application

ay not be insignificant depending on the lifespan of the application,

owever, this is a one time cost and is required for overcoming perfor-

ance interference. On the client device, we made a conscious effort to

ot to use GPS coordinates while the user is mobile. This is because GPS

as significant energy overhead and we did not want our application

o be limited to navigational applications. In addition, turning on wire-

ess and handovers are expensive. However, most mobile devices have

heir wireless service turned on these days, so we do not consider it as

dditional cost.

Serverless Computing: Since we target containerized stateless ap-

lications, we could potentially make our solution apt for serverless

omputing, wherein the same containers are shared by multiple users

nd the application scale as the workload varies, and are highly avail-

ble.

Future Direction: Apart from what we discussed, our solution can

e enhanced by controlling frame rates based on the user needs and

ocation. We considered monolithic applications, we could allocate ser-

ices with multiple components that are deployed across the spectrum

ptimally. In future, we could address concerns related to trust, privacy,

illing, fault tolerance and workload variations.

eclaration of Competing Interest s

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

cknowledgments

This work was supported in part by NSF US Ignite CNS

531079 , AFOSR DDDAS FA9550-18-1-0126 and AFRL/Lockheed Mar-

in’s StreamlinedML program. Any opinions, findings, and conclusions

r recommendations expressed in this material are those of the author(s)

nd do not necessarily reflect the views of these funding agencies.

eferences

[1] M. Satyanarayanan , Z. Chen , K. Ha , W. Hu , W. Richter , P. Pillai , Cloudlets: at the

leading edge of mobile-cloud convergence, in: Mobile Computing, Applications and

Services (MobiCASE), 2014 6th International Conference on, IEEE, 2014, pp. 1–9 .

[2] C. Delimitrou , C. Kozyrakis , Paragon: QoS-aware scheduling for heterogeneous dat-

acenters, in: ACM SIGPLAN Notices, 48, ACM, 2013, pp. 77–88 .

[3] W. Kuang , L.E. Brown , Z. Wang , Modeling cross-architecture Co-tenancy perfor-

mance interference, in: 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), IEEE, 2015, pp. 231–240 .

[4] H. Yang , A. Breslow , J. Mars , L. Tang , Bubble-flux: precise online QoS management

for increased utilization in warehouse scale computers, in: ACM SIGARCH Computer

Architecture News, 41, ACM, 2013, pp. 607–618 .

[5] S. Shekhar , H.A. Aziz , A. Bhattacharjee , A. Gokhale , X. Koutsoukos , Performance

interference-aware vertical elasticity for cloud-hosted latency-sensitive applications,

in: IEEE International Conference on Cloud Computing (CLOUD), San Francisco, CA,

USA, 2018, pp. 82–89 .

[6] B. Sousa , Z. Zhao , M. Karimzadeh , D. Palma , V. Fonseca , P. Simoes , T. Braun , H. Van

Den Berg , A. Pras , L. Cordeiro , Enabling a mobility prediction-aware Follow-Me

Cloud model, in: Local Computer Networks (LCN), 2016 IEEE 41st Conference on,

IEEE, 2016, pp. 486–494 .

[7] S. Shekhar, A. Chhokra, A. Bhattacharjee, G. Aupy, A. Gokhale, INDICES: exploit-

ing edge resources for performance-aware cloud-hosted services, in: IEEE 1st In-

ternational Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 2017,

pp. 75–80, doi: 10.1109/ICFEC.2017.16 .

http://github.com/doc-vu
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0006
https://doi.org/10.1109/ICFEC.2017.16

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

[

[

[

[

[

[

[

[

[

[

[/

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[8] M. Satyanarayanan , The emergence of edge computing, Computer 50 (1) (2017)

30–39 .

[9] S. Shekhar, A.D. Chhokra, H. Sun, A. Gokhale, A. Dubey, X. Koutsoukos, URMILA:

dynamically trading-off fog and edge resources for performance and mobility-aware

IoT services, in: IEEE Symposium on Real-Time Computing (ISORC 2019), Valencia,

Spain, 2019, pp. 118–125, doi: 10.1109/ISORC.2019.00033 .

10] J. Huang , F. Qian , A. Gerber , Z.M. Mao , S. Sen , O. Spatscheck , A close examination

of performance and power characteristics of 4g lte networks, in: Proceedings of the

10th international conference on Mobile systems, applications, and services, ACM,

2012, pp. 225–238 .

11] C. Gray , R. Ayre , K. Hinton , R.S. Tucker , Power consumption of IoT access network

technologies, in: Communication Workshop (ICCW), 2015 IEEE International Con-

ference on, IEEE, 2015, pp. 2818–2823 .

12] R. Balan , J. Flinn , M. Satyanarayanan , S. Sinnamohideen , H.-I. Yang , The case for

cyber foraging, in: Proceedings of the 10th workshop on ACM SIGOPS European

workshop, ACM, 2002, pp. 87–92 .

13] J. Mars , L. Tang , R. Hundt , K. Skadron , M.L. Soffa , Bubble-up: increasing uti-

lization in modern warehouse scale computers via sensible co-locations, in: 44th

Annual IEEE/ACM International Symposium on Microarchitecture, ACM, 2011,

pp. 248–259 .

14] X. Zhang , E. Tune , R. Hagmann , R. Jnagal , V. Gokhale , J. Wilkes , Cpi2: Cpu perfor-

mance isolation for shared compute clusters, in: Proceedings of the 8th ACM Euro-

pean Conference on Computer Systems, in: EuroSys ’13, ACM, New York, NY, USA,

2013, pp. 379–391 .

15] C. Xu , X. Chen , R.P. Dick , Z.M. Mao , Cache contention and application performance

prediction for multi-core systems, in: Performance Analysis of Systems & Software

(ISPASS), 2010 IEEE International Symposium on, IEEE, 2010, pp. 76–86 .

16] K. Sui , M. Zhou , D. Liu , M. Ma , D. Pei , Y. Zhao , Z. Li , T. Moscibroda , Characterizing

and improving WiFi latency in large-scale operational networks, in: 14th Annual

International Conference on Mobile Systems, Applications, and Services, in: MobiSys

’16, ACM, New York, NY, USA, 2016, pp. 347–360 .

17] T.S. Rappaport , et al. , Wireless Communications: Principles and Practice, 2, prentice

hall PTR New Jersey, 1996 .

18] S. Shekhar, M. Walker, H. Abdelaziz, F. Caglar, A. Gokhale, X. Koutsoukos, A

simulation-as-a-service cloud middleware, J. Ann. Telecommun. 74 (3–4) (2016)

93–108, doi: 10.1007/s12243-015-0475-6 .

19] J. Rao , K. Wang , X. Zhou , C.-Z. Xu , Optimizing virtual machine scheduling in numa

multicore systems, in: High Performance Computer Architecture (HPCA2013), 2013

IEEE 19th International Symposium on, IEEE, 2013, pp. 306–317 .

20] Intel Resource Director Technology, 2019. https://www.intel.com/content/www/us

en/architecture-and-technology/resource-director-technology.html . Last accessed:

11.08.2019.

21] Y. Barve , S. Shekhar , S. Khare , A. Bhattacharjee , Z. Kang , H. Sun , A. Gokhale ,

FECBench: a lightweight interference-aware approach for application performance

modeling, in: IEEE International Conference on Cloud Engineering (IC2E), Prague,

Czech Republic, 2019, pp. 211–221 .

22] E. Blasch , S. Ravela , A. Aved , Handbook of Dynamic Data Driven Applications Sys-

tems, Springer, 2018 .

23] J. Elith , J.R. Leathwick , T. Hastie , A working guide to boosted regression trees, J.

Anim. Ecol. 77 (4) (2008) 802–813 .

24] K.G. Hooper , H.W. McGee , Driver Perception-Reaction Time: Are Revisions to Cur-

rent Specification Values in Order? Technical Report, 1983 .

25] W. Felter , A. Ferreira , R. Rajamony , J. Rubio , An updated performance compar-

ison of virtual machines and linux containers, in: Performance Analysis of Sys-

tems and Software (ISPASS), 2015 IEEE International Symposium On, IEEE, 2015,

pp. 171–172 .

26] L.A. Barroso , J. Clidaras , U. Hölzle , The datacenter as a computer: an introduction

to the design of warehouse-scale machines, Synth. Lect. Comput. Architect. 8 (3)

(2013) 1–154 .

27] S.K. Barker , P. Shenoy , Empirical evaluation of latency-sensitive application perfor-

mance in the cloud, in: Proceedings of the first annual ACM SIGMM conference on

Multimedia systems, ACM, 2010, pp. 35–46 .

28] S. Sundaresan , W. De Donato , N. Feamster , R. Teixeira , S. Crawford , A. Pescapè,

Broadband internet performance: a view from the gateway, in: ACM SIGCOMM Com-

puter Communication Review, 41, ACM, 2011, pp. 134–145 .

29] A. Kandalintsev , D. Kliazovich , R. Lo Cigno , Freeze’nsense: estimation of perfor-

mance isolation in cloud environments, Software (2016) .

30] D. Novakovi ć, N. Vasi ć, S. Novakovi ć, D. Kosti ć, R. Bianchini , DeepDive: transpar-

ently identifying and managing performance interference in virtualized environ-

ments, in: USENIX Conference on Annual Technical Conference, in: USENIX ATC’13,

USENIX Association, Berkeley, CA, USA, 2013, pp. 219–230 .

31] M. Karimzadeh , Z. Zhao , L. Hendriks , R. Schmidt , S. la Fleur , H. van den Berg ,

A. Pras , T. Braun , M.J. Corici , Mobility and bandwidth prediction as a service in

virtualized LTE systems, in: Cloud Networking (CloudNet), 2015 IEEE 4th Interna-

tional Conference on, IEEE, 2015, pp. 132–138 .

32] M.R. Rahimi , N. Venkatasubramanian , A.V. Vasilakos , MuSIC: mobility-aware opti-

mal service allocation in mobile cloud computing, in: Cloud Computing (CLOUD),

2013 IEEE Sixth International Conference on, IEEE, 2013, pp. 75–82 .

33] L.F. Bittencourt , J. Diaz-Montes , R. Buyya , O.F. Rana , M. Parashar , Mobility-aware

application scheduling in fog computing, IEEE Cloud Comput. 4 (2) (2017) 26–35 .

34] S. Wang , R. Urgaonkar , T. He , K. Chan , M. Zafer , K.K. Leung , Dynamic service place-

ment for mobile micro-clouds with predicted future costs, IEEE Trans. Parallel Dis-

trib. Syst. 28 (4) (2017) 1002–1016 .

35] M.T. Beck , S. Feld , A. Fichtner , C. Linnhoff-Popien , T. Schimper , Me-volte: Network

functions for energy-efficient video transcoding at the mobile edge, in: Intelligence
in Next Generation Networks (ICIN), 2015 18th International Conference on, IEEE,

2015, pp. 38–44 .

36] S.H. Mortazavi , M. Salehe , C.S. Gomes , C. Phillips , E. de Lara , CloudPath: a multi-tier

cloud computing framework, in: Second ACM/IEEE Symposium on Edge Computing,

ACM, 2017, p. 20 .

37] S. Yi , Z. Hao , Q. Zhang , Q. Zhang , W. Shi , Q. Li , Lavea: latency-aware video analytics

on edge computing platform, in: Proceedings of the Second ACM/IEEE Symposium

on Edge Computing, ACM, 2017, p. 15 .

38] U. Drolia , K. Guo , P. Narasimhan , Precog: prefetching for image recognition appli-

cations at the edge, in: Proceedings of the Second ACM/IEEE Symposium on Edge

Computing, ACM, 2017, p. 17 .

Dr. Shashank Shekhar is a Research Scientist at Siemens Cor-

porate Technology,Princeton, NJ in the Internet of Things/

Distributed Computing research group. He obtained his Ph.D.

in Computer Science in 2018 from Vanderbilt University,

Nashville, TN. He received his B.E. in Computer Science and

Engineering from Manipal Institute of Technology, Manipal,

KR, India in 2006. He has extensive experience in industrial

research and development and worked for Hewlett Packard,

Teradata and Red Hat. His research interest lies at the intersec-

tion of performance engineering, resource management and

machine learning for IoT and cloud-based systems. His current

research focuses on middleware and intelligent scheduling al-

gorithms for edge computing.

Ajay Dev Chhokra is currently a PhD student in the Depart-

ment of Electrical Engineering and Computer Science at Van-

derbilt University, Nashville, TN, USA. His research interests

are in fault diagnostics for cyber physical systems. He obtained

his Bachelor’s degree in Electronics Engineering from Punjab

Technical University.

Dr. Hongyang Sun is currently a research assistant professor

in the Department of Electrical Engineering and Computer Sci-

ence at Vanderbilt University. He received his Ph.D. in Com-

puter Science from Nanyang Technological University, Singa-

pore. Prior to joining Vanderbilt, he has worked as a postdoc

researcher at IRIT and INRIA in France. His research inter-

ests include runtime systems and resource scheduling for high-

performance computing (HPC) and cloud computing, with a

particular focus on improving the performance, energy effi-

ciency, and resilience of large systems and applications. He

has co-authored more than 50 peer-reviewed journal and con-

ference publications related to HPC and cloud computing, and

has served on the Technical Program Committee of many con-

ferences in these field.

Dr. Aniruddha S. Gokhale is a Full Professor in the Depart-

ment of Electrical Engineering and Computer Science, and Se-

nior Research Scientist at the Institute for Software Integrated

Systems (ISIS) both at Vanderbilt University, Nashville, TN,

USA. His current research focuses on developing novel re-

source management solutions to emerging challenges in edge-

to-cloud computing, real-time stream processing, and pub-

lish/subscribe systems. Dr. Gokhale obtained his B.E (Com-

puter Engineering) from University of Pune, India, 1989; MS

(Computer Science) from Arizona State University, 1992; and

D.Sc (Computer Science) from Washington University in St.

Louis, 1998. Prior to joining Vanderbilt, Dr. Gokhale was a

member of technical staff at Lucent Bell Laboratories, NJ. Dr.

Gokhale is a Senior member of both IEEE and ACM, and a

member of ASEE. His research has been funded over the years

by DARPA, DoD, industry and NSF including a NSF CAREER

award in 2009.

Dr. Abhishek Dubey is an Assistant Professor of Electri-

cal Engineering and Computer Science at Vanderbilt Univer-

sity, Senior Research Scientist at the Institute for Software-

Integrated Systems and co-lead for the Vanderbilt Initiative for

Smart Cities Operations and Research (VISOR). He has exten-

sive experience in middleware, data analytics and toolchains

for cyber-physical systems (NASA Aviation Safety Program,

DARPA F6, AFOSR Resilient Software Systems and NSF Smart

and Connected Community Programs), with an emphasis on

transportation and power networks. He currently leads sev-

eral projects in resilient cyber-physical systems.

http://refhub.elsevier.com/S1383-7621(20)30004-7/othref0001
http://refhub.elsevier.com/S1383-7621(20)30004-7/othref0001
https://doi.org/10.1109/ISORC.2019.00033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0016
https://doi.org/10.1007/s12243-015-0475-6
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0018
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0019
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0026
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0030
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0035
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0036
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0036
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0036
http://refhub.elsevier.com/S1383-7621(20)30004-7/sbref0036

S. Shekhar, A. Chhokra and H. Sun et al. Journal of Systems Architecture 107 (2020) 101710

Dr. Xenofon Koutsoukos received the Ph.D. degree in elec-

trical engineering from the University of Notre Dame, Notre

Dame, IN, USA, in 2000. He is a Professor with the Department

of Electrical Engineering and Computer Science and a Senior

Research Scientist with the Institute for Software Integrated

Systems (ISIS), Vanderbilt University, Nashville, TN, USA. He

was a Member of Research Staff at the Xerox Palo Alto Re-

search Center (PARC) (2000-2002), working in the embedded

collaborative computing area. His research work is in the area

of cyber-physical systems with emphasis on formal methods,

data-driven methods, distributed algorithms, security and re-

silience, diagnosis and fault tolerance, and adaptive resource

management. He has published more than 250 journal and

conference papers and he is co-inventor of four US patents.

Prof. Koutsoukos was the recipient of the NSF Career Award in

2004, the Excellence in Teaching Award in 2009 from the Van-

derbilt University School of Engineering, and the 2011 NASA

Aeronautics Research Mission Directorate (ARMD) Associate

Administrator (AA) Award in Technology and Innovation. He

was named a Fellow of the IEEE for his contributions to the

design of resilient cyber-physical systems.
Dr. Gabor Karsai (Senior Member, IEEE) received the B.Sc.,

M.Sc., and Dr. Techn. degrees from the Technical University

of Budapest, Budapest, Hungary, in 1982, 1984, and 1988, re-

spectively, and the Ph.D. degree from Vanderbilt University,

Nashville, TN, USA, in 1988. He is a Professor of Electrical En-

gineering and Computer Science at Vanderbilt University and

Senior Research Scientist and Associate Director at the Insti-

tute for Software-Integrated Systems. He has over 25 years

of experience in research on systems and software engineer-

ing. He conducts research in the design and implementation of

embedded systems, in programming tools for visual program-

ming environments, and in the theory and practice of model-

integrated computing.

	URMILA: Dynamically trading-off fog and edge resources for performance and mobility-aware IoT services
	1 Introduction
	2 System model and assumptions
	2.1 System model
	2.2 Application model
	2.3 User mobility and client session

	3 URMILA problem formulation
	3.1 Formal notation for the system parameters
	3.2 Developing the problem statement
	3.2.1 Characterizing the total response time
	3.2.2 Characterizing the total cost

	3.3 Optimization problem

	4 URMILA design and implementation
	4.1 Overview of URMILA’s expected runtime behavior
	4.2 Route computation
	4.3 Latency estimation
	4.4 Fog server selection
	4.4.1 Offline performance model learning
	4.4.2 Online server selection

	4.5 Runtime phase

	5 Experimental validation
	5.1 IoT application use case
	5.2 Experimental setup
	5.3 Empirical results
	5.3.1 Accuracy of performance estimation
	5.3.2 Accuracy of latency estimation
	5.3.3 Efficacy of URMILA’s fog server selection

	6 Related work
	6.1 Performance interference-aware resource optimization
	6.2 Mobility-aware resource management
	6.3 Resource management involving fog/edge resources:

	7 Conclusion
	7.1 Discussion and broader impact
	7.2 Opportunities for future work

	Declaration of Competing Interests
	Acknowledgments
	References

