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a b s t r a c t 

In recent years, state-of-the-art traffic-control devices have evolved from standalone hardware to net- 

worked smart devices. Smart traffic control enables operators to decrease traffic congestion and envi- 

ronmental impact by acquiring real-time traffic data and changing traffic signals from fixed to adap- 

tive schedules. However, these capabilities have inadvertently exposed traffic control to a wide range 

of cyber-attacks, which adversaries can easily mount through wireless networks or even through the 

Internet. Indeed, recent studies have found that a large number of traffic signals that are deployed in 

practice suffer from exploitable vulnerabilities, which adversaries may use to take control of the devices. 

Thanks to the hardware-based failsafes that most devices employ, adversaries cannot cause traffic ac- 

cidents directly by setting compromised signals to dangerous configurations. Nonetheless, an adversary 

could cause disastrous traffic congestion by changing the schedule of compromised traffic signals, thereby 

effectively crippling the transportation network. To provide theoretical foundations for the protection of 

transportation networks from these attacks, we introduce a game-theoretic model of launching, detecting, 

and mitigating attacks that tamper with traffic-signal schedules. We show that finding optimal strategies 

is a computationally challenging problem, and we propose efficient heuristic algorithms for finding near 

optimal strategies. We also introduce a Gaussian-process based anomaly detector, which can alert oper- 

ators to ongoing attacks. Finally, we evaluate our algorithms and the proposed detector using numerical 

experiments based on the SUMO traffic simulator. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The evolution of traffic signals from standalone hardware de-

ices to complex networked systems has provided society with

any benefits, such as reducing wasted time and environmental

mpact. However, it has also exposed traffic signals to a variety of

yber-attacks. While traditional hardware systems were suscepti-

le only to attacks based on direct physical access, modern sys-

ems are vulnerable to attacks through wireless interfaces or even

o remote attacks through the Internet. To assess the severity of

hese threats in practice, Ghena et al. recently analyzed the secu-

ity of real-world traffic infrastructure in cooperation with a road

gency located in Michigan ( Ghena et al., 2014 ). This agency op-

rates around a hundred traffic signals, which are all part of the

ame wireless network, but the signals at every intersection oper-

te independently of the other intersections. The study found three
∗ Corresponding author. 
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ajor weaknesses in the traffic infrastructure: lack of encryption

or the wireless network, lack of secure authentication due to the

se of default usernames and passwords on the devices, and the

resence of exploitable software vulnerabilities. 

While all of these known weaknesses could be eliminated, it

s extremely difficult to ensure that devices are free of any un-

nown weaknesses. In general, it is virtually impossible—or pro-

ibitively expensive—to ensure that a system is perfectly secure.

n addition to the general difficulty of attaining perfect security,

raffic-control devices pose further challenges. Similar to other dis-

ributed cyber-physical systems, traffic-control systems have large

ttack surfaces, and they often have long system lifetime and com-

licated software-upgrade procedures, which makes fixing vulner-

bilities difficult. Consequently, operators cannot hope to stop all

yber-attacks since a determined and sophisticated attacker might

lways find a way to compromise some of the devices. There-

ore, instead of focusing solely on the first line of defense, opera-

ors must also consider minimizing the impact of successful cyber-

ttacks. 

https://doi.org/10.1016/j.cose.2019.101576
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101576&domain=pdf
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Table 1 

List of symbols. 

Symbol Description 

Traffic model 

Q i Maximum number of vehicles that can flow into or out of 

cell i 

δi Ratio between free-flow speed and backward propagation 

speed of cell i 

N i Maximum number of vehicles in cell i 

d i Demand (inflow) at source cell i 

�−1 (i ) Set of predecessor cells to cell i 

p t 
ki 

Inflow proportion from cell k to signalized intersection i 

I Set of signalized intersections 

Game constants and functions 

I D Set of signalized intersections with attack detectors 

B Attacker’s budget for compromising traffic signals 

�D ( D , A ) Detection delay for detector configuration D and attack A 

�M Length of mitigation (before returning to normal operation) 

T Congestion with default traffic control 

T A ( A ) Congestion as a result of attack A (before mitigation) 

C Cost of investigating a false alarm 

T M ( A , M ) Congestion after mitigation M of attack A 

G(D , A , M) Attacker’s gain for actions ( D , A , M ) 

L (D , A , M) Defender’s loss for actions ( D , A , M ) 

Game variables 

D Defender’s detector configuration action (Stage I) 

D i False-positive rate of detector at intersection i ∈ I D 
A = (I A , ̂  p ) Attacker’s attack action (Stage II) 

I A Set of signals compromised by the attacker 

ˆ p ki Modified (by attack or mitigation) inflow proportion from 

cell k to intersection i 

M Defender’s mitigation action (Stage III) 

1

 

S  

i  

S  

p  

a  

t  

n  

S  

p  

t  

w

2

 

a  

t  

c  

a  

e  

w  

t

2

 

fi  

o  

b  
Due to hardware-based failsafes, compromising a traffic signal

does not allow an attacker to set the signal to an unsafe config-

uration that would lead to traffic accidents, such as giving green

light to two intersecting directions. However, compromising a sig-

nal does enable tampering with its schedule, which allows the at-

tacker to cause disastrous traffic congestion. Such malicious cyber-

attacks may be launched by any adversary whose interest is to

case disruption and damage, ranging from cyber-terrorists to dis-

gruntled ex-employees. For instance, during the Los Angeles traffic

engineers’ 2006 strike, two disgruntled employees allegedly pen-

etrated the traffic-control system of the city, and reprogrammed

the traffic lights of four intersections to cause congestion: “[t]he

red signal would be on too long for the critical approach and the

green signal would be on too long for the noncritical approach,

thus resulting in long backups into the airport and other key in-

tersections around the city” ( Bernstein and Blankstein, 2007 ). Fur-

thermore, terrorists could also mount these attacks in conjunction

with physical attacks, thereby increasing their impact (e.g., delay-

ing ambulances and firefighters). 

To minimize the impact of attacks tampering with traffic sig-

nals, operators must be able to detect and mitigate them promptly

and effectively. In practice, the detection of novel cyber-attacks

poses multiple challenges. Since signature-based detectors are in-

effective against novel attack, operators must employ anomaly-

based detectors. However, these detectors are prone to raising

false alarms, which must be investigated manually, resulting in

a waste of manpower and resources. Considering the relative

scarcity of attacks, the cost of these investigations may exceed

the benefit of early attack detection and mitigation. Therefore,

when configuring the sensitivity of detectors, operators must care-

fully balance the cost of false alarms and the risk from de-

layed detection. Moreover, sophisticated attackers can act strate-

gically by mounting stealthy attacks, which delay detection but

still cause significant impact. In light of this, operators must

also plan their defense strategically, by anticipating the attackers’

responses. 

1.1. Contributions 

In Laszka et al. (2016b) , we introduced an approach for evalu-

ating the vulnerability of transportation networks to cyber-attacks

that tamper with traffic-control devices. In this paper, we extend

this approach by considering detectors and countermeasures that

operators can implement to mitigate these attacks. In particular,

we introduce a game-theoretic model, in which an operator can

setup anomaly-based detectors and mitigate ongoing attacks by

reconfiguring traffic control. Similar to Laszka et al. (2016b) , we

build on the cell-transmission model introduced by Daganzo (1994,

1995) . To the best of our knowledge, our work is the first to con-

sider the problem of designing and deploying systems based on

traffic-sensors measurements to detect tampering attacks against

traffic control. Our main contributions in this paper are the follow-

ing: 

• We formulate a multi-stage security game that models the de-

tection and mitigation of cyber-attacks against transportation

networks. 

• We propose an efficient metaheuristic search algorithm for

finding detector configurations that minimize losses in the face

of strategic attacks. 

• We introduce an anomaly-based detector for attacks against

traffic control, which is built on a Gaussian-process based

model of normal traffic. 

• We evaluate our detector and algorithms based on detailed
simulations of traffic using SUMO. w  
.2. Outline 

The remainder of this paper is organized as follows. In

ection 2 , we introduce our game-theoretic model of detect-

ng and mitigating attacks against transportation networks. In

ection 3 , we present computational results on our model and

ropose efficient heuristic algorithms. In Section 4 , we introduce

 Gaussian-process based detector for attacks against traffic con-

rol. In Section 5 , we use detailed simulations of transportation

etworks to evaluate our detector and the heuristic algorithms. In

ection 6 , we discuss related work on the vulnerability of trans-

ortation networks, configuration of attack detectors, and game

heory for security of cyber-physical systems. Finally, in Section 7 ,

e offer concluding remarks. 

. Game-theoretic model of attacks on traffic signals 

In this section, we introduce our model of launching, detecting,

nd mitigating cyber-attacks against traffic control in transporta-

ion networks. Our model includes two agents: an attacker who

an launch cyber-attacks and a defender who attempts to detect

nd mitigate them. Since these agents may anticipate and react to

ach other’s actions, we formulate our model using game theory,

hich enables us to capture the strategic interactions between the

wo agents. For a list of symbols used in our model, see Table 1 . 

.1. Traffic model 

First, we introduce Daganzo’s cell transmission model, the traf-

c model on which our game-theoretic model, our analysis, and

ur numerical evaluation are built. Here, we provide only a very

rief summary of this traffic model, focusing on the notation that

ill be used throughout the paper. For a detailed description of the
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odel, we refer the reader to Daganzo (1994) , Daganzo (1995) and

iliaskopoulos (20 0 0) . 1 

The cell transmission model divides a road network into cells ,

hich represent homogeneous road segments, and divides time

nto uniform intervals . The length of a road segment corresponding

o a cell is equal to the distance traveled in light traffic by a typical

ehicle in one time interval. Each cell i has three sets of parame-

ers: N 

t 
i 

is the maximum number of vehicles that can be present

n cell i at time t ; Q 

t 
i 

is the maximum number of vehicles that can

ow into or out of cell i during time interval t ; and δt 
i 

is the ratio

etween the free-flow speed and the backward propagation speed

f cell i at time t (see Ziliaskopoulos, 20 0 0 for a detailed expla-

ation). 2 Cells that model road segments where vehicles can enter

raffic are called source cells , and each source cell i has a traffic de-

and parameter d t 
i 
, which is the number of vehicles entering traf-

c at cell i in time interval t . Cells where vehicles may exit traffic

re called sink cells . 

Every cell is connected to one or more other cells: cells that

orrespond to consecutive road segments or road segments that

re joined by an intersection are connected. The set of cells from

hich vehicles can move into cell i is called the set of predeces-

or cells , denoted by �−1 (i ) . Cell that have multiple predecessors

re called merging cells , while cells that are the predecessors of

ultiple cells are called sink cells . To model signal control at inter-

ections, we follow Daganzo’s proposition ( Daganzo, 1995 ) and in-

roduce the time-dependent parameters p t 
ki 

controlling the inflow

roportions of merging cell i . We let I denote the set of merging

ells that model signalized intersections. 

To solve the traffic model (i.e., to determine the traffic flow for

 given network and set of parameters), we use Ziliaskopoulos’s

inear programming approach ( Ziliaskopoulos, 20 0 0 ). The objective

f this linear program is the sum of the number of vehicles trav-

ling (i.e., number of vehicles on the road) over time, which is

learly equal to the total travel time of all the vehicles. As a con-

equence, we can use the value of the linear program—which can

e computed efficiently for a given instance—as a measure of net-

ork congestion. 

Finally, we consider relatively short-term attack scenarios, in

hich the parameters of the cells and the default (i.e., unattacked)

chedules of the traffic signals are constant. Hence, in our game-

heoretic model, we will omit the superscript t from Q 

t 
i 
, N 

t 
i 
, δt 

i 
,

nd p t 
ki 

. 

.2. Multi-stage security game 

We model defensive countermeasures and attacks in a trans-

ortation network as a two-player multi-stage security game be-

ween a defender and an attacker ( Laszka et al., 2019 ). The de-

ender represents the operator of the transportation network, who

an configure traffic-control devices and aims to minimize conges-

ion in the network. The attacker represents any strategic adver-

ary that can compromise and tamper with traffic signals and aims

o maximize congestion. 

In a nutshell, our game consists of the following three stages. 

I. Detector Configuration: In the first stage, the defender config-

ures detectors, which are deployed in the transportation net-

work, to detect cyber-attacks against traffic control. The de-

tectors may be traffic-anomaly based detectors or conventional

cyber-security intrusion detection systems (IDS). When config-

uring these detectors, the defender should anticipate the at-

tacker’s possible adversarial actions in the second stage. 
1 For readers who are familiar with the cell-transmission model, we recommend 

o continue with Section 2.2 . 
2 This constant is used to quantify how the speed of traffic decreases as the cell 

ecomes congested, and can model traffic phenomena such as shockwaves. 

f  

a  

fi  

r  

T  
II. Attack on Traffic Control: In the second stage, the attacker

mounts a cyber-attack against the transportation network by

compromising traffic signals and tampering with their sched-

ule to cause congestion. When choosing its attack, the attacker

must take into account both the detector configuration chosen

by the defender in the first stage as well as the defender’s pos-

sible mitigation actions in the third stage. 

II. Mitigation of Attack: In the third stage, the defender attempts

to mitigate the attack by changing the configuration of uncom-

promised traffic-control devices to minimize congestion. As this

is the final stage, mitigation simply needs to respond to the

particular attack that was launched in the second stage. Note

that once the defender detects an ongoing attack, it should also

try to regain control of the compromised devices as soon as

possible. However, since the devices may be physically scat-

tered throughout the transportation network, regaining control

of them can take a long time. For instance, an attacker could

have changed remote login passwords, severed communication-

network connections, etc., forcing the defender to physically

reset or reinstall compromised devices. Meanwhile, disastrous

traffic congestions may form in the transportation network,

which the defender must mitigate immediately. 

.2.1. Stages and strategic choices 

Next, we provide a detailed description of the three stages of

he game and the players’ action spaces. 

Stage I: Detector Configuration To detect stealthy cyber-attacks,

etectors are deployed on the traffic-control devices at a subset

 D of the signalized intersections I . These detectors can be either 

raffic-anomaly based detectors, such as the one that we will in-

roduce in Section 4 , or conventional cyber-security intrusion de-

ection systems. We assume that detectors are imperfect, which

eans that they may raise false alarms (when there is no attack

n progress) and they may detect actual attacks with some delay.

he rate of false-positive errors and detection delay both depend

n how sensitive a detector is: a more sensitive detector is more

ikely to raise false alarms but detects actual attacks earlier, and

ice versa. We assume that the operator can configure the sensi-

ivity of every one of the |I D | detectors individually. 

Specifically, in the first stage of the game, the defender chooses

 sensitivity configuration D for the detectors. For ease of pre-

entation, we let the sensitivity of the detector at each intersec-

ion i ∈ I D be represented by the false-positive rate of the detector.

ormally, a detector configuration D is an |I D | -dimensional non-

egative vector, where D i is the rate of false alarms raised by the

etector at intersection i ∈ I D . 
Stage II: Cyber-Attack on Traffic Control In the second stage of

he game, the attacker compromises a subset of the traffic signals

nd changes their schedule. We let I A ⊆ I denote the set of traffic

ignals that the attacker chooses to compromise. We assume that

he attacker is resource bounded, which means that it can com-

romise signals in at most B ≤ |I| intersections at the same time.

ence, the attacker’s choice I A must satisfy |I A | ≤ B . 

Once the attacker has compromised a set of traffic signals I A , it
an reconfigure every one of them. However, most traffic control

evices have hardware-level safety mechanisms in practice (see,

.g., Ghena et al., 2014 ), which constrain the configurations that

ay be set by an adversary. In particular, traffic signals typically

se malfunction management units as a safety feature against con-

roller faults (e.g., overriding a faulty controller that would give

reen lights to two intersecting directions). These hardware-based

ailsafes also limit the impact of cyber attacks (e.g., preventing the

ttacker from causing traffic accidents) by overriding invalid con-

gurations. In our traffic model, the attacker’s reconfiguration cor-

esponds to setting new inflow proportions ˆ p ki for the cells in I A .
herefore, we can model hardware-level failsafes by requiring the
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inflow proportions chosen by the attacker to constitute a valid con-

figuration. Specifically, we assume that the inflow proportions set

by a feasible attack must sum up to 1 for each compromised inter-

section: 

∀ i ∈ I A : 
∑ 

k ∈ �−1 (i ) 

ˆ p ki = 1 . (1)

In sum, we can represent a feasible attack action A as a pair

A = (I A , ˆ p ) that satisfies |I A | ≤ B and 

∑ 

k ∈ �−1 (i ) ˆ p ki = 1 for every

i ∈ I A , where I A is the set of compromised signals, and 

ˆ p are the

tampered signal schedules. 

Between Stages II and III: Detection Once the attacker has perpe-

trated its attack in the second stage, the compromised signals be-

gin to operate with tampered schedules, which results in increased

congestion in the transportation network. Eventually, the detectors

deployed by the defender will detect the attack (based on either

traffic or cyber anomalies). We let �D denote the detection delay,

that is, the amount of time between the launch and detection of

the attack. The detection delay depends on both the configuration

D chosen by the defender and the attack A chosen by the attacker,

which we express by representing delay as a function �D ( D , A )

of D and A . Once the attack is detected, the game progresses to

the third stage. 

Stage III: Mitigation of Attack. In the third stage, the defender

mitigates the detected attack by reconfiguring traffic-control de-

vices to alleviate congestion. We assume that the defender can

reconfigure any device that is still under its control, that is, any

traffic signal that is not compromised by the attacker. Since the

attacker has compromised signals I A , the defender can set new in-

flow proportions ˆ p ki for the cells i in I \ I A . We again require the

new configuration to be valid, which means that the inflow pro-

portions must sum up to 1 for each reconfigured intersection: 

∀ i ∈ I \ I A : 
∑ 

k ∈ �−1 (i ) 

ˆ p ki = 1 . (2)

Finally, we let M = { ̂  p ki | i ∈ I \ I A } denote the defender’s mitiga-

tion (i.e., reconfiguration) action. 

2.2.2. Player’s utilities 

We now define the defender’s and the attacker’s utilities result-

ing from the various strategic choices that they can make in the

game. First, we let T denote the level of congestion in the trans-

portation network with the default configuration of traffic-control

devices (i.e., with inflow proportions p ). In practice, we can quan-

tify congestion T as, e.g., the average or total travel time of the ve-

hicles in the transportation network between their origin and des-

tination. Recall from Section 2.1 that we can efficiently compute

travel time with default proportions p in our traffic model using a

linear program. 

Next, we let T A ( A ) denote the level of congestion after

the attack but before the mitigation, which depends on the

attacker’s action A chosen in the second stage. Similar to T , we can

compute T A ( A ) using our traffic model with the default proportion

p ki for every cell i ∈ I \ I A but with the adversarial proportion ˆ p ki 

for every cell i ∈ I A . Finally, we let T M 

( A , M ) denote the level of

congestion after the attack has been mitigated, which depends on

both attacker’s action A and the defender’s mitigation action M . 

We let the attacker’s gain G (i.e., positive utility) for actions

( D , A , M ) be the total impact of the attack in terms of increased

congestion level: 

G(D , A , M) = ( T A (A ) − T ) · �D (D , A ) + ( T M 

(A , M) − T ) · �M 

, (3)

where �M 

is the amount of time between mitigation and the

transportation network returning to normal operation (e.g., manu-

ally resetting compromised devices). The first term quantifies the

impact of the attack before mitigation, while the second term
uantifies impact after mitigation but before returning to normal

peration. 

Next, we define the defender’s loss (i.e., negative utility) result-

ng from actions ( D , A , M ). Recall that the detectors deployed in

he transportation network are imperfect, and each detector i ∈ I D 
s continuously generating false alerts (i.e., false-positive errors) at

ate D i . Since the defender cannot tell which alerts are false, it has

o investigate every single alert, which costs manpower and re-

ources. Hence, we define the defender’s loss considering both the

otal impact of attacks and the cost of investigating false alerts: 

 (D , A , M) = G(D , A , M) + 

∑ 

i ∈I D 
D i · C, (4)

here C is the cost of investigating an alert. The first term quanti-

es the total impact of the attack, while the second term captures

he cost of investigating false alerts. 

.3. Solution concept and problem formulation 

We assume that both players have perfect information: in the

econd stage, the attacker knows the detector configuration D cho-

en by the defender in the first stage; and in the third stage, the

efender knows the attack action A chosen by the attacker in the

econd stage. We assume that the attacker has perfect information

ecause we are considering a sophisticated, worst-case attacker,

ho has extensive knowledge of its target (i.e., Kerckhoffs’s prin-

iple) and may know the algorithms or techniques employed by

he defender for configuring the detectors. On the other hand, we

ssume that the defender has perfect information because we are

onsidering a smart transportation network with monitoring capa-

ilities; however, this assumption could be relaxed. 

Under this assumption, we can model the players’ optimal

hoices most naturally using the solution concept of subgame per-

ect equilibrium . Our goal is to find an optimal strategy for the de-

ender by solving the game. We can do so by finding the players’

est-response actions for every stage using backward induction,

hat is, by solving each stage starting with the third and finish-

ng with the first, in each stage building on the solutions for the

ubgame formed by the subsequent stages. Given detector config-

ration D and attack A , a best-response mitigation is 

rgmin 

M 

L (D , A , M) . (5)

ote that the best-response mitigation does not actually depend

n the detector configuration D . To prove this, observe that the

nly term of L (D , A , M) that depends on mitigation action M is

( T M 

(A , M) − T ) · �M 

. Since this term does not depend on detector

onfiguration D , neither does the best-response mitigation. Intu-

tively, the explanation for this is that once the defender has de-

ected the attack, it does not matter how it was detected (and all

osts associated with detection are sunk). 

Given detector configuration D , a best-response attack is 

rgmax 
A 

G(D , A , M) 
∣∣

M ∈ argmin M ′ L (D , A , M 

′ ) 

 argmax 
A 

G(D , A , M) 
∣∣

M ∈ argmin M ′ G(D , A , M 

′ )+ ∑ 

i ∈I D D i ·C 
(6)

 argmax 
A 

G(D , A , M) 
∣∣

M ∈ argmin M ′ G(D , A , M 

′ ) (7)

 argmax 
A 

min 

M 

G(D , A , M) . (8)

ote that the attacker must anticipate the defender’s mitigation

ction in the next stage; however, since the game is strategically

quivalent to a zero-sum game, the attacker’s problem simplifies to

 maximin optimization. Our threat model assumes a worst-case

ttacker, whose goal is to minimize the defender’s utility. This is
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Fig. 1. Illustration for the proof of Theorem 1 . 
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o  
 safe assumption since the defender’s utility can only be higher if

he attacker behaves differently. In contrast, if our threat model as-

umed a particular attacker behavior, then the defender’s strategy

ould be vulnerable to deviations from that assumed behavior. 

Finally, an optimal (i.e., equilibrium) detector configuration is 

argmin 

D 

min 

M 

L (D , A , M) 
∣∣

A ∈ argmax A ′ min M ′ G(D , A ′ , M 

′ ) 

= argmin 

D 

max 
A 

min 

M 

L (D , A , M) . (9) 

ote that the defender needs to anticipate the attacker’s attack

ction in the next stage; however, since the game is strategically

quivalent to a zero-sum game, the defender’s problem simplifies

o a minimax optimization (i.e., minimaximin if we consider the

itigation choice as well). 

. Analysis 

Even though we can express the players’ optimal strategies as

elatively simple maximin and minimax optimization problems, ac-

ually finding optimal strategies is computationally challenging due

o the sizes of the players’ strategy spaces. Hence, we focus our

nalysis on the computational aspects of solving the transportation

ecurity game. First, in Section 3.1 , we show that finding an opti-

al action for the attacker is a computationally hard problem. Al-

hough we study the complexity of only the attacker’s problem in

his paper, our computational-complexity argument could be easily

xtended to the defender’s problem. Due to the complexity of solv-

ng the game, we focus the remainder of this section on providing

fficient heuristic algorithms: we introduce a greedy heuristic for

he attacker in Section 3.2.1 , and a metaheuristic search algorithm

or the defender in Section 3.2.2 . 

.1. Computational complexity 

We begin our analysis by showing that the attacker’s problem

i.e., finding a worst-case attack) is computationally hard. Given a

etector configuration D , the attacker’s problem is to find an op-

imal attack A 

∗ that maximizes min M 

G(D , A 

∗, M) . Following the

ackward-induction approach, we assume that we have an oracle

hat finds the optimal mitigation action M for any attack A , and we

tudy the attacker’s problem by building on this oracle. In practice,

he oracle can be replaced with, for example, a linear program for

nding optimal traffic control. Further, for ease of presentation, we

verload the notation G as follows 

(D , A ) = min 

M 

G(D , A , M) . (10)

First, we formulate a decision version of the attacker’s problem

s follows. 

efinition 1. Attacker’s Decision Problem : Given a transportation

etwork, a budget B , a detector configuration D , and a threshold

ain G ∗, determine if there exists an attack A 

∗ satisfying the bud-

et constraint such that G(D , A 

∗) > G ∗. 

We show that the above problem is computationally hard by

educing a well-known NP-hard problem, the Set Cover Problem,

o the above problem. 

efinition 2. Set Cover Problem : Given a base set U , a collection C
f subsets of U , and a number k , determine if there exists a sub-

ollection C ′ ⊆ C of at most k subsets such that every element of U

s contained by at least one subset in C ′ . 

The following theorem establishes the computational complex-

ty of the attacker’s problem. 

heorem 1. The Attacker’s Decision Problem is NP-hard. 
roof. Given an instance of the Set Cover Problem (i.e., a set U , a

ollection C of subsets, and a number k ), we construct an instance

f the Attacker’s Decision Problem as follows: 

• let the transportation network be the following (see Fig. 1 for

an illustration): 

• there is one source cell r , with Q r = k + 1 , d 1 r = k + 1 , and

d t r = 0 for t > 1; 

• there is one sink cell s ; 

• for every element u ∈ U , there is a merging cell u ; 

• for every subset C ∈ C, there is a diverging cell C ; 

• each diverging cell C is connected to every merging cell

u ∈ C ; 

• for every cell i , N i = k + 1 and δi = 1 ; 

• for every merging cell u , Q u = k + 1 ; 

• for every diverging cell C , Q C = 1 ; 

• let the attacker’s budget be B = | U| ; 
• let the detector configuration be such that ∀ A : �D ( D , A ) ≡ 1 

• let the default congestion be T = 0 , let the congestion after the

attack T A ( A ) be equal to the total travel time of the vehicles,

and let the mitigation time be �M 

= 0 ; 

• let the threshold gain be G ∗ = 3(k + 1) . 

Clearly, the above reduction can be carried out in time that is

olynomial in the size of the Set Cover Problem instance. 

It remains to show that the above instance of the Attacker’s De-

ision Problem has a solution A 

∗ if and only if the given instance

f the Set Cover Problem has a solution C ′ . Before we proceed to

rove this equivalence, notice that the values Q r , N i and δi for ev-

ry cell i , and Q u for every merging cell u will not play any role,

ince they are high enough to allow any traffic to pass through.

urthermore, since B = | U| and �D ≡ 1, the attacker will be able to

econfigure every traffic signal without decreasing detection time.

ence, the attacker’s problem is simply to pick the values ˆ p Cu for

very u ∈ C so that the total travel time is at least G ∗ = 3(k + 1) . 

First, suppose that there exists a set cover C ′ of size at most

 . Then, we construct an attack as follows: for every merging cell

 , choose one diverging cell C from C ′ that is connected to u (if

here are multiple, then choose an arbitrary one), and let ˆ p Cu = 1 .

e have to show that the total travel time in the transportation

etwork is greater than 3(k + 1) after the attack. Since the distance

etween the source cell and the sink cell is 3 hops and there are

 + 1 vehicles, all the vehicles must move one step closer to the

ink in every time interval in order for the total travel time to be

t most 3(k + 1) . However, from the source cell, the vehicles may

nly move to the cells in C ′ ; otherwise, they would get “stuck” at

ne of the diverging cells that are not in C ′ . Consequently, in the

econd time interval, at most k of the k + 1 vehicles may move

n, which means that the total travel time has to be greater than

(k + 1) . 

Second, suppose that there does not exist a set cover C ′ 
f size at most k . Then, we have to prove that there cannot
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3 We leave the theoretical proof of this claim for future work. 
exist an attack which increases the total travel time to more

than 3(k + 1) . Firstly, we show that there exists an optimal at-

tack which assigns either 0 or 1 to every ˆ p Cu . To prove this,

consider an attack in which there is a merging cell v with a

ˆ p Cv value other than 0 or 1. If none of its predecessor cells C

has a positive ˆ p Cw 

value for some other merging cell w , then

the assignment for v can clearly be changed to 0 and 1 values

without changing the total travel time. Next, suppose that one (or

more) of the predecessor cells C of the merging cell has a posi-

tive ˆ p Cw 

value for some other merging cell w . Then, the total travel

time maximizing assignment is clearly one which assigns ˆ p Cv = 1

to a predecessor cell C for which 

∑ 

u ∈ C ˆ p Cu is maximal, since this

“wastes” the most “merging capacity.” Thus, for the remainder of

the proof, it suffices to consider only attacks where every ˆ p Cu value

is either 0 or 1. 

Now, consider an optimal attack A 

∗ against the transportation

network, and let C ∗ be the set of diverging cells C for which there

exists a merging cell u such that ˆ p Cu = 1 . Clearly, C ∗ forms a set

cover of U since for every element u , there is a subset C ∈ C ∗ such

that u ∈ C (i.e., C is connected to u ). From our initial supposition,

it follows readily that the cardinality of set C ∗ must be at least

k + 1 . However, this also implies that the total travel time after the

attack is equal to 3(k + 1) : in the second time interval, all k + 1

vehicles may move forward to the diverging cells in set C ∗; in the

third time interval, all the vehicles may again move forward to the

merging cells (since every cell in C has at least one “enabled” con-

nection); and all the vehicles may leave the network by the next

interval through the sink cell. Since the total travel time after an

optimal attack A 

∗ is equal to T ∗ = 3(k + 1) , the attacker’s problem

does not have a solution. Therefore, the constructed instance of the

Attacker’s Decision Problem has a solution if and only if the given

instance of the Set Cover Problem has one, which concludes our

proof. �

3.2. Algorithms 

Mitigation—in our model—means adapting the schedule of un-

compromised traffic signals given the schedule of compromised

signals, which is equivalent to optimizing traffic control in a non-

adversarial setting, with the compromised signals acting as fixed-

schedule signals. Since optimizing traffic control in non-adversarial

settings has been studied in prior work, we focus on providing ef-

ficient algorithms for solving the first two stages of the game. 

3.2.1. Greedy algorithm for attacks 

Since the attacker’s problem is NP -hard, we cannot hope for a

polynomial-time algorithm that always finds a worst-case attack

(unless P = NP ). Hence, to provide an alternative to computation-

ally infeasible exhaustive search, we turn our attention to design-

ing an efficient heuristic algorithm. 

The attacker’s problem can be viewed as the composition of

two problems: finding a subset I A of at most B signalized inter-

sections and finding new inflow proportions ˆ p ki for the cells i ∈ I A .
For finding a subset I A , we propose to use a greedy heuristic,

which starts with an empty set and adds new cells to it one-by-

one, always picking the one that leads to the greatest increase in

the attacker’s gain. Finding new inflow proportions ˆ p ki is partic-

ularly challenging, since the set of possible choices is continuous.

However, we observe that in most networks, the worst-case con-

figuration is an “extreme” one, which assigns proportion ˆ p ki = 1 to

one predecessor cell k and proportion ˆ p ji = 0 to every other pre-

decessor cell j ( Laszka et al., 2016b ). In fact, we have tested this

property on hundreds of networks that we generated according

to the Grid model with Random Edges (see Section 5.2 ), resem-

bling road networks from the U.S. and Europe, and we have not

found a single counterexample. Based on these numerical results,
e conjecture that this property holds in general, that is, for any

etwork. 3 Hence, for every new cell i added to the set of attacked

ntersections, we propose to search over the possible extreme con-

gurations by iterating over the predecessors of cell i . Based on the

bove ideas, we formulate Algorithm 1 . 

Algorithm 1: Polynomial-Time Greedy Heuristic for Finding an 

Attack. 

Data : transportation network security game, detector 

configuration D 

Result : attack A 

∗

I ∗
A 

← ∅ , ˆ p 

∗ ← p; 

for b = 1 , . . . , B do 

I ′ 
A 

← I ∗
A 

, ˆ p 

′ ← 

ˆ p 

∗; 

for i ∈ I do 

I A ← I ∗
A 

∪ { i } ; 
for k ∈ �−1 (i ) do 

∀ l, j : ˆ p l j ← 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if j = i ∧ l = k 

0 if j = i ∧ l ∈ �−1 (i ) \ { k } 
ˆ p ∗

l j 
otherwise. 

; 

if G(D , (I A , ˆ p )) ≥ G(D , (I ′ 
A 
, ˆ p 

′ )) then 

I ′ 
A 

← I A , ˆ p 

′ ← 

ˆ p ; 

end 

end 

end 

I ∗
A 

← I ′ 
A 

, ˆ p 

∗ ← 

ˆ p 

′ ; 
end 

output A 

∗ = (I ∗
A 
, ˆ p 

∗) 

It is fairly easy to see that we can implement Algorithm 1 as a

olynomial-time algorithm. Due to the three nested iterations, the

unning time of Algorithm 1 is O 

(
B · |I| ·(max i ∈I | �−1 (i ) | )) times

he running time of computing G. Since we can compute G(D , A )

or any attack A using a linear program, it follows readily that the

unning time of the algorithm can be upper bounded by a poly-

omial function of the input size (i.e., size of the transportation

etwork and budget B ). We can formally state this observation as

he following proposition. 

roposition 1. With a polynomial-time oracle for computing G, the

unning time of Algorithm 1 is a polynomial function of the input size.

.2.2. Metaheuristic search algorithm for detector configuration 

Next, we present an algorithm for finding a detector configura-

ion (i.e., false-positive rates) based on a metaheuristic approach. In

articular, we use simulated annealing to find a near-optimal detec-

or configuration D . The basic idea of this approach is to start with

n arbitrary configuration D , which we then improve iteratively. In

ach iteration, we generate a new solution D 

′ in the neighborhood

f D . If the new configuration D 

′ is better in terms of minimizing

he defender’s loss (against an attacker playing a best response),

hen the current configuration D is replaced with the new one.

n the other hand, if the new configuration D 

′ increases the de-

ender’s loss, then new configuration replaces the current one with

nly a small probability. This probability depends on the difference

etween the two solutions in terms of loss as well as a parame-

er commonly referred to as “temperature,” which is a decreasing

unction of the number of iterations. These random replacements

revent the search from “getting stuck” in a local minimum. The

lgorithm is presented below as Algorithm 2 . 

In Algorithm 2 , Perturb (D ) picks a random configuration

 

′ from the neighborhood of D . In particular, we implement
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Algorithm 2: Polynomial-Time Metaheuristic for Finding a De- 

tector Configuration. 

Data : transportation network security game, iterations k max , 

initial temperature T 0 , cooling parameter β
Result : detector configuration D 

∗

D ← 1 ; 

L ← max A G(D , A ) + 

∑ 

i ∈I D D i · C; 

for k = 1 , . . . , k max do 

D 

′ ← Perturb (D ) ; 

L ′ ← max A G(D , A ) + 

∑ 

i ∈I D D 

′ 
i 
· C; 

T ← T 0 · e −βk ; 

pr ← e (L ′ −L ) /T ; 

if (L ′ < L ) ∨ ( rand (0 , 1) ≤ pr) then 

D ← D 

′ , L ← L ′ 
end 

end 

output D 
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4 Note that the length of these measurement intervals is independent of the time 

intervals of the cell-transmission model. However, for ease of presentation, we will 

reuse notation t to identify measurement intervals. 
erturb (D ) as choosing a value for each D 

′ 
i 

uniformly at random

rom [ D i · (1 − ε) , D i · (1 + ε )] , where ε is a small constant (e.g.,

.1). For solving max A G(D , A ) in practice, we can use the greedy

euristic ( Algorithm 1 ). The temperature T is decreasing exponen-

ially with iteration number k , and the rate of the decrease is con-

rolled by the “cooling” parameter β . Finally, we note that a sim-

ler algorithm could also be obtained, in which D is updated with

 

′ in each iteration if and only if D 

′ is strictly better than D . This

euristic search, commonly known as hill climbing , also works well

or our problem; however, Algorithm 2 gives better results. 

. Anomaly-based detector 

Now, we introduce a traffic-anomaly based detector against

tealthy attacks that tamper with traffic control. The core idea of

nomaly-based detection is to build a probabilistic model of nor-

al traffic conditions, which can then be used to estimate the

ikelihood that observed traffic conditions are normal. Note that

e must employ a probabilistic model to account for the uncer-

ainty in parameter values since many parameters (e.g., traffic de-

and) can only be estimated in practice. We can estimate the like-

ihood that the observed traffic is normal as the probability that

ur model of normal traffic would generate the observed traffic.

e can then compare the likelihood value to a threshold, and if

he likelihood is lower, we can raise an alarm. In our detector, the

odel of normal traffic is based on Gaussian processes, which have

een successfully used in prior work for traffic volume forecast-

ng ( Chen et al., 2012; Xie et al., 2010 ). Note that we cannot use

acroscopic traffic models, such as the cell transmission model, to

etect attacks because these models abstract away details for the

ake of tractability (e.g., inflow proportions instead of actual traffic

ight schedules); however, such details can be crucial for the de-

ection of stealthier attacks that alter traffic control only slightly. 

.1. Gaussian processes 

We begin giving a very brief overview of Gaussian processes.

or a comprehensive discussion of Gaussian processes in machine

earning, we refer the reader to Rasmussen and Williams (2006) . 

In principle, Gaussian processes are an extension of multivari-

te Gaussian distributions to infinite collections of random vari-

bles. Formally, a Gaussian process is a stochastic process such that

ny finite collection of variables (X 1 , . . . , X n ) follows a multivariate

aussian distribution. A Gaussian process is typically described us-
ng a mean function 

(X ) = E (X ) (11)

nd a covariance function 

 (X 1 , X 2 ) = E [ (X 1 − m (X 1 ))(X 2 − m (X 2 )) ] . (12)

he covariance function is often chosen to be some well-known

ernel function, such as squared exponential, whose parameters

an be estimated from a training dataset ( x 1 , . . . , x n ) . A common

pplication of Gaussian processes is regression: given the values

f a set of training variables (x 1 , . . . , x n ) , we can easily compute

he expected value and variance of a target variable Y using the

ean and covariance functions. Gaussian-process based regression

odels have been successfully applied to a wide range of prob-

em, such as traffic volume forecasting ( Chen et al., 2012; Xie et al.,

010 ), spatial modeling of extreme snow depth ( Blanchet et al.,

011 ), wind power forecasting ( Kou et al., 2013 ), estimation of

ater chlorophyll concentration ( Bazi et al., 2012 ), and spectrum

ensing ( Nevat et al., 2012 ). 

.2. Model 

We assume that traffic sensors, such as induction loop sen-

ors, have been deployed for monitoring the transportation net-

ork. Since modeling an entire network would be computationally

hallenging—and would certainly not scale well—we divide sensors

nto subsets, and we build a separate model and detector for each

ne of these subsets. For example, traffic sensors that are deployed

ext to the same intersection i ∈ I may be grouped together and

rovide traffic data for one detector (see, e.g., Fig. 2 in Section 5.1 ).

he outputs of all the detectors deployed in a transportation net-

ork can then be combined together to form a single detector for

he entire network. 

We assume that sensors measure and report traffic values, such

s traffic flow or occupancy, in fixed-length intervals (e.g., report

ne measurement value for every 15-minute intervals). 4 In our

aussian-process model, we model each one of these measure-

ents as a random variable. Formally, for every sensor s and time

nterval t , there exists a random variable X t s whose value is equal

o the traffic value measured by sensor s in interval t . Hence, our

odel has a discrete but—due to the time dimension—potentially

nfinite set of variables. 

A key part of modeling is establishing mean and covariance

unctions for these variables. For each sensor s , we model the

ean values μ(X t s ) of variables X t s using a periodic function: (
X 

t 
s 

)
≡ μ

(
X 

t+ P 
s 

)
, (13) 

here P is the length of the period. We call this time period, which

s measured in number of discrete time intervals, the detector win-

ow W . Similarly, for sensors s 1 and s 2 , we model the covariance

alues k 
(
X 

t 1 
s 1 

, X 
t 2 
s 2 

)
between variables X 

t 1 
s 1 

and X 
t 2 
s 2 

using a periodic

unction: 

 

(
X 

t 1 
s 1 

, X 

t 2 
s 2 

)
≡ k 

(
X 

t 1 + P 
s 1 

, X 

t 2 + P 
s 2 

)
. (14) 

urther, we assume that k 
(
X 

t 1 
s 1 

, X 
t 2 
s 2 

)
≡ 0 if | t 1 − t 2 | > P . To

rain the model, the actual values of these functions must

e learned from traffic values observed during normal

peration. 

.3. Training 

Before training, our model has S · P + 

S·(S−1) ·P ·(2 P +1) 
2 + S · P ·

(2 P + 1) unknown values, where S is the number of sensors: 
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Fig. 2. Intersection used for evaluating the detector. Yellow rectangles represent induction-loop sensors. 
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• S · P mean values: for each sensor s , the mean function μ can

be described by P values since its period length is P ; 

• S·(S−1) ·P ·(2 P +1) 
2 covariance values: for each distinct pair of sen-

sors s 1 and s 2 , the covariance function k can be described by

P · (2 · P + 1) values since its period length is P , the maximum

difference between t 1 and t 2 is P , and covariance values are

symmetric; 

• and S · P · (2 P + 1) variance values: for each sensor s , the covari-

ance function k can be described by P · (2 · P + 1) . 

Training the model means learning these mean and covariance

values for normal traffic. In practice, we can train the model by ob-

serving sensor measurements (x 
t 1 
s 1 

, x 
t 2 
s 1 

, x 
t 1 
s 2 

, . . . ) of traffic under nor-

mal conditions, and then simply estimating the most likely mean

and covariance values from these observations (i.e., maximum like-

lihood estimation). 

4.4. Detection 

Once we have trained the model, we can use it to

detect attacks against traffic control. First, we take sensor

measurements (x t s , . . . ) , which are observed in the network that

might be under attack, and we use the Gaussian process to com-

pute the likelihood of these measurement values being generated

by our model of normal traffic. 5 Since the measurement values are

continuous, we can use the probability density of the Gaussian dis-

tribution (X t s , . . . ) at (x t s , . . . ) as the likelihood value. We then inter-

pret this likelihood as the likelihood of the network operating un-

der normal control (i.e., not being under attack). Finally, we com-
5 Due computational limitations, we restrict detection to observations from a sin- 

gle detector window (i.e., measurement values from some range (t, t + P − 1) ). If 

more observations are available, we can evaluate the detector multiple times. 

t  

o  

f  

t

are the likelihood to a detector threshold τ i , and raise an alarm if

he likelihood is lower than the threshold. Thus, our detector has

wo parameters, the detector window W and the detector thresh-

ld τ i , which together determine the rate of false alarms D i and

he detection delay. 

Note that the detector threshold τ i and the rate of false alarms

 i are closely related to each other: lower thresholds result in

ewer false alarms since more observations are accepted as likely;

nd vice versa. Hence, we can express τ i ( D i ) and D i ( τ i ) as increas-

ng functions, and we may specify the configuration of the detec-

or either as the desired false-positive rate D i or as the threshold

i . We chose to use representation D i in our game-theoretic model

nd analysis for ease of presentation. The exact relation τ i ( D i ) can

e determined experimentally by evaluating the detector with var-

ous configurations on normal traffic. 

. Numerical results 

In this section, we present numerical results on our heuristic

lgorithms from Section 3 and our anomaly-based detector from

ection 4 . 

.1. Anomaly-based attack detection 

We begin by training and evaluating our detector based on

imulated flows of traffic under normal conditions and under at-

acks. We will then use the results of this evaluation to instantiate

ur game-theoretic model. In particular, we will use the measured

alse-alarms rate and detection delay values as numerical parame-

ers for our game-theoretic model. 
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Table 2 

Posterior predictive checking p -values. 

Sensor Test statistic T 

Mean Variance Median Quantile 

Q (0.3) 

Quantile 

Q (0.7) 

East in 0.54 0.52 0.54 0.79 0.49 

East out 0.51 0.47 0.66 0.78 0.36 

South in 0.46 0.53 0.49 0.79 0.26 

South out 0.49 0.48 0.66 0.79 0.28 

West in 0.54 0.52 0.55 0.80 0.49 

West out 0.50 0.47 0.66 0.78 0.36 

North in 0.47 0.52 0.64 0.84 0.57 

North out 0.49 0.48 0.66 0.79 0.28 
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Fig. 3. Trade-off between false-positive rate and detection delay. 
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.1.1. Setup 

For these experiments, we simulate the signalized four-way in-

ersection shown by Fig. 2 using SUMO (Simulation of Urban MO-

ility), 6 a well-known and widely-used micro simulator ( Behrisch

t al., 2011; Krajzewicz et al., 2002 ). Signals are deployed on both

he incoming and outgoing lanes (represented by yellow rectangles

n the figure), and these signals measure traffic flow in 15-second

ntervals. We generate one month of traffic data with the original

ignal schedule (45 seconds for both roads, including left-turning

nd yellow phases) for training the Gaussian-process based model.

n these simulations, vehicles enter the intersection from all four

irections, and each car turns left, continues straight, or turns right

ith probability 5.3%, 73.7%, and 21.1%, respectively. From each di-

ection, 0.19 vehicles arrive each second on average. We also gen-

rate one month of test traffic-data with the original schedule for

easuring the false-positive rate of the detector. Finally, for each

f the attacks considered below, we generate one day of traffic

ata, which includes 1 hour with the original schedule and then

3 hours with the tampered schedule. 

osterior Predictive Check. To confirm that our Gaussian-process

ased traffic model fits observations well, we perform posterior

redictive checking ( Gelman et al., 2013 ). The idea of posterior pre-

ictive checking is to draw simulated samples from the joint pos-

erior predictive distribution and compare them to the observed

ample. If there were significant systematic differences between

he simulated and observed samples, that would indicate that our

odel did not fit well. Note that the applicability of our model is

lso demonstrated by the low false-positive rate exhibited by our

etector. 

The significance of difference can be quantified as the classical

 -value (Gelman et al., 2013, Chapter 6.3) : 

p = Pr [ T ( x rep ) ≥ T ( x ) | μ, k ] , (15) 

here x rep is the replicated data generated according to our model,

 is the observed data, μ and k are the model parameters (see

ection 4 ), and T is a test statistic. In our checks, we compute p

alues for various standard test statistics, including mean, variance

with Bessel’s correction), median, and quantiles. Note that a per-

ectly fitting model will yield p -values around 0.5. To reliably esti-

ate the probability p , we generate and evaluate the test statistics

n 10,0 0 0 replicated samples (drawn independently according to

ur trained model). 

Table 2 shows the p -values for various statistical tests ( p -values

round 0.5 indicate a perfect fit). Since our samples are multidi-

ensional (i.e., one value for each sensor around the intersection),

e apply the statistical tests to the marginal distributions corre-

ponding to the individual sensors. We list sensors in clockwise or-

er, starting with the sensors on the incoming and outgoing lanes
6 http://sumo.dlr.de/wiki/Main _ Page . 

t  

fi  

w  
f the road eastward of the intersection (see Fig. 2 ), denoted ‘east

n’ and ‘east out.’ For mean and variance statistics, we see that

ur model produces an almost perfect fit for all sensors, which is

mportant since these play key role in determining likelihood, on

hich our detector is built. Further, we see that our model pro-

uces a good fit for the median statistic as well, which indicates

hat there is no significant asymmetry that could not be captured

y our model. Finally, we test quantiles Q (0.3) and Q (0.7), and see a

easonable fit for most sensors. The worst fit is for sensor ‘north in’

i.e., inward lane of the road northwards) and Q (0.3); however, we

ee an almost perfect fit for the same sensor for Q (0.7), indicating

 skewed distribution. Next, we study the detection performance

f our model, showing that observations under normal conditions

nd under attacks exhibit significantly different likelihood values. 

.1.2. Detector configuration 

We first consider the defender’s problem of balancing the num-

er of false-positive errors and the detection delay. For this experi-

ent, we assume an attack which changes 4.4% of the traffic-signal

chedule. 

Fig. 3 shows the trade-off between the false-positive rate and

he detection delay. Each point on the curve is a Pareto optimal

oint that is attainable with some detector window W and thresh-

ld τ . The figure shows that with a negligible false-positive rate,

ven the stealthy attack considered in this example can be de-

ected in approximately one hour. The configuration of the detector

hen the false-positive rate reaches zero is detector window being

qual to W = 48 minutes and log-likelihood threshold being equal

o ln τ = −112 . 58 . 

Fig. 4 shows the likelihood values output by the Gaussian-

rocess model for traffic data resulting from the original and the

ttacked traffic-signal schedules. For this figure, we set the detec-

or window to be W = 3 minutes, which results in highly variable

ikelihood values. The figure shows that after one hour (i.e., when

he attack starts), the likelihood values for the tampered schedule

ecome much lower than for the original one. In other words, the

etector correctly estimates that the traffic with tampered sched-

le is less likely to be normal. 

.1.3. Stealthy attacks 

Next, we consider the attacker’s problem of balancing stealth-

ness and impact. If stealthy attacks could avoid detection for ex-

ended periods of time while having substantial impact on traf-

c, they could pose a significant threat to the transportation net-

ork. To show that stealthy attacks are not effective against our

http://sumo.dlr.de/wiki/Main_Page
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detector, we compare a wide range of attacks, from stealthy ones

that change control only slightly to non-stealthy ones that change

control fundamentally. To maximize the advantage of stealthiness,

we consider a low detection threshold, which allows attacks to re-

main undetected for long periods of time. In particular, for this ex-

periment, we assume a detector window of W = 48 minutes and

a log-likelihood threshold of ln τ = −112 . 58 , which result in zero

false-positive rate for the one-month test interval (see the discus-

sion of Fig. 3 ). 

Fig. 5 shows detection delay and impact for attacks of various

magnitudes. The impact of an attack is measured as the fraction

of traffic that is “blocked” by the attack, i.e., the decrease in the

number of vehicles passing through the intersection compared to

the normal traffic-signal schedule; the magnitude of an attack is

the fraction of the traffic-signal schedule that is modified by the

attacker. The figure shows that attacks with higher magnitude may

be less stealthy (i.e., detected earlier), but they cause much more

significant impact. In fact, the total impact of attacks, measured

as the number of vehicles that could not pass through the inter-

section due to the attack until its detection, is a strictly increasing

function of the attack magnitude. This means that our detector can

make stealthy attacks essentially pointless in this example. 

5.2. Multi-stage security game strategies 

Next, we provide numerical results on the algorithms that

we proposed in Section 3.2 for finding strategies in practice.
e first compare the proposed greedy heuristic for finding at-

acks ( Algorithm 1 ) to an exhaustive search, and then study the

etaheuristic search algorithm for finding detector configurations

 Algorithm 2 ). 

.2.1. Setup 

To provide meaningful numerical results, we have to evaluate

ur algorithms on a large number of transportation networks. Ev-

ry point plotted in the figures of this subsection represents a

ean value computed over a large number of random networks

ith the same parameters. To obtain these networks, we use the

rid model with Random Edges (GRE) to generate random network

opologies ( Peng et al., 2012 ), which closely resemble real-world

ransportation networks. For a detailed description of this model,

e refer the reader to Peng et al. (2014, 2012) . 

We set both the width and height of the generated grids to

e 4, and let the bottom-left corner be a source and the upper-

ight corner be a sink. For the parameters controlling the ran-

omness of the generation, we use the values from ( Peng et al.,

012 ), which were derived from measurements on actual road net-

orks from the USA. We let the inflow at the source cell be d 0 = 8 ,

 

1 = 12 , d 2 = 8 , and d t = 0 for t ≥ 3. For every other cell i , we let

he parameters be Q i = 6 , δi = 1 . 0 , and N i = 10 . Finally, we let ev-

ry merging cell be a signalized intersection, and optimize the in-

ow proportions for every intersection using a linear program. 

We assume that there is an anomaly detector deployed in each

ntersection (i.e., I D = I). We also assume that every one of these

etectors exhibits the false-positive rate and detection delay char-

cteristics observed in Section 5.1 . In other words, for each inter-

ection, the defender chooses one of the Pareto optimal configu-

ations that were identified in the experiments of Section 5.1 by

hoosing a false-positive rate D i ; the delay of this detector is then

etermined by the magnitude of the attack against the correspond-

ng intersection. Finally, we assume that the attack is detected as

oon as one detector raises an alarm, that attack mitigation takes

M 

= 20 minutes, and that congestion levels T, T A , and T M 

are

easured in travel time. 

.2.2. Attacks 

We begin by comparing the greedy attack heuristic to an ex-

austive search. To perform an exhaustive search, we quantize the

pace of possible schedules for each intersection, so that we have

 finite and discrete search space. For this experiment, we assume

hat the defender uses a detector configuration that sets the false-

ositive rate of every intersection i ∈ I to D = 1 . 
D i 
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Fig. 6 shows the impact of attacks found by exhaustive and

reedy ( Algorithm 1 ) searches for various budget values. The ver-

ical axis shows the total impact G of the attacks, which includes

mpact that was caused both before and after detection. The figure

hows that the attacks found by the greedy search are very close to

he ones found by the exhaustive search in terms of total impact,

ith the largest difference being 5%. 

Fig. 7 compares the greedy heuristic ( Algorithm 1 ) to the ex-

austive search in terms of running time. Note that we used fairly

mall problem instances for our experiments in order to be able to

pply the algorithms to a large number of networks. We observe

hat the running time of the greedy heuristic is much lower than

hat of the exhaustive search, and it grows slower as the attacker’s

udget increases. 

.2.3. Detector configuration 

Next, we evaluate the metaheuristic search algorithm for find-

ng detector configurations. We compare our strategic configura-

ions to a non-strategic baseline represented by uniform configura-

ions, which assign the same false-positive rate to all detectors. We

nd quasi-optimal uniform configurations using the same search

lgorithm, but restricting the search space to a single scalar value,

hich is used for all detectors. For these experiments, we let the

ttacker’s budget be enough to compromise B = 2 intersections; we

ssume that the attacker always mounts a best-response attack;

nd we let the unit cost of false positives be equal to C = 10 . 

Fig. 8 shows the defender’s total loss—which includes both

he cost of investigating false alarms and the total impact of

he attack—with strategic and uniform detector configurations. The

orizontal axis shows the number of iterations k max for which the

earch algorithms was run. We can learn two important lessons

rom this figure. First, strategic thresholds result in much lower

osses than uniform ones, which suggests that game-theoretic op-

imization can have a significant practical impact. Second, losses

ecrease rapidly in the first 100 or 500 hundred iterations, but

hey do not decrease further even after a significant number of ad-

itional iterations, 7 which suggests that the search algorithm is a

ery efficient practical approach for finding near optimal detector

onfigurations. 

Fig. 9 shows the cost of false positives and the total impact of

ttacks with strategic and uniform detector configurations found

y the search algorithm. We observe that strategic detector config-
7 We actually run the search with k max = 10 0 , 0 0 0 iterations, but plot only the 

rst 20 0 0 for clarity, since losses do not decrease significantly after 20 0 0 iterations. 

i  

y  

u  

n

rations may result in slightly more false-positive errors, but they

an significantly decrease the impact of attacks. 

. Related work 

In this section, we briefly survey related work on the vulnera-

ility of transportation networks, the optimal configuration of at-

ack detectors, and game theory for security of cyber-physical sys-

ems. 

.1. Vulnerability of transportation networks 

We first give a brief overview of the related work on the vul-

erability of transportation networks. A number of research efforts

ave studied the vulnerability of transportation networks to natu-

al disasters and attacks. However, to the best of our knowledge,

ur work is the first one to consider traffic-signal tampering at-

acks against general transportation networks. 

In a closely related work, Reilly et al. consider the vulnerability

f freeway control systems to attacks on the sensing and control

nfrastructure ( Reilly et al., 2014 ). They present an in-depth anal-

sis on the takeover of a series of onramp-metering traffic lights

sing a methodology based on finite-horizon optimal control tech-

iques and multi-objective optimization. 
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Prior work has studied the impact of other disruptive events

as well. Sullivan et al. study short-term disruptive events, such

as partial flooding, and propose an approach that employs var-

ious link-based capacity-disruption values ( Sullivan et al., 2010 ).

The proposed approach can be used to identify and rank the most

critical links and to quantify transportation network robustness

(i.e., inverse vulnerability). Jenelius and Mattson introduce an ap-

proach for systematically analyzing the robustness of road net-

works to disruptions affecting extended areas, such as floods and

heavy snowfall ( Jenelius and Mattsson, 2012 ). Their methodology

is based on covering the area of interest with grids of uniformly

shaped and sized cells, where each cell represents the extent of

an event. The authors apply their approach to the Swedish road

network, and find that the impact of area-covering disruptions are

largely determined by the internal, outbound, and inbound travel

demands of the affected area itself. 

In addition to assessing vulnerability, prior work has also con-

sidered the problems of identifying critical links and studying

other aspects of vulnerabiltiy. Scott et al. propose a comprehensive,

system-wide approach for identifying critical links and evaluating

network performance ( Scott et al., 2006 ). Using three hypotheti-

cal networks, the authors demonstrate that their approach yields

different highway planning solutions than traditional approaches,

which rely on volume/capacity ratios to identify congested or crit-

ical links. Jenelius proposes a methodology for vulnerability anal-

ysis of road networks and considers the impact of road-link clo-

sures ( Jenelius, 2010 ). The author considers different aspects of

vulnerability, and explores the dichotomy between system-wide ef-

ficiency and user equity. 

Prior work has also considered game-theoretic models of at-

tacks against transportation. Alpcan and Buchegger investigate the

resilience aspects of vehicular networks using a game-theoretic

model, in which defensive measures are optimized with respect to

threats posed by intentional attacks ( Alpcan and Buchegger, 2011 ).

The game is formulated in an abstract manner, based on centrality

values computed by mapping the centrality values of the car com-

munication network onto the road topology. The authors consider

multiple formulations based on varying assumptions on the play-

ers’ information, and evaluate their models using numerical exam-

ples. Bell introduces a two-player non-cooperative game between

a network user, who seeks to minimize expected travel cost, and

an adversary, who chooses link performance scenarios to maximize

the travel cost ( Bell, 20 0 0; Bell et al., 2008 ). The Nash equilib-

rium of this game can be used to measure network performance

when users are pessimistic and, hence, may be used for cautious

network design. Wu and Amin study normal-form and sequential

attacker-defender games over transportation networks to under-

stand how a defender should prioritize its investment in securing

a set of facilities ( Wu and Amin, 2018 ). 

6.2. Configuration of detectors 

The problem of configuring the sensitivity of intrusion detection

systems in the presence of strategic attackers has been studied in

a variety of different ways in the academic literature ( Laszka et al.,

2016a ). For example, Alpcan and Basar study distributed intrusion

detection in access control systems as a security game between

an attacker and an IDS, using a model that captures the imperfect

flow of information from the attacker to the IDS through a net-

work ( Alpcan and Basar, 2003; Alpcan and Ba ̧s ar, 2004 ). The au-

thors investigate the existence of a unique Nash equilibrium and

best-response strategies under specific cost functions, and ana-

lyze long-term interactions using repeated games and a dynamic

model. As another example, Dritsoula et al. consider the prob-

lem of setting a threshold for classifying an attacker into one

of two categories, spammer and spy, based on its intrusion at-
empts ( Dritsoula et al., 2012 ). They give a characterization of the

ash equilibria in mixed strategies, and show that the equilibria

an be computed in polynomial time. More recently, Lis ̀y et al.

tudy randomized detection thresholds using a general model of

dversarial classification, which can be applied to e-mail filtering,

ntrusion detection, steganalysis, etc. ( Lis ̀y et al., 2014 ). The authors

nalyze both Nash and Stackelberg equilibria based on the true-

ositive to false-positive curve of the classifier, and find that ran-

omizing the detection threshold may force a strategic attacker to

esign less efficient attacks. Finally, Zhu and Basar study the prob-

em of optimal signature-based IDS configuration under resource

onstraints ( Zhu and Ba ̧s ar, 2011 ). 

The strategic configuration of the sensitivity of e-mail filtering

gainst spear-phishing and other malicious e-mail is also closely

elated to the problem considered in this paper. Laszka et al. study

 single defender who has to protect multiple users against tar-

eted and non-targeted malicious e-mail ( Laszka et al., 2015 ). The

uthors focus on characterizing and computing optimal filtering

hresholds, and they use numerical results to demonstrate that op-

imal thresholds can lead to substantially lower losses than naïve

nes. Zhao et al. study a variant of the previous model: they as-

ume that the attacker can mount an arbitrary number of costly

pear-phishing attacks in order to learn a secret, which is known

nly by a subset of the users ( Zhao et al., 2015; 2016 ). They also

ocus on the computational aspects of finding optimal filtering

hresholds; however, their variant of the model does not capture

on-targeted malicious e-mails, such as spam. 

.3. Game theory for security of cyber-physical systems 

Beyond the configuration of detectors, prior effort s have also

sed game-theory to study a variety of other security prob-

ems in cyber-physical systems. For instance, Zhu and Basar in-

roduce a game-theoretic framework for resilient control design

nd studying the trade-off between robustness, security, and re-

ilience ( Zhu and Basar, 2015 ). They employ a hybrid model, which

ntegrates a discrete-time Markov model that captures the evolu-

ion of cyberstates with continuous-time dynamics that capture

he underlying controlled physical process. Backhaus et al. con-

ider the problem of designing attack-resilient power grids and

ontrol systems ( Backhaus et al., 2013 ). They use game theory to

odel the conflict between a cyber-physical intruder and a sys-

em operator, and use simulation results to assess design options.

awlick et al. consider Advanced Persistent Threats (APTs) against

loud-controlled cyber-physical systems and design a framework

hat specifies when a devices should trust commands from the

loud ( Pawlick et al., 2015 ). They model this scenario as a three

layer game between the cloud administrator, the attacker, and the

evice by combining the FlipIt game ( Laszka et al., 2014; Van Dijk

t al., 2013 ) with a signaling game. Li et al. consider jamming at-

acks against remote state estimation ( Li et al., 2015 ). In particu-

ar, they assume that a sensor and an estimate have to communi-

ate over a wireless, formulate a game-theoretic model, and pro-

ide Nash equilibrium strategies. 

. Conclusion 

As traffic-control devices in practice evolve into complex net-

orks of smart devices, the risks posed to transportation net-

orks by cyber-attacks increases. Thus, it is imperative for traffic-

etwork operators to be prepared to detect and mitigate at-

acks against traffic control. To provide theoretical foundations

or planning and implementing countermeasures, we introduced a

ame-theoretic model of cyber-attacks against traffic control. Our

ecurity game model consists of three stages: defender configuring
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etectors, attacker mounting a tampering attack against traffic sig-

als, and defender mitigating the attack. Since mitigation—in our

odel—means adapting the schedules of some traffic signals given

he schedules of other signals (set by the adversary in the previ-

us stage), it is equivalent to optimizing traffic control in a non-

dversarial setting, which has been studied in prior work. In light

f this, we focused on the computational problem of finding opti-

al actions in the first two stages. We showed that this is a com-

utationally hard problem, which prompted us to propose efficient

euristic algorithms. 

Using numerical results, we demonstrated that the proposed

lgorithms are practical. In particular, we first showed that the

reedy algorithm for attackers is close to optimal and computa-

ionally very efficient. Second, we showed that the metaheuristic

earch algorithm for detector configuration is effective, and it can

ignificantly decrease losses compared to non-strategic detector

onfiguration. We also introduced and studied a Gaussian-process

ased traffic-anomaly detector, which we showed to be very effec-

ive at detecting tampering attacks against traffic signals. 
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