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a b s t r a c t 

Learning enabled components are frequently used by autonomous systems and it is common for deep 

neural networks to be integrated in such systems for their ability to learn complex, non-linear data pat- 

terns and make accurate predictions in dynamic environments. However, their large number of parame- 

ters and their use as black boxes introduce risks as the confidence in each prediction is unknown and out- 

put values like softmax scores are not usually well-calibrated. Different frameworks have been proposed 

to compute accurate confidence measures along with the predictions but at the same time introduce a 

number of limitations like execution time overhead or inability to be used with high-dimensional data. In 

this paper, we use the Inductive Venn Predictors framework for computing probability intervals regarding 

the correctness of each prediction in real-time. We propose taxonomies based on distance metric learning 

to compute informative probability intervals in applications involving high-dimensional inputs. By assign- 

ing pseudo-labels to unlabeled input data during system deployment we further improve the efficiency 

of the computed probability intervals. Empirical evaluation on image classification and botnet attacks de- 

tection in Internet-of-Things (IoT) applications demonstrates improved accuracy and calibration. The pro- 

posed method is computationally efficient, and therefore, can be used in real-time. The code is available 

at https://github.com/dboursinos/Efficient-Probability-Intervals-Classification-Inductive-Venn-Predictors . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Modern Deep Neural Network (DNN) architectures have the ca- 

acity to be trained using high-dimensional data and make ac- 

urate predictions in dynamic and uncertain environments. This 

bility makes them a common choice for many autonomous sys- 

em applications. However, when DNNs are used as black boxes in 

afety-critical systems, they may result in disastrous consequences 

f it is not possible to reason about their predictions. 

The training of a Learning Enabled Component (LEC) requires 

pecification of the task, performance measure for evaluating how 

ell the task is performed, and experience in the form of train- 

ng and testing data. An LEC, such as a DNN, during system oper- 

tion exhibits some nonzero error rate and the true error rate is 

nknown and can only be approximated during design time using 

he available data. The problem is that the approximations are not 

lways good. Confidence values, such as the softmax probabilities 

hich are used by most DNNs for classification, are usually greater 

han the actual posterior probability that the prediction is correct. 
∗ Corresponding author. 
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mportant factors that make modern DNNs overconfident are the 

epth, width, and techniques like weight decay, and batch normal- 

zation [1] . 

Our objective is to complement the predictions made by DNNs 

ith a computation of confidence. The confidence can be ex- 

ressed as probability intervals that characterize the correctness 

f the DNN prediction. This is an upper and a lower bound that 

symptotically contain the probability of correctness of the predic- 

ion. An efficient and robust approach must ensure that the ac- 

ual accuracy of a DNN is contained in the computed intervals 

nd the width of the intervals is small. We focus on computation- 

lly efficient algorithms that can be used in real-time. The pro- 

osed approach is based on the Inductive Venn Predictors (IVP) 

ramework [2] . IVP computes the probability intervals for an un- 

nown input leveraging knowledge it has acquired from previ- 

us predictions on labeled data. IVPs are defined by a taxonomy 

hich splits data into categories according to their similarity. Well- 

alibrated multi-probabilistic predictions are generated by comput- 

ng the class distribution of labeled data in each category. Most of 

he IVP or Venn Predictors (VP) applications in the literature are 

valuated on low-dimensional data. More specifically the datasets 

hat have been used for experimental evaluation contain: 16x16 

rayscale images in [2,3] , tabular data with 50 and 57 attributes 

https://doi.org/10.1016/j.patcog.2023.109734
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109734&domain=pdf
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n [4] , tabular data with 8 to 13 attributes in [5] , tabular data with

 and 12 attributes in [6] , tabular data with 5 to 18 attributes 

n [7] . In this paper we use distance metric learning methods to 

ransform high-dimensional data into lower-dimensional embed- 

ing representations so that IVP can by applied in applications 

ith high-dimensional data, like images. 

In our previous work [8] , we measured the likelihood of a pre- 

iction based on p-values using the Inductive Conformal Prediction 

ICP) framework. Even though p-values can be used to produce 

rediction sets with a well-calibrated error-rate bound, their inter- 

retation is less direct than that of probabilities and it is harder to 

eason about their meaning. Moreover many times they are con- 

used with probabilities. However the difference is significant. Ac- 

ording to [8] , a set predictor is formed according to the p-values 

ssociated with each possible class and the probability of error is 

ess or equal to a chosen significance level. The problem with ICP 

s that the guarantees for the set predictors only apply a priori. 

VPs, on the other hand, are used to compute probability intervals 

hat express the posterior conditional probability of a label given 

he training set and test input. 

The estimation of reliable predictive uncertainty has become 

n important part of many modern machine learning components 

sed in safety-critical applications. Even though many of the pro- 

osed methods produce well-calibrated models, their application 

n the real world is challenging. In [9,10] , new training algo- 

ithms and loss functions are proposed to achieve well-calibrated 

NNs. These approaches require training DNN models from scratch 

nd cannot be used with pre-trained ones. Another category of 

alibration methods like the Platt’s scaling [11] and temperature 

caling [1] proposes ways of post-processing the outputs of al- 

eady trained models to produce calibrated confidence measures. 

n [12,13] , it is shown that these methods are not as well-calibrated 

s it is reported especially when the validation data are not in- 

ependent and identically distributed (IID) and in the presence 

f distribution shifts. The Conformal Prediction (CP) framework is 

eveloped to compute prediction sets to satisfy a desired signif- 

cance level [14] . The confidence value assigned to each possible 

lass is in the form of p-values which is less intuitive than esti- 

ating the confidence as probabilities. Another way of obtaining 

onfidence information about predictions is by using algorithms 

ased on the Bayesian framework. The use of this framework, how- 

ver, require some prior knowledge about the distribution generat- 

ng the data. In the real world, this distribution is unknown and it 

as to be chosen arbitrarily. In [15] , it is shown that the predictive

egions produced by Gaussian Processes, a popular Bayesian ma- 

hine learning approach, may be incorrect and misleading when 

he correct prior is not known. 

The main contribution of our work is the use of dynamic cat- 

gories that increase in size with new data during runtime. The 

econd contribution is the computation of low-dimensional, appro- 

riate, embedding representations of the original inputs in a space 

here the Euclidean distance is a measure of similarity between 

he original inputs, in order to handle high-dimensional inputs in 

eal-time. The third contribution is the implementation of four dif- 

erent taxonomies that split the low-dimensional data into cate- 

ories based on their similarity. Then, we implement categories 

hat can increase in size to include unlabeled data during runtime 

n real-time as they are encountered. ICP is used to compute candi- 

ate labels for the unlabeled data and they are placed to their cor- 

esponding categories according to the chosen taxonomy. Last, we 

resent an empirical evaluation of the approach using two datasets 

or image classification problems with a large number of classes 

s well as detection of botnet attacks in an IoT device. The un- 

erlying models are chosen according to the input size and shape 

hile satisfying the low-latency and low-power requirements, to 

eet the resource constraints of the variety of use cases [16] . This 
2

aper presents an empirical study with three datasets as a proof- 

f-concept for improving the efficiency of IVPs. Our exhaustive 

omparison of all proposed and baseline taxonomies indicates that 

he taxonomy choice affects the quality of the computed proba- 

ility intervals. Our experiments show that the taxonomy decision 

s driven by our ability to compute embedding representations of 

ata points that form tight clusters. The method presented in this 

aper has higher accuracy on test set predictions compared to our 

revious work in [8] . 

. Problem formulation 

A perception component in an autonomous system aims to 

bserve and interpret the environment in order to provide in- 

ormation for decision-making. When machine learning models 

re used for decision making, it is essential for them to provide 

etrics related to their uncertainty. For example, a perception 

omponent can be used for classifying traffic signs in autonomous 

ehicles. The problem is to complement the decisions of the per- 

eption component with a computation of confidence. An efficient 

nd robust approach must ensure a small and well-calibrated 

rror rate to enable real-time operation. An accurate estimation 

f a relatively small error-rate, according to the specification, 

an maximize the autonomous operation while limiting the 

umber of inputs for which an accurate prediction cannot be 

ade. 

During system operation, for each new input a prediction is 

ade, usually by a LEC and the objective is to compute a valid 

easure of the prediction’s confidence. The objective is twofold: 

1) provide guarantees for the error rate of the prediction and (2) 

imit the number of input examples for which a confident predic- 

ion cannot be made. Well-calibrated confidence in terms of prob- 

bilities can be used for decision-making, for example, by gener- 

ting warnings when human intervention is required. To improve 

roperties like calibration and efficiency, the assurance monitoring 

nd classification system needs to take into account and adapt to 

ata observed during runtime in real-time without suspending the 

peration. 

The VP framework can produce predictions with confidence in- 

ervals that guarantee to include the true probabilities for each 

lass output to occur [2] . The confidence intervals for a test in- 

ut are generated by considering the class distribution of labeled 

nputs assigned to the same category that are collected offline and 

re available to the system. In the literature, VP implementations 

se Support Vector Machines (SVMs) or DNN classifiers to create 

ategories of labeled data [2,4,7] . The additional problem we are 

onsidering is the computation of appropriate embedding repre- 

entations that can lead to more efficient VPs. Using such repre- 

entations taxonomies need to be be defined to form categories 

f similar input data in a lower-dimensional space. This, not only 

educes the memory requirements, but is also more efficient in 

roducing more informative intervals. The efficiency and calibra- 

ion of IVP improves as categories contain more data. The accuracy 

f the predictions as well as the efficiency and calibration of the 

robability intervals are affected by the availability of labeled data. 

ut of two probability intervals, more efficient, or informative, 

s considered the one with the lowest uncertainty regarding the 

rue accuracy. A common problem for classification components 

hat make use of ML models is the acquisition of appropriate la- 

eled data. To address the problem of limited availability of labeled 

ata, pseudo-labels need to be assigned to the unlabeled data that 

an be classified confidently. During execution time, input data 

rrive one by one. Their conformity with the training set needs 

o be evaluated and using statistical methods reject the labels 

hat are less likely to be true for the newly received, unlabeled, 

nput data. 
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. Distance metric learning 

As pointed in [17] , ML models perform well when they need 

o make decisions on test inputs that are similar to the labeled 

ata used for training. Furthermore, in [18] it is shown that areas 

n the feature space that lack training data lead to much higher 

rror-rate. When the data are expressed in high-dimensions, the 

nalysis of the feature space as well as the similarity estima- 

ion between two data points is not straightforward. This problem 

ommonly appears in content-based image retrieval (CBIR) sys- 

ems [19] . The metric chosen to define the distance between im- 

ges can strongly affect the performance and computing distance 

etrics in high-dimensions is computationally expensive and re- 

uires a large memory capacity to store all available data in their 

riginal form. The efficiency can be improved by using distance 

etric learning to map the original data to lower-dimensional rep- 

esentations on an embedding space where the distance can be 

omputed efficiently. 

A siamese network is composed using two copies of the same 

eural network with shared parameters [20] as shown in Fig. 1 . 

uring training, each identical copy of the siamese network is fed 

ith different training samples x 1 and x 2 belonging to classes y 1 
nd y 2 . The embedding representations produced by each network 

opy are r 1 = Net (x 1 ) and r 2 = Net (x 2 ) . The learning goal is to

inimize the Euclidean distance between the embedding repre- 

entations of inputs belonging to the same class and maximize it 

or inputs belonging to different classes as described below: 

min d(r 1 , r 2 ) , if y 1 = y 2 

max d(r 1 , r 2 ) , otherwise 
(1) 

his optimization problem can be solved using the contrastive loss 

unction [21] : 

 (r 1 , r 2 , y ) = y · d(r 1 , r 2 ) + (1 − y ) max [0 , m − d(r 1 , r 2 )] 

here y is a binary flag equal to 0 if y 1 = y 2 and to 1 if y 1 � = y 2 
nd m is a margin parameter. In particular, when y 1 � = y 2 , L = 0

hen d(r 1 , r 2 ) ≥ m , otherwise the parameters of the network are

pdated to produce more distant representations for those two el- 
Fig. 1. Siamese network structure. 
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3 
ments. The margin parameter is used so that only hard example 

airs, close to each other, will be used for training. 

We denote f : X → V the mapping from the input space X to

he embedding space V by a single copy of the DNN pair in the 

iamese network. Using the trained network, the embeddings v i = 

f (x i ) are computed and stored for all the training data x i . The same 

ransformation takes place online as new test input data arrive to 

he system. 

. Siamese-based IVP 

Venn Predictors is a machine learning framework that can be 

ombined with existing classifier architectures for producing well- 

alibrated multi-probability predictions under the IID assump- 

ion [2,22] . This means that the confidence assigned to a prediction 

s a probability distribution which in effect defines lower and up- 

er bounds regarding the probability of correctness for all possible 

lasses. VPs are well-calibrated and the probability bounds asymp- 

otically contain the corresponding true conditional probabilities 

proof in [2] ). However the framework is computationally ineffi- 

ient as it requires training the underlying algorithm after every 

ew test input. Computational efficiency can be addressed using 

he Inductive Venn Predictors [4,6] , an extension of the VP frame- 

ork. 

Central to the VP and IVP frameworks is the definition of a 

enn taxonomy. This is a way of clustering data points into a num- 

er of categories according to their similarity and is based on an 

nderlying algorithm. For example a taxonomy can be defined to 

ut in the same category examples that are classified in the same 

lass by a DNN. The main idea of our approach is that the taxon- 

my can be defined efficiently by learning embedding representa- 

ions of the inputs for which the Euclidean distance is a measure 

f similarity. To compute the embedding representations of the in- 

uts we train a siamese network using contrastive loss as shown 

n Section 3 . 

We consider the training examples, z 1 , . . . , z l from Z , where 

ach z i is a pair (x i , y i ) with x i the feature vector and y i the corre-

ponding label. We also consider a test input x l+1 which we wish 

o classify. The available training examples are split into two parts: 

he proper training set with q examples and the calibration set with 

 − q examples. IVP assumes that the calibration and test sets are 

ndependent and identically distributed (IID) generated from the 

ame but usually unknown probability distribution. The examples 

n the proper training set are used to train the siamese network 

hich is used to define different Venn taxonomies. The roll of the 

axonomy is to divide the l − q calibration examples into a num- 

er of categories based on their similarity. This process takes place 

uring the design time. 

As proved in [2] the probabilistic outputs assigned to each class 

y the VP are well-calibrated regardless of the choice of the Venn 

axonomy and this holds in practice for IVP as well [4] . However, 

he choice of the taxonomy affects the efficiency of the IVP. The 

robability intervals are desirable to be relatively narrow to min- 

mize the uncertainty in the probability of correctness as well as 

reate better separation between the probabilities of each class. 

n [23] we proposed four different Venn taxonomies based on dis- 

ance metric learning that we briefly present here for complete- 

ess. The first two taxonomies are based on a k -Nearest Neigh- 

ors classifier. The naive approach, that we call k-NN V 1 , trains a 

 -NN classifier using the embedding representations of the proper 

raining set. Then the calibration data, as well as each new test 

nput, are placed to a category that is defined by the k -NN predic-

ion using the computed embedding representations. That is, for a 

ata point x l+1 that needs to be placed into a category, its em- 

edding representation is computed using the siamese network, 

 l+1 = f (x l+1 ) and its k nearest training data are found. Depend- 
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ng on the class ˆ y l+1 that most neighbors belong to, the data point 

s assigned to the category 

 l+1 = 

ˆ y l+1 . (2) 

his taxonomy creates a number of categories that is equal to the 

umber of classes in the dataset. Then, we extended this taxonomy 

o more accurately split the data into categories by taking into ac- 

ount how many of the k nearest training data points are labeled 

ifferent than the predicted class. For a data point x l+1 with em- 

edding representation r l+1 that needs to be placed into a category 

e compute the k -nearest neighbors in the training set and store 

heir labels in a multi-set �. We call this taxonomy k-NN V 2 and 

he category where x l+1 is placed is computed as: 

 l+1 = 

ˆ y l+1 ×
(

k −
⌊

k 

c 

⌋)
+ | i ∈ � : i � = 

ˆ y l+1 | (3) 

here ˆ y l+1 is the k -NN classification of r l+1 , k is the number of

earest neighbors and c is the number of different classes. This 

axonomy aims at further improving the similarity of the data in 

ach category leveraging the classifier’s confidence. It is expected 

hat the more similar labeled neighbor training data points, the 

igher the chance of the corresponding class being the correct one. 

hat way each category of k-NN V 1 is further split into k −
⌊

k 
c 

⌋
new 

ategories. 

By utilizing the ability of siamese networks to form clusters of 

imilar data we can further reduce the Venn taxonomy computa- 

ional requirements when there is a large amount of training data. 

ach class cluster i corresponding to class Y i , i = 1 . . . , c can then

e represented by its centroid μi = 

∑ n i 
j=1 

r i 
j 

n i 
, where r i 

j 
is the embed- 

ing representation of the j th training example from class Y i and 

 i is the number of training examples labeled as Y i . We propose 

nother family of taxonomies based on the nearest centroids. The 

C V 1 places the calibration data as well as each new test input to 

 category that is the same as the class assigned to their nearest 

entroid. The category, where an example x l+1 is placed, is com- 

uted as: 

 l+1 = arg min 

j=1 , ... ,c 
d(r l+1 , μ j ) (4) 

here d the Euclidean distance. This leads to a number of cate- 

ories that is equal to the number of classes in the dataset. An ex- 

ension of this taxonomy, the NC V 2 , attempts to form more accu- 

ate categories by taking into account the classification confidence. 

e expect data points of the same class to be more similar to each 

ther when their embedding representations are placed at similar 

istances to their class centroid. That way each category of NC V 1 
s further split into two categories based on how close an example 

 l+1 is to its nearest centroid: 

 l+1 = 2 × arg min 

j=1 , ... ,c 
d(r l+1 , μ j ) + h, (5) 

 = 

{
0 , if d(r l+1 , μmin ) ≤ θ

1 , otherwise 

here μmin = arg min j=1 , ... ,c d(r l+1 , μ j ) is the distance to the near- 

st centroid and θ a chosen distance threshold. 

After placing the calibration data into categories using the un- 

erlying algorithm for the taxonomy, during execution time we 

onsider a test input x l+1 and place it in a category k l+1 . The true

lass y l+1 is unknown so all possible classes Y j are considered as 

andidates one after the other. The empirical probability assigned 

o each candidate class is: 

p(Y j ) = 

|{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| 

| k l+1 | 
. (6) 
4

 l+1 will always be non-empty as it will contain at least the new 

xample x l+1 . This creates a probability distribution for the label 

 l+1 computed as the ratio of data belonging to each class in a 

ategory. That way we can compute the maximum and minimum 

robabilities assigned to each class Y j . When the true class is as- 

umed to be Y j then the count of examples labeled as Y j in k l+1 

ill increase by one and result in the maximum probability as- 

igned to class Y j , U(Y j ) . For all the other classes Y i , i = 1 , . . . , c :

 � = j the computed probability will be their minimum probability 

 (Y j ) . These are the two bounds that define the probability inter- 

als [ L (Y j ) , U(Y j )] for each class. The predicted class for the classi-

cation is computed as: 

j best = arg max 
j=1 , ... ,c 

p(Y j ) (7) 

here p(Y j ) is the mean of the probability interval assigned 

o Y j . Along with the class Y j best 
the IVP framework outputs 

he probability interval [ L (Y j best 
) , U(Y j best 

)] . By temporarily plac-

ng the new example to each of the n categories, one at a 

ime, we compute a set of probability distributions that com- 

ose the multi-probability prediction of the IVP, P 
k i 
l+1 

= { p k i (Y j ) :
 i ∈ { k 1 , . . . , k n } , Y j ∈ { Y 1 , . . . , Y c }} . That way the initial probability

ntervals assigned to each class for each category as well as the 

lass classification can be computed offline using the labeled cali- 

ration data. The steps taking place during execution are illustrated 

n Fig. 2 . 

. Inductive venn predictors with dynamic categories 

Categories with more data lead to computation of probabil- 

ty intervals that are narrower and better calibrated. The cate- 

ories are commonly formed during design time using labeled 

ata that were not used for training and remain unchanged dur- 

ng execution. However, many times the available data during de- 

ign time are not enough to form categories that satisfy specifica- 

ions regarding the probability intervals. Our method utilizes dy- 

amic categories that expand in size during runtime by includ- 

ng newly encountered data with pseudo-labels. For the pseudo- 

abeling we use the ICP framework for its error-rate guarantees 

t provides. ICP approaches the labeling as a hypothesis testing 

roblem that rejects the labels that are less likely to be correct. 

iven a test input x l+1 , ICP computes a prediction set �ε of labels 

ith enough evidence to be the true label, where ε the signifi- 

ance level of the hypothesis testing. Hypothesis testing is a sta- 

istical method used to make decisions on whether a hypothesis 

s true based on a finite number of data. The null hypothesis, H 0 ,

s the argument believed to be true and the alternative hypothe- 

is , H 1 , is the argument to be proven true based on the collected

ata. We determine whether to accept or reject the alternative hy- 

othesis based on the likelihood of the null hypothesis being true, 

iven by p-values. We are certain that exactly one of the labels 

n Y is true so ˆ y l+1 = y l+1 is the null hypothesis. This hypothesis 

eeds to be rejected for the c − 1 incorrect labels so ˆ y l+1 � = y l+1 is

he alternative hypothesis. ICP computes prediction sets �ε such 

hat P (y l+1 / ∈ �ε ) < ε, for any choice of ε with the underlying as- 

umption that all examples ( x i , y i ), i = 1 , 2 , . . . are IID generated

rom the same but typically unknown probability distribution and 

xchangeable [24] . 

We utilize the error-rate bound guarantees of ICP to update 

he IVP categories in real-time during system execution. The pro- 

ess is shown in Fig. 3 . The new unlabeled input x is first trans-

ormed to a low-dimensional embedding representation v . Accord- 

ng to the chosen taxonomy, the representation v corresponds to 

ne of the predefined categories. The prediction ˆ y as well as the 

robability interval [ L ( ̂  y ) , U( ̂  y )] is computed using the IVP frame-

ork and the class distribution in the assigned category. After 
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Fig. 2. IVP classifier based on distance metric learning. 

Fig. 3. Execution time workflow. 
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he prediction output, in phase B, we evaluate if we can pseudo- 

abel the input x and add it to the assigned category pool. We 

se ICP to compute the set �ε of candidate labels that show 

vidence of being correct. The class distribution in the category 

omputed by the IVP taxonomy is updated to include the labels 

n �ε . 

Central to the application of ICP is a nonconformity function or 

onconformity measure (NCM) which shows how different a la- 

eled input is from the examples in the training set. The same 

iamese network that is trained for IVP is used to define the ICP 

CMs. The proper training set and the calibration set used for ICP 

re the same that are used to train the siamese network and assign 

ata to categories for the IVP framework. In [25] , we presented dif- 

erent NCMs based on low-dimensional embedding representation. 

ccording to the application a particular NCM may be more suit- 

ble. The k -NN NCM finds the k most similar examples of a test 

nput x in the training data and counts how many of those are la- 

eled different than the candidate label y . We denote f : X → V 

he mapping from the input space X to the embedding space V 

efined by either a siamese or a triplet network. Using the trained 

eural network, the encodings v i = f (x i ) are computed and stored 

or all the training data x i . Given a test input x with encoding

 = f (x ) , we compute the k -nearest neighbors in V and store their
 H

5 
abels in a multi-set �. The k -NN NCM of input x with a candidate

abel y is defined as 

(x, y ) = | i ∈ � : i � = y | . (8)

The Nearest Centroid NCM simplifies the task of computing in- 

ividual training examples that are similar to a test example when 

here is a large amount of training data. We expect examples that 

elong to a particular class to be similar to each other so for each 

lass y i we compute its centroid μy i = 

∑ n i 
j=1 

v i 
j 

n i 
, where v i 

j 
is the em- 

edding representation of the j th training example from class y i 
nd n i is the number of training examples in class y i . The noncon-

ormity function is defined as: 

(x, y ) = 

d(μy , v ) 
min i =1 , ... ,n : y i � = y d(μy i , v ) 

(9) 

here v = f (x ) . It should be noted that for computing the nearest

entroid NCM, we need to store only the centroid for each class. 

The advantage of the nearest centroid NCM, in Eq. 9 is that it 

equires minimal memory and computational power as for the NC 

cores to be computed, only the centroids of the training data need 

o be stored. This is more significant in relatively large datasets. 

owever, this methods only works well when our distance learning 
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ethods can create tight clusters around the centroids. If this is 

ot possible because of the dataset complexity we can use the k - 

N NCM, in Eq. 8 . This function does not assume tight clustering of

ata belonging to the same class around a single cluster. Data with 

ifferent characteristics may belong in the same class and distance 

etric learning methods can produce multiple clusters for a given 

lass. This function, on the other hand, requires the whole training 

et to be stored and more computational power to compute the 

 -NN of a given test input in the training set. 

The NC scores give us an indication of which classes appear 

o conform better with an input. However their values can range 

epending on the dataset and it is hard to set thresholds and 

hoose the pseudo-labels for unlabeled inputs. ICP normalizes the 

C scores and translates it into p-values using a calibration dataset 

 X c , Y c ). The nonconformity scores of the calibration data are com- 

uted in design time and stored in A , where: 

 = { α(x, y ) : (x, y ) ∈ (X 

c , Y c ) } . (10)

or a test example with feature vector x and a candidate prediction 

j, the nonconformity can be computed similarly to the calibration 

xamples. The empirical p-value for each candidate label j is: 

p j (x ) = 

|{ α ∈ A : α ≥ α(x, j) }| 
| A | . (11) 

hen, a set prediction �ε for the input x can be computed as the 

et of all labels j such that p j (x ) > ε. The category κ that x is

ssigned to is computed by the IVP taxonomy of choice and if 

 �ε | ≥ 1 , the class distribution in κ is updated to include the la-

els in �ε . 

. Evaluation metrics 

The performance of IVP based on the proposed taxonomies is 

valuated regarding the accuracy, calibration and efficiency. The 

bjective is for the computed probability intervals to contain the 

rue probability of correctness for each prediction. The probability 

nterval for a given input x with predicted class ˆ y is [ L ( ̂  y ) , U( ̂  y )] .

quivalently, the probability that ˆ y is not the correct classification 

ill be in the complimentary interval [1 − U( ̂  y ) , 1 − L ( ̂  y )] , called

rror probability interval. The true probability of correctness for a 

ingle prediction is unknown so the correctness of the computed 

ntervals is evaluated over a number of samples. To do this we use 

he following metrics: 

• cumulative errors 

E n = 

n ∑ 

i =1 

err i , (12) 

err i = 

{
1 , if classification 

ˆ y i is incorrect 

0 , otherwise 

• cumulative lower and upper error probabilities 

LEP n = 

n ∑ 

i =1 

[1 − U( ̂  y i )] , UEP n = 

n ∑ 

i =1 

[1 − L ( ̂  y i )] (13) 

To compare the IVP based on our proposed taxonomies with 

he baseline taxonomies, scalar metrics are used that represent the 

erformance regarding accuracy, calibration, and efficiency. Unlike 

he NN classifiers that produce a single softmax probability for 

ach class, the IVP framework produces probability intervals. For 

he computation of the evaluation metrics the probability assigned 

o a class Y j will be p(Y j ) like in Eq. 7 . The accuracy of an IVP im- 

lementation is evaluated as the number of correct classifications 
6 
ver the number of attempted classifications and it is computed as 

ccuracy = 1 − E n 

n 

. (14) 

n efficient, or informative, IVP is one that makes predictions with 

mall diameter probability intervals and their median is as close to 

ero or one. The most popular quality metrics for probability as- 

essments are the negative log-likelihood (NLL) and the Brier score 

BS) [26] . NLL is the simplest out of the two and only considers the

robability assigned to the predicted class in Eq. 7 . It is computed 

s 

LL = −
n ∑ 

i =1 

c ∑ 

j=1 

t j 
i 

log (o j 
i 
) , (15) 

here o 
j 
i 
= p(Y j ) of example i and t 

j 
i 

the one-hot representation of 

he ground truth classification label y i of example i , that is 

 

j 
i 

= 

{
1 , if classification y i = Y j 

0 , otherwise 

his metric is minimized by producing intervals that are narrow 

nd have median probability close to one assigned to the correct 

lass. Computational issues may occur as the log score explodes if 

e observe an event that the classifier considers impossible. BS is 

omputed as 

S = 

1 

n 

n ∑ 

i =1 

c ∑ 

j=1 

(o j 
i 
− t j 

i 
) 2 (16) 

his is, in effect, the mean squared error of the predictions. Unlike 

LL, BS considers the probabilities assigned to all possible classes 

nd will penalize probability intervals assigned to incorrect classes 

hat are not close to zero. There are different views in the literature 

egarding which scoring rule is more appropriate [27] . emphasizes 

n the importance of the locality property, meaning, the scoring 

ule should only depend on the probability of events that actually 

ccur and only NLL satisfies this. On the other hand, [28] states 

hat a scoring rule should be symmetric and only BS satisfies this. 

his means that if the true class probability is p and the predicted 

robability is ˆ p , then the score should be equal to the case where 

he true probability is ˆ p and the predicted probability is p. How- 

ver, we think that both metrics produce useful insights in prob- 

bility assessment so both are reported in our experiment results. 

he interval size has a significant role on how informative and in- 

erpretable a prediction is. Narrower probability intervals are more 

nformative than wider ones because they provide more accurate 

nformation about the probability of correctness of a prediction as 

ll possible values of the probability of correctness are tightly clus- 

ered around a specific value. We evaluate the size of the probabil- 

ty intervals by computing the average interval diameter as 

 = 

∑ n 
i =1 U( ̂  y i ) −

∑ n 
i =1 L ( ̂  y i ) 

n 

(17) 

A well-calibrated IVP computes probability intervals that are 

epresentative of the true correctness likelihood. Formally a model 

s well-calibrated when 

 

(
ˆ y = Y | ̂  p = p 

)
= p, ∀ p ∈ [0 , 1] (18) 

owever, ˆ p is a continuous random variable so the probabil- 

ty in Eq. 18 cannot be approximated using finitely many sam- 

les. According to (18) a measure of miscalibration can be ex- 

ressed as E 

ˆ p 

[∣∣P 

(
ˆ y = y | ̂  p = p 

)
− p 

∣∣]. The Expected Calibration Er- 

or (ECE) [29] computes an approximation of this expected value 

cross bins: 

CE = 

M ∑ 

m =1 

| B m 

| 
n 

| acc (B m 

) − conf (B m 

) | (19) 
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here | B m 

| is the number of samples in bin B m 

, n is the total num-

er of samples and acc (B m 

) and conf (B m 

) are the accuracy and

onfidence of bin B m 

respectively as defined in [29] . Many times in 

afety critical applications it is more useful to compute the maxi- 

um miscalibration of a model than the mean value. This metric 

s called Maximum Calibration Error (MCE) [29] and is computed 

s: 

CE = max 
m ∈{ 1 , ... ,M} | acc (B m 

) − conf (B m 

) | (20) 

. Evaluation 

In this section, we evaluate the IVPs that use distance-based 

axonomies with regard to accuracy, calibration, and efficiency. Ad- 

itionally, for the evaluation of our proposed taxonomies, we use 

etrics regarding the performance of the siamese network in clus- 

ering similar input data, the execution time of the framework, and 

he required memory. Then we evaluate our implementation of dy- 

amic taxonomies and compare them with their static distance- 

ased taxonomies counterparts. 

.1. Experimental setup 

The embedding representation computations, part of our pro- 

osed taxonomies, are not application-specific and can improve the 

erformance of IVP in cases where inputs are high-dimensional. 

e evaluate the performance of IVP with distance-learning in two 

ifferent classification problems. First, we have two case studies in 

mage classification. The German Traffic Sign Recognition Bench- 

ark (GTSRB) dataset is a collection of traffic sign images to be 

lassified in 43 classes [30] . The labeled sign images are of various 

izes between 15x15 to 250x250 pixels depending on the observed 

istance. We convert all the images to a fixed shape of 96x96 pix- 

ls. The second dataset is the Fruits360 [31] . This dataset contains 

mages of 131 different kinds of fruits and vegetables. The input 

ata are used in their original size, 100x100 pixels. 

The second classification problem we consider is the detection 

f botnet attacks in IoT devices. As part of the evaluation in [32] ,

uthors made available data regarding network traffic while infect- 

ng different common IoT devices two families of botnets. Mirai 

nd BASHLITE are two common IoT-based botnets and their harm- 

ul capabilities are presented in [33] . In the dataset there are data 

or the following ten attacks: 

• BASHLITE Attacks 

1. Scan: Scanning the network for vulnerable devices 

2. Junk: Sending spam data 

3. UDP: UDP flooding 

4. TCP: TCP flooding 

5. COMBO: Sending spam data and opening a connection to a 

specified IP address and port 
• Mirai Attacks 

1. Scan: Scanning the network for vulnerable devices 

2. Ack: Ack flooding 

3. Syn: Syn flooding 

4. UDP: UDP flooding 

5. UDPplain: UDP flooding with fewer options, optimized for 

higher PPS 

Including the benign network traffic, we approach this as a clas- 

ification problem with eleven classes. The available data are in 

he form of 115 statistical features extracted from the raw network 

raffic. The same 23 features, presented in [32] , are extracted from 

ve time windows of the most recent 10 0ms, 50 0ms, 1.5sec, 10sec, 

min. The features summarize the traffic in each of these time 

indows that has (1) the same source IP address, (2) the same 
7 
ource IP and MAC address, (3) been sent between the source and 

estination IP address, (4) been sent between the source and des- 

ination TCP/UDP sockets. These features are computed incremen- 

ally and in real-time. 

The available data are used throughout the evaluation process 

he same way in every dataset. 10% of the data are taken out to be

sed for testing and the rest is the training set. The training set is 

hen split into the proper training set and the calibration set. The 

roper training set is randomly chosen as 80% of the training set 

nd is used to train the underlying models and for the computa- 

ion of the categories. The calibration set is the remaining 20% of 

he available training data and it is used only to form the cate- 

ories during the design time. The reported evaluation results are 

omputed on the separate test set. All the experiments run in a 

esktop computer equipped with and Intel(R) Core(TM) i9-9900K 

PU and 32 GB RAM and a Geforce RTX 2080 GPU with 8 GB mem-

ry. 

.2. Baseline taxonomies 

To understand the effect of the distance metric learning in IVP 

e compare it with approaches that use DNN classifiers as under- 

ying algorithms. A variety of Venn taxonomy definitions based on 

NNs is proposed in [7] . V 1 assigns two examples to the same cat- 

gory if their maximum softmax outputs correspond to the same 

lass. V 2 , divides the examples in the categories defined by V 1 into 

wo smaller categories based on the value of their maximum soft- 

ax output. Their chosen threshold for the maximum output to 

reate the two smaller categories is 0.75. V 3 divides the examples 

n the categories defined by V 1 into two smaller categories but this 

ime based on the second highest softmax output. Their chosen 

hreshold for the second-highest output is 0.25. V 4 divides each 

ategory of taxonomy V 1 in two, based on the difference between 

he highest and second-highest softmax outputs. The threshold for 

his difference is 0.5. In the same paper, they proposed a fifth tax- 

nomy that creates the categories based on which classes have 

oftmax outputs above a certain threshold. This taxonomy creates 

 

C number of categories making its use infeasible in our evaluation 

atasets. 

.3. Evaluation results 

The difficulty to assign an input to a category and the mem- 

ry demands increase as the size and complexity of the inputs in- 

reases. Our goal is to evaluate our method using general-purpose 

nd lightweight DNNs. For the image classification problems, we 

se the MobileNet [16] architecture for both the embedding repre- 

entation computation as well as the classifier used for the base- 

ine taxonomies for its low latency and low memory requirements. 

he trade-off between accuracy and latency is configured by the 

yperparameter α. We set α = 0 . 5 in the case of GTSRB and α = 1

or the Fruit360. In both cases the embedding representation vec- 

ors are of size 128. In the case of the botnet attacks detection, the 

nput data are arranged in vectors of 115 values so we use a fully 

onnected DNN with two hidden layers, the first has 10 units, and 

he second which produces the embedding representations has 32 

nits. 

After training the siamese network and before it is used as part 

f the taxonomies we need to evaluate how well it performs in 

lustering similar inputs. For comparison, we use the embedding 

pace produced by the penultimate layer of the DNN classifier [34] . 

 commonly used metric of the separation between class clusters 

s the silhouette coefficient [35] . This metric evaluates how close 

ogether samples from the same class are, and far from samples of 

ifferent classes and takes values in [-1,1]. The results on the sil- 

ouette analysis for the test inputs from both datasets are shown 
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Table 1 

Silhouette coefficient comparison. 

Classifier Embeddings Siamese Embeddings 

GTSRB 0.56 0.98 

Fruits360 0.52 0.85 

Ecobee Thermostat 0.27 0.46 
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n Table 1 . The siamese network produces representations that are 

ell clustered based on their similarity and better than the rep- 

esentations produced by the classifier DNN. This is important for 

onstructing efficient categories using our proposed distance-based 

axonomies. 

The evaluation results are shown in Table 2 . For all datasets, we 

bserve that using the proposed distance-based taxonomies, IVP 

roduces more accurate classifications. Even though the baseline 

 1 taxonomy produces probability intervals that are as narrow as 

he intervals produced by some of the proposed taxonomies, the 

roposed taxonomies produce better quality intervals by keeping 

he intervals assigned to the correct class close to 1 and the inter- 

als of the incorrect classes close to 0, as shown by the NLL and

S metrics. The differences in ECE are not significant but most of 

he proposed taxonomies produce probabilities that are better cal- 

brated in the whole probability space [0,1] with no areas of mis- 

alibration as indicated by MCE. 

For illustration, the cumulative upper and lower error probabil- 

ties as well as the cumulative error are plotted on the same axis 

n Fig. 4 for all the taxonomies used in our comparison and test 

ata from the GTSRB dataset. The left side has the resulted plots 

sing distance-based taxonomies and the right side has the re- 

ulted plots using the baseline taxonomies. Visually, it is important 

o focus on three different areas in these plots: the relationship 

etween the cumulative errors shown as a dashed line and the 

haded area of the probability intervals, the width of the shaded 

robability intervals, the number of cumulative errors over time. 

he computed probability intervals successfully bound the true 

rror-rate for all the presented taxonomies. However, the probabil- 

ty intervals are narrower in most cases when the distance-based 

axonomies are used, with the exception of the NC V 2 taxonomy, as 

hown in the plots in the left side of Fig. 4 . Moreover, the cumu-
Table 2 

Evaluation metrics results. 

Dataset Taxonomy Accuracy NLL B

GTSRB 

V 1 0.994 111.835 0

V 2 0.992 58.104 0

V 3 0.993 75.394 0

V 4 0.991 70.279 0

k -nn V 1 0.998 41.575 0

k -nn V 2 0.998 41.126 0

NC V 1 0.998 41.575 0

NC V 2 0.996 38.444 0

Fruits360 

V 1 0.983 1089.938 0

V 2 0.986 816.893 0

V 3 0.985 870.470 0

V 4 0.985 836.295 0

k -nn V 1 0.993 532.314 0

k -nn V 2 0.993 466.311 0

NC V 1 0.991 605.087 0

NC V 2 0.988 725.556 0

Ecobee Thermostat 

V 1 0.823 4732.483 0

V 2 0.830 4310.008 0

V 3 0.830 4311.460 0

V 4 0.830 4306.791 0

k -nn V 1 0.935 2872.725 0

k -nn V 2 0.935 2299.023 0

NC V 1 0.794 5550.013 0

NC V 2 0.794 5541.171 0

8 
ative errors over time, when IVPs are used to make predictions is 

ower when the distance-based taxonomies are used. 

The times required for the computation of a classification and 

he probability intervals when a new input arrives are similar in 

oth the baseline and our proposed taxonomies and indicate they 

an be used for real-time operation. The speed bottleneck is the 

omputations by the DNNs for either the classifications or the 

epresentation mapping. The k -NN computation step in the low- 

imensional embedding representation space adds minimal over- 

ead in the execution time. The memory requirements have two 

ain parts: the memory required to store the DNN weights and 

he memory required to store the categories after calibration. The 

roposed taxonomies have the additional requirement to store ei- 

her the embedding representations of the training data to be used 

y the k -NN or the centroid of each class. The representations 

f the training data are stored in a k − d tree [36] for fast k -NN

omputation. With the use of low-dimensional representations, the 

dditional memory required for the nearest centroid based tax- 

nomies is small compared to the underlying DNN size. 

.4. Dynamic categories 

IVP implementations typically form the categories during de- 

ign time using labeled data and the categories remain the same 

uring execution. In Section 5 , we introduced a paradigm of updat- 

ng the categories during execution using unlabeled data in order 

o further improve the computed probability intervals. In this sec- 

ion we apply this method in CPS test cases to understand how it 

ffects the performance and it is evaluated using the same evalua- 

ion metrics presented in Section 6 . The taxonomies based on the 

iamese network we introduced earlier showed better overall per- 

ormance than other DNN-based taxonomies and will be the base- 

ine in the evaluation of IVP with dynamic categories. The same 

istance metric based taxonomies are used for both IVP applica- 

ions. This means that, when a new unlabeled test input arrives, 

oth IVP with static categories and IVP with dynamic categories 

ompute the probability intervals and the classification the same 

ay. When the categories are dynamic, after the initial classifica- 

ion, ICP is used to compute the confidence of each label being cor- 

ect in the form of p-values and append the current categories by 
S D ECE MCE Time Memory 

.013 0.009 0.005 0.005 3.6ms 11.2MB 

.055 0.014 0.011 0.583 6.6ms 11.2MB 

.038 0.012 0.008 0.750 3.7ms 11.2MB 

.053 0.013 0.009 0.750 2.9ms 11.2MB 

.005 0.009 0.004 0.004 3.2ms 19MB 

.005 0.009 0.004 0.004 3.6ms 19.8MB 

.005 0.009 0.004 0.004 2.9ms 3.9MB 

.046 0.017 0.007 0.500 3ms 3.9MB 

.043 0.019 0.008 0.113 4.4ms 41MB 

.144 0.025 0.013 0.407 4ms 41.2MB 

.154 0.025 0.012 0.392 4.6ms 41.2MB 

.159 0.025 0.013 0.384 2.7ms 41.2MB 

.025 0.019 0.010 0.073 3.3ms 127.5MB 

.088 0.022 0.011 0.243 3.7ms 128.1MB 

.027 0.019 0.010 0.045 3.6ms 14MB 

.208 0.035 0.018 0.500 3.5ms 14.2MB 

.218 3.8e-04 0.003 0.009 0.7ms 52.2kB 

.200 6.1e-04 0.003 0.014 0.7ms 53.2kB 

.200 6.2e-04 0.002 0.015 0.7ms 53.2kB 

.200 6.1e-04 0.003 0.040 0.6ms 53.2kB 

.113 4.2e-04 0.001 0.003 1.9ms 43.8MB 

.096 19.3e-04 0.006 0.375 2.4ms 43.8MB 

.255 4e-04 0.006 0.017 1ms 24kB 

.255 5.8e-04 0.006 0.023 0.9ms 25kB 
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Fig. 4. Cumulative error intervals comparison between our taxonomies and the literature baselines on the GTSRB dataset. 
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Algorithm 1 – Training and Calibration. 

Require: Training data (X, Y ) , calibration data (X c , Y c ) 

Require: DNN architecture f for distance metric learning based on 

the siamese network 

Require: Taxonomy from Eqs. 2, 3, 4, 5 

1: Train f using (x, y ) ∈ (X, Y ) � Training 

2: // Compute the representations 

3: V = f (X ) 

4: V c = f (X c ) 

5: for each (v c 
i 
, y c 

i 
) in (V c , Y c ) , i = 1 .l − m do 

6: Compute the assigned category k i using the chosen taxon- 

omy � 

Calibration 

7: Add y c 
i 

to k i 
8: end for 

9: Store the resulted class distribution of each category 
ncluding the confident labels. This extra step introduces an impor- 

ant design time parameter. There are many NCMs for ICP with dif- 

erent trade-offs according to the application. Table 1 presents the 

ilhouette coefficient comparison for the embeddings computed by 

he siamese network for different datasets and can help us decide 

he most appropriate NCM for each application. In the case of GT- 

RB, the siamese network which is used for IVP taxonomies as well 

s ICP NCMs, forms very clear clusters unlike the Ecobee Thermo- 

tat security dataset. This means that the training data in the GT- 

RB dataset can be replaced by their class centroids and use the 

earest centroid NCM for its lower computational requirements. 

n the other hand, this is not possible for the botnet attacks de- 

ection on the Ecobee Thermostat because the clusters are not as 

ense. In the later case, we use the k -NN NCM which is less sensi-

ive to sparser clustering. 

The effects of dynamically appending the categories during ex- 

cution is shown in Fig. 5–8 . The plots show the cumulative lower 
9 
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Fig. 5. Cumulative probability intervals comparison between the dynamic and static taxonomies on the GTSRB dataset. 

Algorithm 2 – Assurance Monitoring and Classification with Static 

Categories. 

Require: Taxonomy from Eqs. 2, 3, 4, 5 

Require: Class distribution of each category 

Require: Trained siamese network f for distance metric learning 

Require: Test input x l+1 

1: Compute the assigned category k l+1 using the chosen taxonomy 

2: for each label j ∈ 1 .n do 

3: L (Y j ) = 

|{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| 

| k l+1 | + 1 

4: U(Y j ) = 

|{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| + 1 

| k l+1 | + 1 
5: end for 

6: Classify x l+1 into j best = arg max j=1 , ... ,c p(Y j ) 

7: Return probability interval [ L (Y j best 
) , U(Y j best 

)] 

a

u

p

t

l

b

s

e

t

c

t

o

o

w

a

t

10 
nd upper bounds computed over time during execution using the 

nlabeled test data from the GTSRB dataset. Furthermore we com- 

ute the cumulative accuracy over time by considering the ground 

ruth labels of the test data. All four distance-based taxonomies 

ead to lower and upper bounds computation that asymptotically 

ound the true cumulative accuracy, as shown in [2] . Both the 

tatic and dynamic IVP classifiers are deployed with the same cat- 

gories formed by the calibration data with each of the respective 

axonomies. As the classifier considers more test data, the initial 

ategories, in the dynamic cases, grow in size. This, not only leads 

o probability intervals that remain valid, but they get narrower 

ver time compared to their static counterparts. 

The results for both CPS datasets are shown in Table 3 . Each 

f the metrics used for evaluation is explained in Section 6 . As 

e noted earlier, the nearest centroid-based taxonomies are not 

 good choice for the botnet attack detection dataset as the clus- 

ers produced by the siamese network do not have clear centroids. 
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Table 3 

Evaluation metrics results. 

Dataset Taxonomy Accuracy NLL BS D ECE MCE 

GTSRB 

k -nn V 1 static 0.998 41.575 0.005 0.009 0.004 0.004 

k -nn V 1 dynamic 0.998 40.130 0.005 0.007 0.003 0.003 

k -nn V 2 static 0.998 41.126 0.005 0.009 0.004 0.004 

k -nn V 2 dynamic 0.998 39.728 0.005 0.007 0.003 0.003 

NC V 1 static 0.998 41.575 0.005 0.009 0.004 0.004 

NC V 1 dynamic 0.998 40.130 0.005 0.007 0.003 0.003 

NC V 2 static 0.996 38.444 0.046 0.017 0.007 0.500 

NC V 2 dynamic 0.996 36.339 0.046 0.015 0.006 0.500 

Ecobee Thermostat 

k -nn V 1 static 0.935 2872.725 0.113 4.2e-04 0.0014 0.003 

k -nn V 1 dynamic 0.935 2873.090 0.113 3.7e-04 0.0013 0.001 

k -nn V 2 static 0.935 2299.023 0.096 19.3e-04 0.0058 0.375 

k -nn V 2 dynamic 0.935 2296.795 0.096 18.6e-04 0.0052 0.375 

NC V 1 static 0.794 5550.013 0.255 4e-04 0.006 0.017 

NC V 1 dynamic 0.794 5592.070 0.257 3.5e-04 0.021 0.059 

NC V 2 static 0.794 5541.171 0.255 5.8e-04 0.006 0.023 

NC V 2 dynamic 0.794 5582.567 0.257 5e-04 0.020 0.059 

Algorithm 3 – Assurance Monitoring and Classification with Dy- 

namic Categories. 

Require: Taxonomy from Eqs. 2, 3, 4, 5 

Require: Nonconformity function α
Require: Calibration nonconformity scores A 

Require: Significance level threshold ε
Require: Class distribution of each category 

Require: Trained siamese network f for distance metric learning 

Require: Test input x l+1 

1: Compute the embedding representation v l+1 = f (x l+1 ) 

2: Compute the assigned category k l+1 using the chosen taxonomy 

3: for each label j ∈ 1 .n do 

4: L (Y j ) = 

|{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| 

| k l+1 | + 1 

5: U(Y j ) = 

|{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| + 1 

| k l+1 | + 1 
6: end for 

7: Classify x l+1 into j best = arg max j=1 , ... ,c p(Y j ) 

8: Return probability interval [ L (Y j best 
) , U(Y j best 

)] 

9: for each label j ∈ 1 .n do 

10: Compute the nonconformity score α(x l+1 , j) 

11: p j (x ) = 

|{ α∈ A : α≥α(x l+1 , j) }| 
| A | 

12: if p j (z) ≥ ε then 

13: |{ (x ∗, y ∗) ∈ k l+1 : y 
∗ = Y j }| = |{ (x ∗, y ∗) ∈ k l+1 : y 

∗ = 

Y j }| + 1 

14: | k l+1 | = | k l+1 | + 1 

15: end if 

16: end for 

S
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e
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s
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i

t
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c
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n

o, in this particular application, we focus on the results produced 

y the k -NN based taxonomies because of their more ideal perfor- 

ance. We still report the NC based taxonomies results for com- 

leteness. The extension to dynamic categories does not have any 

ffect in the classification accuracy. The class j best that an input 

s classified to is chosen using Eq. 7 . The new data with pseudo-

abels that were added to populate the existing categories during 

xecution do not change the class distribution in each category 

nough to change the IVP classification for any given category as- 

ignment. The effects of our method is more obvious in the effi- 

iency and calibration related metrics. The number of data in each 

ategory affect the width of the computed probability intervals as 

ore data produce narrower, more informative, probability inter- 

als. This is clear for any choice of taxonomy in both datasets. 

he NLL also improves in the case of GTSRB but has a less obvi-

us change in the botnet attacks detection dataset. The last, and 
11 
ost important observation from these results is in the calibration 

elated metrics. By pseudo-labeling and extending the categories 

uring execution, IVP not only computes narrower probability in- 

ervals, but these intervals are better calibrated for all taxonomies 

n both datasets as indicated by the ECE and MCE metrics. 

The use of ICP for pseudo-labeling new unlabeled inputs and 

ppending the existing classes add a minimal overhead of around 

.01ms. This happens because of the efficient computation of the 

 -NN but also the re-use of the already computed embedding rep- 

esentation of each test input in the initial classification phase. 

ince the ICP framework that is used to integrate new data in 

he existing categories shares the same siamese network and em- 

edding representations of the training data that are used for IVP, 

here is no memory overhead. 

. Conclusion 

We presented computationally efficient algorithms based on ap- 

ropriate embedding representations learned by siamese networks, 

s a proof-of-concept, that make it possible for IVP to be used 

ith high-dimensional data for real-time applications. Then, we 

xtended these algorithms to utilize unlabeled test inputs gathered 

uring execution to further improve in efficiency and calibration. 

he evaluation results demonstrate that the IVP framework using 

istance-based taxonomies produces high accuracy and probability 

ntervals that are efficient and contain the true number of cumu- 

ative errors after a number of input samples. The computed prob- 

bility intervals get narrower and get better calibrated over time 

hen unlabeled test inputs are utilized in the computations. Our 

hoice of lightweight DNNs and small embedding representation 

ize make the approach computationally efficient and can be used 

n real-time. 

There are limitations that can make the application of the pre- 

ented method on certain datasets challenging. Our workflow uses 

iamese networks to compute distance metrics. This method can 

ave issues related to scalability. Distance metric learning can be- 

ome computationally expensive when dealing with large datasets, 

s it requires computing pairwise distances between a large num- 

er of data points. Moreover, distance metric learning can be sen- 

itive to outliers in the dataset, which can distort the learned dis- 

ance function and lead to poor clustering performance. These lim- 

tations affect the computation of the Venn categories as well as 

he NCMs as both of them rely on the computation of similarity 

etween data points. Clusters that are not tight limit the taxonomy 

hoices to the ones based on k -nn that are more computationally 

emanding. Finally, limitations of ICP affect the quality of the dy- 

amic Venn categories. Since ICP is designed to guarantee an error 
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ate, the set predictors may be conservative and return prediction 

ets with multiple classes. Another reason for large prediction sets 

s when the test data are significantly different than the training 

istribution resulting in high NC scores. Large prediction sets cause 

issimilar unlabeled data to be placed in the same Venn categories 

ffecting the quality of the multi-probabilistic outputs. 

Some potential directions for future work include the applica- 

ion of the presented method to more datasets and evaluate the 

esults statistically. Furthermore, the proposed approach can lever- 

ge new methods for clustering and pseudo-labeling [37] to im- 

rove the performance of dynamic categories. Finally, extend the 

resented method to work in regression problems using conformal 

redictive distributions [38] to overcome the limitation of Venn 

redictors that only work in classification problems. 
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