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a b s t r a c t

In this paper, we study the resilient vector consensus problem in networks with adversarial agents
and improve resilience guarantees of existing algorithms. A common approach to achieving resilient
vector consensus is that every non-adversarial (or normal) agent in the network updates its state
by moving towards a point in the convex hull of its normal neighbors’ states. Since an agent cannot
distinguish between its normal and adversarial neighbors, computing such a point, often called safe
point, is a challenging task. To compute a safe point, we propose to use the notion of centerpoint,
which is an extension of the median in higher dimensions, instead of the Tverberg partition of
points, which is often used for this purpose. We discuss that the notion of centerpoint provides a
complete characterization of safe points in Rd. In particular, we show that a safe point is essentially
an interior centerpoint if the number of adversaries in the neighborhood of a normal agent i is less
than Ni

d+1 , where d is the dimension of the state vector and Ni is the total number of agents in the
neighborhood of i. Consequently, we obtain necessary and sufficient conditions on the number of
adversarial agents to guarantee resilient vector consensus. Further, by considering the complexity of
computing centerpoints, we discuss improvements in the resilience guarantees of vector consensus
algorithms and compare with the other existing approaches. Finally, we numerically evaluate our
approach.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Resilient consensus in a network of agents, some of which
ight be adversarial or faulty, has several applications in mul-

irobot networks, distributed computing, estimation, learning
nd optimization (for instance, see Abbas, Laszka, & Koutsoukos,
018; Park & Hutchinson, 2017; Su & Vaidya, 2016; Sundaram
Gharesifard, 2015; Tseng & Vaidya, 2013). The main goal of

esilient consensus is to ensure that all normal agents in a net-
ork agree on a common state despite some adversarial agents,
hose identities are unknown to normal agents. If agents’ states
re vectors or points in Rd, d ≥ 2, then the resilient consensus
bjective is to ensure that normal agents converge at some point
n the convex hull of their initial states. One application is the

✩ Some preliminary results are presented in Shabbir, Li, Abbas, and Kout-
soukos (2020). The material in this paper was partially presented at the 2020
American Control Conference, July 1–3, 2020, Denver, CO, USA. This paper was
recommended for publication in revised form by Associate Editor Claudio Altafini
under the direction of Editor Christos G. Cassandras.
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resilient multirobot rendezvous problem, where the goal is to
gather mobile robots dispersed in a region at a common point
in a distributed manner (Park & Hutchinson, 2017). The robots
must move within their original convex region to avoid drifting to
an unsafe region. A simple approach could be to run d instances
of scalar resilient consensus, one for each dimension. However,
as a result of this approach, normal agents might converge at a
point outside the convex hull of their initial states, as discussed
in Vaidya and Garg (2013). As a result, we cannot rely on resilient
scalar consensus algorithms to achieve resilient vector consensus.

In this paper, we study the resilient vector consensus prob-
lem and propose a resilient aggregation rule for normal (non-
adversarial) agents to update their states by combining their
neighbors’ states, which might include adversarial agents. In the
proposed resilient aggregation rule, each normal agent computes
a centerpoint, which is an extension of the median in higher-
dimensional Euclidean space, of its neighbors’ states. We then
obtain necessary and sufficient conditions on the number of
adversarial agents each normal node can have in its neighborhood
while guaranteeing resilient vector consensus. We show that
the centerpoint-based aggregation improves the resilience of the
known vector consensus algorithms, for instance, the Approxi-

mate Distributed Robust Convergence (ADRC) algorithm recently
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roposed in Park and Hutchinson (2017). We note that comput-
ng a centerpoint of points in Rd is different from taking the
oordinate-wise median of points.
Various resilient vector consensus algorithms have been pro-

osed in the literature, for instance, see Mendes, Herlihy, Vaidya,
nd Garg (2015), Park and Hutchinson (2017), Vaidya (2014),
aidya and Garg (2013), Yan, Li, Mo, and Wen (2020) and Yan,
o, Li, and Wen (2019). The main idea in these algorithms is that
ach normal agent updates its state iteratively by computing a
tate (point in Rd) that is guaranteed to lie in the interior of the
convex hull of its normal neighbors’ states. Since a normal agent
cannot distinguish between its normal and adversarial neighbors,
computing such a point, which is often referred to as the safe
point, is the primary challenge in these consensus algorithms. To
compute a safe point, previous works (Mendes et al., 2015; Park
& Hutchinson, 2017) have utilized the idea of Tverberg partition
of points in Rd (discussed in Section 3). We argue that instead
of computing Tverberg partition, it is better to use the notion of
centerpoint in Rd to compute safe points. We show that safe point
is essentially an interior centerpoint of the neighbors’ states. This
perspective provides a complete characterization of safe points
and enables improved resilience bounds for vector consensus al-
gorithms. A centerpoint has been known to the discrete geometry
community for a long time, and its properties and generalizations
are an active topic of research. We summarize our contributions
below:

• For a given set of Ni points in Rd, of which any Fi are
adversarial, we show the equivalence between the notion
of a safe point and an interior centerpoint for Ni > Fi(d+1).
Here, Fi and Ni denote the number of adversarial agents
and the total number of agents in the neighborhood of
a normal agent i, respectively. Using this relationship, we
discuss how the resilience of the vector consensus algorithm
can be improved using centerpoint to compute a safe point.

• We generalize a sufficient condition for the existence of safe
point to arbitrary d > 0, where d is the dimension of the
state vector. In particular, we show that if Fi < ⌊

Ni
d+1⌋, then

there always exists an interior centerpoint, and hence, a safe
point. A similar condition for the existence of safe point was
established in Park and Hutchinson (2017) for d ≤ 8 using
the idea of Tverberg partition.

• Using the notion of centerpoint, we show that Ni > (d +

1)Fi is not only sufficient but also a necessary condition for
computing a safe point.

• We show that the centerpoint-based vector consensus algo-
rithm is resilient to Fi < ⌊

Ni
d+1⌋ adversaries in the neighbor-

hood of a normal agent i in d = 2, 3. In higher dimensions
(d > 3), the centerpoint-based algorithm is resilient to Fi ad-
versaries, where Fi < Fmax = Ω( Ni

d2
). This approach offers im-

proved resilience compared to the Tverberg partition-based
algorithm, where Fmax = Ω( Ni

2d
).

• We numerically evaluate and compare our results with
other algorithms by simulating resilient vector consensus in
multirobot networks.

In the case of resilient scalar consensus, the trimming method
as been an effective approach to aggregate neighbors’ states.
he basic idea is that a normal agent collects its neighbors’
tates (scalar), sorts them, and then disregards extreme values
e.g., LeBlanc, Zhang, Koutsoukos, & Sundaram, 2013; Sundaram
Gharesifard, 2018). The trimming approach, however, is not

irectly applicable to the resilient vector consensus as the ap-
ropriate notion of vector states that are ‘farthest’ from a normal
gent’s own state is difficult to define. At the same time, imple-
enting resilient scalar consensus using the trimming approach
2

in each dimension separately does not always solve the resilient
vector consensus problem. Thus, in the resilient vector consen-
sus case, the notion of safe point, which is a point obtained
by a convex combination of node’s normal neighbors’ states, is
quite useful. Using the idea of safe point, various algorithms
and resilience bounds have been proposed in the literature for
the resilient vector consensus and distributed optimization prob-
lems (Mendes et al., 2015; Tseng & Vaidya, 2013; Vaidya, 2014;
Vaidya & Garg, 2013; Yan et al., 2020, 2019). Here, we focus
on computational aspects and geometric characterization of safe
points.

The rest of the paper is organized as follows: Section 2 intro-
duces notations and preliminaries. Section 3 provides an overview
of the resilient vector consensus algorithms, in particular, the
ADRC algorithm and its resilience bounds. Section 4 discusses the
notion of centerpoint for resilient vector consensus and presents
main results in the paper. Section 5 presents a numerical evalu-
ation of our results, and Section 6 concludes the paper.

2. Notations and preliminaries

We consider a network of agents modeled by a directed graph
= (V, E), where V represents agents and E represents interac-

tions between agents. Each agent i ∈ V has a d-dimensional state
vector whose value is updated over time. The state of agent i at
time t is represented by a point xi(t) ∈ Rd. An edge (j, i) means
that i can observe the state of j. The neighborhood of i is the set
of nodes Ni = {j ∈ V|(j, i) ∈ E} ∪ {i}. For a given set of points
X ⊂ Rd, we denote its convex hull by conv(X). A set of points in
Rd is said to be in general positions if no hyperplane of dimension
d − 1 or less contains more than d points. A point x ∈ Rd is an
interior point of a set X ⊂ Rd if there exists an open ball centered
at x which is completely contained in X . We use terms agents and
nodes interchangeably, and similarly use terms points and states
interchangeably.

Normal and Adversarial Agents — There are two types of agents
n the network, normal and adversarial. Normal agents, denoted
y Vn ⊆ V , are the ones that interact with their neighbors
ynchronously and always update their states according to the
onsensus algorithm. Adversarial agents, denoted by Vf ⊂ V , are
the ones that can change their states arbitrarily and do not follow
the pre-defined state update rule. Moreover, an adversarial node
can transmit different values to its different neighbors, which is
referred to as the Byzantine model. The number of adversarial
nodes in the neighborhood of a normal node i is denoted by Fi.
For a normal node i, all nodes in its neighborhood are indistin-
guishable, that is, i cannot identify which of its neighbors are
adversarial.

Resilient Vector Consensus — The goal of the resilient vector
consensus is to ensure the following conditions:

• Safety — Let X(0) = {x1(0), x2(0), . . . , xn(0)} ⊂ Rd be the set
of initial states of normal nodes, then at each time step t ,
and for any normal node i, the state value of i, denoted by
xi(t) should be in the conv(X(0)).

• Agreement — ∀ϵ > 0, ∃tϵ , such that for any normal node pair
i, j, ∥xi(t) − xj(t)∥ < ϵ, ∀t > tϵ .

3. Background and resilient vector consensus

In this section, we provide an overview of resilient vector
consensus algorithms in which the main idea is that each normal
agent updates its state by moving towards a point in the convex
hull of its normal neighbors. In particular, we discuss the approx-
imate distributed robust convergence (ADRC) algorithm, proposed
in Park and Hutchinson (2017). Then, we discuss improvement
in the resilience guarantees of the algorithm by reconsidering
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ts computational aspects. We note here that our results are
eneral and mainly provide an improved way for normal agents
o aggregate their neighbors’ states in the presence of adversarial
gents. As a result, these results can be applied to a broader class
f algorithms that require each normal agent in the network to
ggregate its neighbors’ states, for instance, resilient distributed
iffusion (Li, Abbas, Shabbir, & Koutsoukos, 2020; Sayed, Tu, Chen,
hao, & Towfic, 2013). The ADRC algorithm is a synchronous iter-
tive algorithm that guarantees the consensus of normal agents
f the number of adversarial agents in the neighborhood of each
ormal agent is bounded by a certain value that depends on d. The

notion of F-safe point is crucial to understanding the algorithm.

Definition 3.1 (F-safe Point). Given a set of N points in Rd, of
which at most F are adversarial, then a point s that is guaranteed
to lie in the interior of the convex hull of (N − F ) normal points
is an F-safe point.

The ADRC algorithm relies on the computation of an Fi(t)-safe
point in each iteration t by every normal agent i having Ni(t)
agents in its neighborhood, of which at most Fi(t) are adver-
saries.1 Each normal agent i updates its state as follows (Park &
Hutchinson, 2017):

• In the iteration t , a normal agent i gathers the state values
of its neighbors, and then computes an Fi(t)-safe point,
denoted by si.

• Agent i then updates its state as below.

xi(t + 1) = αi(t)si(t) + (1 − αi(t))xi(t), (1)

where αi(t) is a dynamically chosen parameter in the range
(0 1), according to the application (Park & Hutchinson,
2017).

Convergence — It is shown in Park and Hutchinson (2017) that
if all normal agents update their states according to (1) after
computing Fi(t)-safe points in each iteration t , and the sequence
of graphs induced by normal agents is repeatedly reachable, then
all normal agents converge at a common point. The notion of
repeatedly reachable sequence of graphs is explained in Park
and Hutchinson (2017, Section V-B). We note that two types of
conditions need to be satisfied for resilient consensus: (a) The
underlying network topology should be such that the sequence
of graphs induced by normal agents is repeatedly reachable. (b)
Each normal agent can compute a safe point in each iteration. Our
focus in this paper is on the computation of a safe point, including
conditions under which it is possible.

Computation of Safe point — It is the key step in the ADRC
algorithm. For this, Park and Hutchinson (2017) utilize the notion
of Tverberg partition. The main idea is to partition a set of N points
in Rd into (F + 1) subsets such that the convex hull of points in
one subset has a non-empty intersection with the convex hull
of points in any other subset. The intersection of convex hulls
of these (F + 1) subsets is a Tverberg region and any interior
point in such a region is an F-safe point. Thus, to achieve resilient
consensus using ADRC algorithm, a normal agent i computes
an Fi-safe point by computing an interior point in the Tverberg
region of an appropriate Tverberg partition. Now, for given Ni,
Fi and d, the condition guaranteeing the existence of Tverberg
partition is stated below (Park & Hutchinson, 2017; Reay, 1968;
Roudneff, 2009).

1 For simplicity, when the context is clear, we use Ni and Fi instead of Ni(t)
nd F (t), respectively.
i K

3

heorem 3.2 (Sufficient Condition). Given a set of Ni points in
eneral positions in Rd, where d ∈ {2, 3, . . . , 8}, of which at most
i points correspond to adversarial nodes, then it is possible to find
n Fi-safe point if

i ≤
Ni

d + 1
− 1. (2)

In general, computing a Tverberg partition is an NP-hard prob-
lem and it could take dO(d

2)N (d+1)2+1
i time to compute a Tverberg

partition of Ni points in Rd into ⌈Ni/(d + 1)⌉ parts (Har-Peled
& Zhou, 2020). The best known algorithm that computes it in
a reasonable run time is an approximate algorithm (Mulzer &
Werner, 2013), which has a time complexity of dO(1)Ni. The al-
gorithm is approximate in a sense that to have a partition of
Ni points into r subsets, Ni ≥ 2dr (compared to the theoretical
bound, Ni ≥ r(d + 1)). Consequently, to compute an Fi-safe point
in the presence of Fi adversarial neighbors, a normal agent i needs
to have at least Ni ≥ (Fi + 1)2d agents in its neighborhood, which
gives the following resilience bound (Park & Hutchinson, 2017).

Theorem 3.3 (Resilience Bound). Given a set of Ni points in general
positions in Rd, of which at most Fi are adversarial, then it is possible
to compute an Fi-safe point using Tverberg partition if

Fi ≤

⌈
Ni

2d

⌉
− 1. (3)

Note that (3) indicates resilience of the ADRC algorithm based
on approximate Tverberg partitions to compute safe points. Here,
we ask if it is possible to improve the resilience of the ADRC
algorithm. In particular, we study the following problems in the
rest of the paper.

• ADRC algorithm based on approximate Tverberg partition is
resilient against Ω

(
Ni
2d

)
adversaries in the neighborhood of

a normal agent i. Can we improve the resilience by comput-
ing safe points some other way?

• We have a sufficient condition for an Fi-safe point in (2). Can
we provide a complete characterization of an Fi-safe point?
In other words, what is a necessary and sufficient condition
for a point to be an Fi-safe point?

• The sufficient condition in (2) holds for d ≤ 8. Can we
generalize results to dimensions d > 8?

The primary difference between our proposed approach and
previous methods is the characterization and computation of safe
points. We discuss in detail that the centerpoint-based approach
is better for the characterization and computation of safe points
and also compare this approach with the existing methods in
Section 4.5.

4. Resilient vector consensus and centerpoint

In this section, we show that it is possible to improve the
resilience of ADRC algorithm by computing safe points differently,
that is, by using the notion of centerpoint. Moreover, centerpoint
provides a complete characterization of the safe point notion.2

4.1. F-Safe point and interior centerpoint

The notion of centerpoint can be viewed as an extension of
median in higher dimensions and is defined below.

2 For proofs of results in this section, we refer to Abbas, Shabbir, Li, and
outsoukos (2021).
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Fig. 1. Illustration of centerpoints (green squares).

efinition 4.1 (Centerpoint). Given a set S of N points in Rd in
general positions, a centerpoint p is a point, such that any closed
halfspace3 of Rd that contains p also contains at least N

d+1 points
from S. Note that centerpoint does not need to be one of the
points in S.

Intuitively, a centerpoint lies in the ‘center region’ of the point
cloud, in the sense that there are enough points of S on each
side of a centerpoint. More precisely, it is a point such that any
hyperplane that goes through this point divides the set of points
in S into two subsets, each of which contains at least 1

d+1 fraction
f points. Fig. 1 illustrates centerpoint in R2 and R3. In Fig. 1(a),
ny line through a centerpoint divides a set of 9 points into two
ubsets, each of which contains at least 3 points. Similarly, any
lane through a centerpoint in Fig. 1(b) divides a set of 12 points
nto two parts, each containing at least 3 points.

A related notion of point depth is defined as follows:

efinition 4.2 (Point Depth). For a given point set, the depth of
point q is the maximum number α such that every closed
alfspace containing q contains at least α points.

Thus, a centerpoint has depth at least N
d+1 . A centerpoint does

ot need to be unique; in fact, there can be infinitely many
enterpoints. The set of all centerpoints constitutes the center-
oint region or simply the center region, which is closed and
onvex. The existence of a center point for any given set S is
guaranteed by the famous Centerpoint Theorem, which asserts
that for any given point set in general positions in an arbitrary
dimension, a centerpoint always exists (see Matoušek, 2002). We
show that there is a close relationship between an F-safe point
and an interior centerpoint, which can be exploited to provide a
complete characterization of F-safe points. We state the following
result (proof is in Abbas et al., 2021):

Theorem 4.3. For a given set of Ni points in Rd (corresponding to
Ni agents in the neighborhood of agent i), if Ni > Fi(d + 1), then an
Fi-safe point is equivalent to an interior centerpoint.

We illustrate the equivalence between Fi-safe point and cen-
terpoint through an example. Consider six points in R2 in Fig. 2(a).
The gray region is the set of all centerpoints. At the same time,
the gray region is also the set of all 1-safe points. It means that no
matter which one of the six points corresponds to an adversarial
agent, every point in the gray region is guaranteed to lie in the
convex hull of remaining five points corresponding to normal
agents. For example, in Fig. 2(b), the red point is an adversary and
the yellow region is the convex hull of normal agents’ points. We
observe that all 1-safe points (gray region) lie inside the convex
hull of normal agents’ points. The same is illustrated for other
possibilities for a single adversary point in Figs. 2(c)–(g).

3 Recall that closed halfspace in Rd is a set of the form {x ∈ Rd
: aT x ≥ b}

or some a ∈ Rd
\ {0}.
4

Fig. 2. The region of centerpoints (gray area) is same as the region of 1-safe
points. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. An example of 4 points in R3 . (a) A point x in the interior of tetrahedron
cannot be 1-safe because if a is adversarial, then x is not contained in the convex
hull of the normal points. (b) If a point x lies on facet, say a, b, c , and b is
adversarial, then x is not contained in the convex hull of normal point a, c, d.

4.2. Necessary condition for Fi-safe point

We note that 1
d+1 is the best possible fraction (for Fi) in

heorem 4.3, that is, there exist general node positions where
llowing more adversary nodes would mean that there is no safe
oint at all. For example, consider a set of three points a, b, c , in

R2 that lie on the vertices of a non-degenerate triangle.4 If one
f these points is malicious then there is no 1-safe point in the
lane. Clearly, no point in the interior of the triangle can be 1-
afe because it does not lie in the convex hull of normal points
or any choice of point corresponding to an adversary. Similarly,
ny point that lies on an edge of the triangle, say ab, cannot

be 1-safe because if one of the endpoint, say a, is adversarial
then the convex hull of the remaining points b and c does not
ontain this point. Now in R3, consider four points a, b, c, d, lying
n the vertices of a non-degenerate tetrahedron. Assume one of
hese points, whose identity is unknown, is adversarial. A point
in the interior of tetrahedron cannot be 1-safe because if a is
alicious then x is not contained in the convex hull of normal
oints b, c, d, as shown in Fig. 3(a). Similarly, consider a point x
hat lies on a facet, say a, b, c , of the tetrahedron. The point x
annot be 1-safe because if one of the points on its facet, say b,
s adversarial then x is not in the convex hull of the remaining
points a, c, d, as shown in Fig. 3(b). In the following, we show
that this example can generalized to arbitrary number of points
and arbitrary dimension.

Proposition 4.4. For a set of Ni nodes in general positions, if
Fi ≥

⌈
Ni
d+1

⌉
, then there exist general examples in which an Fi-safe

point does not exist.

4 A non-degenerate triangle has three points that do not all lie on a line.
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.3. Sufficient condition for Fi-safe point in arbitrary dimension

In the previous section, we showed that if there are at least
⌈

Ni
d+1⌉ adversarial nodes, then an Fi-safe point does not exist. In

this section, we show that for any d, if the number of adversarial
nodes Fi is less than ⌊

Ni
d+1⌋, then an Fi-safe point always exists.

The main idea will be to show that for a set S of Ni points in Rd,
there exists an interior point of depth ⌊

Ni
d+1 + 1⌋. In other words,

here exists an interior point in the intersection of all convex
ets containing at least ⌊

Ni
d+1 + 1⌋ points of S. For this, we first

rove some intermediate results (proof is available in Abbas et al.,
021).

emma 4.5. Let S be a set of N points in Rd in general positions,
here d ≥ 1. For a set of d+ 1 convex sets, each containing at least
Nd
d+1 +1⌉ points from S , there are at least d+1 points of S contained
n the intersection of all halfspaces.

The above lemma implies that any d + 1 convex sets, each of
hich contains enough points from S , must contain at least d+ 1

points from the same set. Now, if the original point set S is in
general position, then so must be the d+1 points contained in all
convex sets. Furthermore, every d+ 1 points in general positions
span a d-simplex that contains a ball of radius ϵ in its interior for
sufficiently small value of ϵ > 0. Thus, we get the following:

Corollary 4.6. Let S be a set of N points in Rd in general positions,
where d ≥ 1. For a set of d + 1 convex sets each containing at
least

⌈ Nd
d+1 + 1

⌉
points from S , there exists ϵ > 0 such that the

intersection of all convex sets contains a ball of radius ϵ.

Next, we state the following version of Helly’s Theorem (Klee,
1953) that will be used in the proof of Theorem 4.8.

Theorem 4.7 (Klee, 1953). If K is a finite family of convex sets (or
an infinite family of compact convex sets) in Rd, C is a convex set
such that for every d + 1 members of K, there exists a translate5 of
C contained in their intersection, then there is a suitable translate of
C contained in the intersection of all sets in K.

Now we state a crucial result to prove a sufficient condition for
an Fi-safe point in arbitrary d. The proofs of the following results
are available in Abbas et al. (2021).

Theorem 4.8. For any set S of N points in Rd in general positions,
where d ≥ 1, there exists an interior point in the intersection of all
convex sets containing at least

⌈ Nd
d+1 + 1

⌉
points of S .

Next, we present the main result in this subsection, that is,
sufficient condition for the existence of an Fi-safe point in an
rbitrary dimension d.

Theorem 4.9. For a set of Ni nodes in general positions in Rd, if
he number of adversarial nodes is less than ⌊

Ni
d+1⌋, then there always

exists an Fi-safe point.

4.4. Improvement in the resilience

If a normal agent i uses approximate Tverberg partition (Mulzer
& Werner, 2013) to compute an Fi-safe point, as is done in Park
and Hutchinson (2017), then the algorithm is resilient to Fi ≤

Ni
2d

−

1 adversaries in Ni as compared to the best possible (theoretical)
bound Fi ≤

Ni−1
d+1 . Here, we discuss the usefulness of centerpoint

n computing an Fi-safe point to improve the ADRC algorithm’s

5 For a set C ⊂ Rd , a translate of C is the set {c + x : c ∈ C} for some vector
x ∈ Rd .
5

Fig. 4. Robots’ initial positions with (a) stationary, (b) oscillating and (c)
move-away adversaries.

resilience. The main point is that we can compute a centerpoint
exactly in two and three dimensions and can compute it with
better approximation (compared to Tverberg partition) in higher
dimensions using known algorithms. Next, we state the resilience
of the centerpoint-based computation of an Fi-safe point.

Proposition 4.10. Given a set of Ni points in general positions in
Rd, of which Fi < Fmax are adversarial, then it is possible to compute
an Fi-safe point using centerpoint if

Fmax =

⌊
Ni

d + 1

⌋
, for d = 2, 3, and

Fmax = Ω

(
Ni

d2

)
for d > 3.

(4)

Moreover, such an Fi-safe point can be computed in O(N) and O(N2)
times in d = 2 and 3, respectively, and in O

(
Nc log d(2d)d

)
time in

d > 3 dimensions.

Remark 1. By comparing (3) and (4), observe that centerpoint-
based computation of Fi-safe point improves the resilience of
ADRC algorithm as compared to the Tverberg partition-based
computation. Using centerpoint, we achieve optimal resilience in
two and three dimensions, whereas in higher dimensions, the
resilience improves from Ω(Ni/2d) (based on Tverberg partition)
to Ω(Ni/d2) adversaries in the neighborhood of a normal agent i.

Remark 2. The point returned by the algorithm by Miller and
Sheehy (2010) has a centerpoint depth of Ω

(
Ni

dr/r−1

)
for any

positive integer r > 1. For instance, if we consider r = 2,
hen we get a point of depth Ω(Ni/d2). By increasing r , the
quality of approximation, and hence the bound on the number of
adversarial agents improves and approaches Ω(Ni/d). However,
t comes at the cost of increasing time complexity as the runtime
f the algorithm is O

(
Nc log d

i (rd)d
)

for an integer r > 1 (Miller
Sheehy, 2010). Clarkson et al. have proposed an algorithm

n Clarkson, Eppstein, Miller, Sturtivant, and Teng (1996) that
omputes a point of depth Ω(Ni/d2) with high probability in time
(log2 d log logNi).

4.5. Comparison of the centerpoint-based computation of an Fi-safe
point with other approaches

In Mendes et al. (2015, Sectoin 6.2), a linear program (LP) is
presented to compute an Fi-safe point, where Fi < Ni/(d + 1).
The proposed LP has a total of

(
Ni

Ni − Fi

)
(d+ 1−Ni − Fi) constraints in

d +

(
Ni

Ni − Fi

)
variables. Hence, their algorithm’s time complexity is

at least exponential in Fi. Since adversarial agents can be as many
as a fraction of the total agents, the LP complexity in Mendes
et al. (2015) is exponential in Ni. Consequently, as Fi grows with
N , the algorithm’s time complexity is too high to be practical.
i
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Fig. 5. Normal robots’ positions as functions of iterations in (a) stationary, (b) oscillating, and (c) move-away adversaries.
e note that a centerpoint can also be computed exactly thus,
chieving the same resilience in O(Nd−1

i ) time for d ≥ 3 using a
better LP method proposed in Chan (2004). This is a significant
improvement over the LP in Mendes et al. (2015) because the
time complexity is exponential in d instead of the number of
agents. Nevertheless, even the algorithm in Chan (2004) becomes
impractical in higher dimensions. Therefore, we propose that
an approximate centerpoint be computed in higher dimensions
using Miller and Sheehy (2010), resulting in the resilience of
Ω(Ni/d2).

In Wang, Mou, and Sundaram (2019), a quadratic program
is presented to solve the resilient convex combination problem
to compute an Fi-safe point. The complexity of the algorithm
(Wang et al., 2019, Section 3.2) is O(d(Nir)3), which is linear
n d. Here, the parameter r is defined (in Section 3.1 of their

paper) as r =

(
Ni − σ

Ni − σ − Fi

)
. Assuming σ = 0,6 the complexity

of computing an Fi-safe point using the quadratic program is
O

(
d(Ni

Ni+1)3
)
, where a fraction of the agents are allowed to be

adversarial. As a result, the time complexity of the quadratic
program in Wang et al. (2019) is worse than the LP proposed
in Mendes et al. (2015). Similarly, in Yan et al. (2020, Section IV)
authors present an algorithm to compute an Fi-safe point (that
they call a ‘‘middle point’’) in time O((pr)3), where p = dFi + 1,
and r =

((d+1)Fi+1
Fi

)
. Note that the parameter r is exponential in

the number of adversarial agents.
In summary, the centerpoint-based approach provides funda-

mental limits on the computation of an Fi-safe point. An imme-
diate result of this approach is that in general, computation of
an Fi-safe point, where the maximum value of Fi is Ω(Ni/d), is
a challenging problem. Since checking whether a given point is
a centerpoint or not is co-NP-Complete (Teng, 1991), we deduce
that checking whether a point is an Fi-safe point or not in general
is also co-NP-Complete.

5. Numerical evaluation

We perform simulations to illustrate resilient consensus in
multirobot systems in two dimensions using centerpoint, and
compare it with the one using approximate Tverberg partition
(Park & Hutchinson, 2017).7 We model interconnections between

6 This is so because in our setting, a normal agent is unaware of the identities
f the normal and adversarial agents in its neighborhood.
7 Our code is available at https://github.com/JianiLi/MultiRobotsRendezvous.
6

robots using the following graphs: (1) A disk graph Gd = (V, E(t)),
in which each node i ∈ V (representing a robot) has a sensing
radius r and (j, i) ∈ E(t) if and only if ∥xj(t) − xi(t)∥ ≤ r . (2) A
fixed undirected graph G = (V, E) whose edge set does not change
over time.

At each iteration t of the consensus algorithm, a normal robot
i computes an Fi-safe point si(t) of its neighbors’ positions (using
centerpoint or approximate Tverberg partition), and calculates its
new position using (1). In our experiments, we set αi(t) = 0.8, for
all t .

5.1. Centerpoint based resilient consensus

We simulate a group of 120 robots, out of which 100 are
normal and 20 are adversarial. They are deployed in a planar
region W = [−1, 1] × [−1, 1] ∈ R2 as shown in Fig. 4(a), where
nodes in blue are normal robots executing consensus and nodes
in red represent adversarial robots. We consider three types of
adversarial behaviors:

• Stationary — each red node has a fixed position that does not
change throughout the simulation.

• Oscillating — each red node changes its position by moving
from corner to corner within the square of length 0.1, as
depicted in Fig. 4(b).

• Move-away — each red node moves towards the closest
corner of the region W from its initial position and then
stays there, as shown in Fig. 4(c).

The interconnection topology is captured by a disk graph with
a fixed sensing radius of r = 0.45 for every normal robot. Each
normal robot executes consensus algorithm based on centerpoint.
Consensus is guaranteed if the number of adversarial robots in
the neighborhood of each normal robot i is Fi ≤

(⌊
Ni
3

⌋
− 1

)
and

the sequence of graphs induced by normal agents is repeatedly
reachable. Both of these conditions are satisfied in all the simu-
lations here. Consequently, normal robots achieve consensus in
the presence of all three types of adversarial nodes, as shown in
Fig. 5.

5.2. Comparison of approximate Tverberg partition and centerpoint-
based resilient consensus

To demonstrate the improved resilience of centerpoint-based
consensus compared to the Tverberg partition-based one, we

https://github.com/JianiLi/MultiRobotsRendezvous
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Fig. 6. The evolution of robots’ positions (from top to down) in the case of (a)
approximate Tverberg partition-based and the (b) centerpoint-based algorithms.

consider stationary adversarial nodes and assume that the net-
work graphs are fixed. In our first example, we consider a group
of 28 robots deployed in a planar region W = [−1.5, 1.5] ×

[−0.375, 0.375] ∈ R2 as shown in Fig. 6. There are six adversarial
nodes (red) on the left and six on the planar region’s right side.
At the same time, 16 normal robots (blue) are divided equally
into two clusters in the middle part of the region, each containing
eight robots. All of the 16 normal robots are pair-wise adjacent
to each other. Moreover, each normal robot is adjacent to six
adversarial robots located on its side. Figs. 6 shows the evolution
of robots’ positions using approximate Tverberg partition-based
and centerpoint-based consensus algorithms. As illustrated, the
approximate Tverberg partition-based algorithm fails to make the
normal robots converge to one point, but the centerpoint-based
algorithm succeeds.

6. Conclusion

We discussed the merits of using the notion of centerpoint for
resilient vector consensus. For a normal agent i, we provided a
geometric characterization – using centerpoint – of states that are
guaranteed to lie in the convex hull of agent i’s normal neighbors’
states when the number of adversarial agents is limited to a
1/(d+ 1) fraction of the size of the neighborhood of i. It also fol-
lowed that the upper bound on the number of adversarial agents
is best possible in the worst case. For higher dimensions, by using
the approximate centerpoint algorithm proposed in Miller and
Sheehy (2010), we showed that the resilience of vector consensus
algorithm to adversarial agents in the neighborhood of a normal
agent i could be improved from Ω(Ni/2d), which is due to approx-
imate Tverberg partition (Park & Hutchinson, 2017), to Ω(Ni/d2).
The centerpoint-based aggregation of data in the presence of
adversarial agents can be used in a various other applications,
including resilient distributed diffusion and learning.
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eveloped new methods for the characterization and computation of succinct
epresentations of large data sets with applications in nonparametric statistical
nalysis.
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