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Abstract—In this article, we study resilient distributed diffusion
for multi-task estimation in the presence of adversaries where net-
worked agents must estimate distinct but correlated states of inter-
est by processing streaming data. We show that in general diffusion
strategies are not resilient to malicious agents that do not adhere to
the diffusion-based information processing rules. In particular, by
exploiting the adaptive weights used for diffusing information, we
develop time-dependent attack models that drive normal agents to
converge to states selected by the attacker. We show that an attacker
that has complete knowledge of the system can always drive its
targeted agents to its desired estimates. Moreover, an attacker
that does not have complete knowledge of the system including
streaming data of targeted agents or the parameters they use in
diffusion algorithms, can still be successful in deploying an attack
by approximating the needed information. The attack models can
be used for both stationary and non-stationary state estimation. In
addition, we present and analyze a resilient distributed diffusion
algorithm that is resilient to any data falsification attack in which
the number of compromised agents in the local neighborhood
of a normal agent is bounded. The proposed algorithm guaran-
tees that all normal agents converge to their true target states if
appropriate parameters are selected. We also analyze trade-off
between the resilience of distributed diffusion and its performance
in terms of steady-state mean-square-deviation (MSD) from the
correct estimates. Finally, we evaluate the proposed attack models
and resilient distributed diffusion algorithm using stationary and
non-stationary multi-target localization.

Index Terms—Resilient diffusion, multi-task estimation,
network topology, adaptive systems.

I. INTRODUCTION

D IFFUSION Least-Mean Squares (DLMS) is a power-
ful algorithm for distributed state estimation [2]. It

enables networked agents to interact with neighbors to pro-
cess streaming data and diffuse information across the net-
work to perform the estimation tasks. Compared to a central-
ized approach, distributed diffusion offers multiple advantages
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including robustness to drifts in the statistical properties of the
data, scalability, reliance on local data, and fast response among
others. Applications of distributed diffusion include spectrum
sensing in cognitive networks [3], target localization [4], dis-
tributed clustering [5], and biologically inspired designs for
mobile networks [6].

Diffusion strategies are known to be robust to node and link
failures as well as to high noise levels [7]–[10]. However, it is
possible that a single adversarial agent that does not update its
estimates according to the diffusion-based information process-
ing rules, for instance by retaining a fixed value throughout, can
fail other agents to converge to their true estimates. Resilience of
diffusion-based distributed algorithms in the presence of such
fixed-value Byzantine attacks has been studied in [2], [5]. A
general approach to counteract such attacks is to allow agents to
fuse information collected from other agents in local neighbor-
hoods using adaptive weights instead of fixed ones. By doing
so, only neighbors estimating a similar state will be assigned
large weights so as to eliminate the influence of a fixed-value
Byzantine adversary.

In this paper, we consider distributed diffusion for multi-task
estimation where networked agents must estimate distinct, but
correlated states of interest by processing streaming data. Agents
use adaptive weights when diffusing information with neighbors
since adaptive weights have been successfully applied to multi-
task distributed estimation problems. However, we are interested
in understanding if adaptive weights introduce vulnerabilities
that can be exploited by Byzantine adversaries. The first problem
we consider is to analyze if it is possible for an attacker to
compromise a node, and make other nodes in its neighborhood
converge to a state selected by the attacker. Then, we consider
a network attack and determine a minimum set of nodes to
compromise to make all nodes within the network converge to
attacker’s desired state.

We assume a strong attack model, that is, the attacker has
complete knowledge of the network topology, streaming data of
targeted agents and their parameters used in the diffusion algo-
rithm. A strong attacker can know the topology by monitoring
the network, streaming data of agents by stealthily compromis-
ing their sensors/controllers and establishing backdoor channels,
and diffusion parameters by doing reverse engineering. We
note that having complete knowledge is a strong assumption,
however, it is common to assume a strong attacker with complete
knowledge of the system to examine the resilience of distributed
networks [11]–[15]. In addition to this strong attack model,
we also consider a weak attack model in which the attacker
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has no knowledge of streaming data of targeted agents or their
parameters. We show that such an attacker can also be successful
in preventing normal agents from converging to true estimates
by approximating their states.

As a result, we show that DLMS, which was considered to
be resilient against Byzantine agents by itself ([2], [5], [8]),
is in fact, not resilient. A Byzantine agent sharing incorrect
estimates whose values are not fixed and change over time
(time-dependent Byzantine attack) can manipulate the normal
agents to converge to incorrect estimates. On the one hand,
adaptive weights improve the resilience of diffusion algorithms
to fixed-value Byzantine attacks, but on the other hand, intro-
duce vulnerabilities that can be exploited by time-dependent
attacks. We analyze this issue in detail and propose a resilient
diffusion algorithm that ensures that normal agents converge
to true final estimates in the presence of any data falsification
attack. The main contributions of the paper are summarized
below:
� By exploiting the adaptive weights, we develop attack mod-

els that drive normal agents to converge to states selected
by an attacker. The attack models can be used to deceive
a specific node or the entire network and are applicable
to both stationary and non-stationary state estimation. Al-
though the attack models are based on a strong knowledge
of the system, we also show that the attack can succeed
without such knowledge.

� We propose a resilient distributed diffusion algorithm pa-
rameterized by a positive integer F . We show that if there
are at most F compromised agents in the neighborhood
of a normal agent, then the algorithm guarantees that
normal agents converge to their actual goal states under
any data falsification attack. If the parameter F selected by
the normal agents is large, the resilient distributed diffu-
sion algorithm degenerates to non-cooperative estimation.
Thus, we also analyze trade-off between the resilience of
distributed diffusion and its performance degradation in
terms of the steady-state MSD.

� We evaluate the proposed attack models for both strong
and weak attacks and the resilient distributed diffusion
algorithm using both stationary and non-stationary multi-
target localization. The simulation results are consistent
with our theoretical analysis and show that the approach
provides resilience to attacks while incurring performance
degradation which depends on the assumption about the
number of compromised agents.

The rest of the paper is organized as follows: Section II
briefly introduces distributed diffusion. Section III presents the
attack and resilient distributed diffusion problems. Sections IV
and V discuss single node attack and network attack models
respectively. Section VI presents and analyzes the resilient dis-
tributed diffusion algorithm. Section VII provides simulation
results evaluating our approaches with multi-target localization.
Section VIII discusses and evaluates the attack model that does
not require complete knowledge of the system. Section IX gives
a brief overview of the related work and Section X concludes
the paper.

II. PRELIMINARIES

We use normal and boldface fonts to denote deterministic
and random variables respectively. The superscript (·)∗ de-
notes complex conjugation for scalars and complex-conjugate
transposition for matrices, E{·} denotes expectation, and ‖ · ‖
denotes the Euclidean norm of a vector.

Consider a network of N (static) agents,1 in which an undi-
rected edge (or a link) between two agents indicates that they
share information and are neighbors of each other. The neigh-
borhood of an agent k, denoted by Nk is the set of neighbors of
k, including the agent k itself. At each iteration i, agent k has
access to a scalar measurement dk(i) and a regression vector
uk,i of size M with zero-mean and uniform covariance matrix
Ru,k � E{u∗

k,iuk,i} > 0, which are related via a linear model
of the following form:

dk(i) = uk,iw
0
k + vk(i),

where vk(i) represents a zero-mean i.i.d. additive noise with
variance σ2

v,k and w0
k denotes the unknown M × 1 state vector

of agent k.
The objective of each agent is to estimatew0

k from (streaming)
data {dk(i),uk,i} (k = 1, 2, . . . , N, i ≥ 0). The objective state
can be static or dynamic and we represent it as w0

k or w0
k,i

respectively. For simplicity, we use w0
k to denote the objective

state in both the static and dynamic cases.
The state w0

k can be computed as the the unique minimizer of
the following cost function:

Jk(w) � E{‖dk(i)− uk,iw‖2}. (1)

An elegant adaptive solution for determining w0
k is the least-

mean-squares (LMS) filter [2], where each agent k computes
successive estimators of w0

k without cooperation (noncoopera-
tive LMS) as follows:

wk,i = wk,i−1 + μku
∗
k,i[dk(i)− uk,iwk,i−1],

where μk > 0 is the step size (can be identical or distinct across
agents).

Compared to noncooperative LMS, diffusion strategies intro-
duce an aggregation step that incorporates information gathered
from the neighboring agents into the adaptation mechanism.
One powerful diffusion scheme is adapt-then-combine (ATC)
[2] which optimizes the solution in a distributed and adaptive
way using the following update:

ψk,i=wk,i−1 + μku
∗
k,i[dk(i)−uk,iwk,i−1] (adaptation) (2)

wk,i =
∑

l∈Nk

alk(i)ψl,i, (combination) (3)

wherealk(i) represents the weight assigned to agent l from agent
k that is used to scale the data it receives from l, and the weights
satisfy the following constraints:

alk(i) ≥ 0,
∑

l∈Nk

alk(i) = 1, alk(i) = 0 if l �∈ Nk. (4)

1We use the terms agent and node interchangeably.
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Here the intermediate state ψk,i (obtained by the adaptation
step) is shared among neighboring agents and a combination of
neighbors’ intermediate states contribute to the current estimate
wk,i of agent k.

In the case where agents estimate a common state w0 (i.e.,
w0

k is same for every k), several fixed combination rules
can be adopted such as Laplacian, Metropolis, averaging, and
maximum-degree [16]. In the case of multiple tasks, agents are
pursuing distinct but correlated objectives w0

k. In this case, the
combination rules mentioned above are not applicable because
they simply combine the estimation of all neighbors without
distinguishing if the neighbors are pursuing the same objective.
An agent estimating a different state will prevent its neighbors
from estimating the state of interest.

Diffusion LMS (DLMS) has been extended for multi-task
networks in [5] using the following adaptive weights:

alk(i) =

⎧
⎨

⎩

γ−2
lk (i)

∑
m∈Nk

γ−2
mk(i)

, l ∈ Nk

0, otherwise.
(5)

where γ2
lk(i) = (1− νk)γ

2
lk(i− 1) + νk‖ψl,i −wk,i−1‖2 and

νk is a positive step size known as the forgetting factor. This
update enables agents to continuously learn about the neighbors
agents should cooperate with. During the estimation task, agents
pursuing different objectives will continuously assign smaller
weights to each other according to (5). Once the weights be-
come negligible, communication links between agents do not
contribute to the estimation task. Consequently, as the estimation
proceeds, only the agents estimating the same state cooperate.

DLMS with adaptive weights (DLMSAW) outperforms the
noncooperative LMS as measured by the steady-state mean-
square-deviation performance (MSD) [2]. For sufficiently small
step-sizes, the network performance of noncooperative LMS is
defined as the average steady-state MSD level among agents:

MSDncop � lim
i→∞

1

N

N∑

k=1

E‖w̃k,i‖2 ≈ μM

2
·
(

1

N

N∑

k=1

σ2
v,k

)
,

where w̃k,i � w0
k −wk,i and M is the size of regression vector

uk,i. The network MSD performance of the diffusion network
(as well as the MSD performance of a normal agent in the
diffusion network) can be approximated by

MSDk ≈ MSDdiff ≈ μM

2
· 1

N
·
(

1

N

N∑

k=1

σ2
v,k

)
. (6)

In [2], it is shown that MSDdiff =
1
N MSDncop, which demon-

strates an N -fold improvement of MSD performance.

III. PROBLEM FORMULATION

Diffusion strategies have been shown to be robust to node
and link failures as well as to nodes or links with high noise
levels [8], [9]. In this paper, we are interested in understanding
if the adaptive weights introduce vulnerabilities in the case a
subset of nodes within the network is compromised by a cyber
attack. In this direction, first we analyze if it is possible for an
attacker who has compromised a node k to make nodes in Nk

converge to a state selected by the attacker. Second, we consider
a network attack model in which we determine a minimum set
of nodes to compromise to make the entire network converge to
states selected by the attacker. Finally, we formulate the resilient
distributed diffusion problem that guarantees that normal agents
are not driven to the attackers’ desired states, and continue
the normal operation with the cooperation among neighbors
possibly with a degraded performance.

A. Single Node Attack Model

We consider false data injection attacks deployed by a strong
attacker that has complete knowledge of the system. In particu-
lar, we assume the following for the strong attack.

Assumption 1: A strong attacker knows the topology of the
network, the streaming data of targeted agents and the diffusion
algorithm parameters they use, such as μk.

To examine the resilience of distributed networks, it is com-
mon to assume a strong attack with full knowledge of the system,
for instance, Byzantine attackers having a complete knowledge
of the system are considered in [11]–[15]. However, we also
consider a weak attack model in Section VIII in which an attacker
has no knowledge of agents’ parameters and has no access to
their streaming data. Compromised nodes are assumed to be
Byzantine in the sense that they can send arbitrary messages to
their neighbors, and can also send different messages to different
neighbors.

The objective of the attacker is to drive the normal nodes to
converge to a specific state. We assume a compromised node a
wants agent k to converge to state

wa
k,i =

{
wa

k , for stationary estimation

wa
k + θak,i, for non-stationary estimation.

This is equivalent to minimizing the objective function of the
following form:

min
wk,i

lim
i→∞

G(wk,i), wa
k,i ∈ Dw,k, (7)

where

G(wk,i) = ‖wk,i − wa
k,i‖2,

and Dw,k is the domain of state wk,i.
Another objective of the attacker can be to delay the conver-

gence time of the normal agents. We observe that if the com-
promised node can make its neighbors to converge to a selected
state, it can keep changing this state before normal neighbors
converge. By doing so, normal neighbors of the attacked node
will never converge to a fixed state. Thus, the attacker can achieve
its goal to prolong the convergence time of normal neighbors.
For that reason, we focus on the attack model based on objective
(7).

B. Network Attack Model

If the attacker has a specific target node that she wants to
attack and make it converge to a specific state, the attacker can
compromise any neighbor of this node to achieve the objective.
In the case the attacker wants to compromise the entire network
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and drive the multi-task estimation to specific states, she needs
to determine a minimum set of nodes to compromise such that
every normal node in the network can be driven to an incorrect
estimate. Computing such a minimum set directly depends on
the underlying structure, and can be formulated as minimum
dominating set problem in graphs as discussed in Section V.

C. Resilient Distributed Diffusion

Distributed diffusion is said to be resilient if

lim
i→∞

wk,i = w0
k. (8)

for all normal agents k in the network which ensures that all the
noncompromised nodes converge to the true state.

We note that if agents do not cooperate or interact with
each other at all, such as in the non-cooperative diffusion, then
adversary cannot impact agents’ estimates. So, non-cooperative
diffusion is resilient in this sense. At the same time, agents are
also unable to utilize the information from other agents aiming
to achieve the similar objective. Consequently, the steady-state
MSD as result of non-cooperative diffusion can be quite large.
Here, our objective is to design a resilient diffusion algorithm
that guarantees convergence to the true estimates in the presence
of adversary and also results in smaller MSD (as compared to
the non-cooperative diffusion) by leveraging cooperation and
information exchange between agents. We assume that in the
neighborhood of a normal node, there could be at most F
compromised nodes [11]. Assuming bounds on the number of
adversaries is typical for the resiliency analysis of distributed
algorithms, and our resilient algorithm is also based on this
assumption.

IV. SINGLE NODE ATTACK DESIGN

We design a strong attack in which the attacker drives the
targeted node k to converge to a wrong estimate wa

k,i by
making k follow a desired trajectory defined using stochastic
gradient descent. The attacker’s goal is to ensure that k, which
implements adaptive-then-combine LMS, actually updates its
estimates according to the stochastic gradient descent defined
by the attacker. Thus, the main task is to determine conditions
under which adaptive-then-combine LMS of k guarantees the
convergence of k’s estimate to wa

k,i.
We summarize the conditions below and then analyze them

in detail in the rest of the section. Firstly, an attacker needs to
know the estimate of node k in the previous iteration. Lemma
1 shows that an attacker can obtain the estimate given node k’s
streaming data and parameters. Secondly, Node k should not
assign any weight to the messages from its non-attacked neigh-
bors. Lemma 2 ensures this objective. Finally, the magnitude
of the stochastic gradient descent update should be sufficiently
small. Details are given in Proposition 1.

A. Gradient-Based Attack Design

Here, we present an attack based on gradient-descent updates,
and in the next subsection, provide conditions under which the
attack is successful. For stationary estimation, the following

gradient-descent update with a sufficient small step size μa
k at

the ith iteration is sufficient to achieve the objective in (7):

wk,i = wk,i−1 − μa
k∇wG(wk,i−1)

= wk,i−1 − rak(wk,i−1 − wa
k,i), (9)

where rak = 2μa
k is a non-negative step size (that can also be

time-varying). For non-stationary estimation, the form is slightly
different and it is described by2

wk,i = wk,i−1 − rak(wk,i−1 − xi), (10)

where

xi =

{
wa

k , for stationary estimation

wa
k + θak,i−1 +

Δθa
k,i−1

rak,i
, for non-stationary estimation

with Δθak,i = θak,i+1 − θak,i. And the diffusion estimate of k is

wk,i =
∑

l∈Nk

alk(i)ψl,i =
∑

l∈Nk\a
alk(i)ψl,i + aak(i)ψa,i.

It is sufficient to achieve the attack objective (7) if the attacker
could make the estimate of k follow the gradient-descent trajec-
tory, i.e.,
∑

l∈Nk\a
alk(i)ψl,i + aak(i)ψa,i=wk,i−1 − rak(wk,i−1 − wa

k,i).

(11)
Since ψl,i = wl,i−1 + μlu

∗
l,i[dl(i)− ul,iwl,i−1] is a random

variable that is not controlled by the attacker, the attacker should
eliminate the influence of ψl,i for l ∈ Nk, l �= a. Sufficient
conditions to hold (11), and thus to achieve the attack objective
are as follows:

ψa,i = wk,i−1 − rak(wk,i−1 − xi) (12)

and

alk(i) → 0, ∀l ∈ Nk, l �= a, and aak(i) → 1. (13)

That is, the attacker uses the exchanging message ψk,i as indi-
cated in (12) and the targeted node k updates its estimate based
only on ψk,i. ψk,i is computed given the knowledge ofwk,i−1,
that can be obtained by the attacker given Lemma 1.

Lemma 1:3 If a compromised node a has a knowledge of
node k’s streaming data {dk(i),uk,i} and the parameter μk,
then it can compute wk,i−1.

Next, we see that by carefully designing ψa,i as explained in
Lemma 2, conditions in (13) are satisfied.

Lemma 2: If the attacker sends the message ψa,i satisfying
‖ψa,i −wk,i−1‖ � ‖ψl,i −wk,i−1‖, ∀l ∈ Nk, l �= a,∀i, then
(13) will be true.

B. Sufficient Conditions and Convergence Analysis

Here, using results from the previous subsection, we present
conditions that guarantee a successful attack. A direct conse-
quence of Lemma 2 is that we could replace the condition

2See proof of Proposition 1 in the Appendix.
3The proofs can be found in the Appendix.
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in (13) by ‖ψa,i −wk,i−1‖ � ‖ψl,i −wk,i−1‖, ∀l ∈ Nk, l �=
a, ∀i. At the same time, from (12), we get

‖ψa,i −wk,i−1‖ = ‖rak(wk,i−1 − xi)‖.
Therefore, a sufficient condition to achieve the attack objective
can be rewritten as

ψa,i = wk,i−1 − rak(wk,i−1 − xi),

s.t. ‖rak(wk,i−1 − xi)‖ � ‖ψl,i −wk,i−1‖.
(14)

Thus, the attacker has to select a sufficiently small value of rak
to make (14) true. Note that even though rak = 0 is sufficient for
(14), it renders the gradient of (9) zero and as a result no progress
is made towards convergence to wa

k,i. Also note that to use (14),
it is assumed that the communication message ψl,i from every
l ∈ Nk is known by the attacker, which can be achieved by
intercepting the message. In practice, a sufficiently small value
of rak guarantees that the condition holds. The attacker can select
a small rak and observe if the attack succeeds; if not, decrease
rak to find an appropriate value. It is also worth noting that for a
fixed value of rak , (14) may not hold for some iteration i because
of the randomness of variables. Yet we can always set rak = 0
for such iterations i (no progress at the current point). However,
in practice, the attack succeeds by using a small fixed value
of rak > 0 since estimation is robust to infrequent small values
of ‖ψl,i −wk,i−1‖ caused by randomness given the smoothing
property of the adaptive weight.

Next, we argue that (14) is sufficient to achieve the attack
objective. We summarize the above discussion in Proposition 1
and include a detailed proof in Appendix.

Proposition 1: If rak > 0 is selected such that ∀l ∈ Nk ∩ l �=
a, ∀i ≥ ia, ‖rak(wk,i−1 − xi)‖ � ‖ψl,i −wk,i−1‖, then the
compromised node a can realize the objective (7) by usingψa,i

described in (12) as the communication message with k.
Next, we discuss the convergence time of attack. Note that as

i → ∞,4

lim
i→∞

(1− rak)
i = 0.

In practice, when the left side of the above equation is smaller
than a certain small value ε, that is,

(1− rak)
iac (ε) ≤ ε,

we consider that the convergence to the desired state is achieved.
Moreover, time required to reach the desired state is denoted by
iac (ε), and is computed as

iac (ε) =
log ε

log(1− rak)
. (15)

It is also worth mentioning that it is not necessary to start the
attack at the beginning of the diffusion task in order to guarantee
the convergence of the attack. In other words, the attack can start
at any time even after the diffusion algorithm has converged to
its correct target as long as the condition in Proposition 1 is
satisfied.

4Refer to equation (26) in the Appendix.

V. NETWORK ATTACK DESIGN

In this section, we consider the case when multiple nodes
are compromised using the attack model presented above. Our
objective is to determine the minimum set of nodes to compro-
mise in order to attack the entire network. For this, we show:
(1) It is not necessary for the attacker to compromise multiple
compromised nodes in order to attack a single node and (2)
it is not possible for a compromised node to influence nodes,
that is, make such nodes not converge to the desired states, that
are not its immediate neighbors. Therefore, the minimum set to
compromise is simply a minimum dominating set of the network,
which we explain later in the section.

A. Impact of Compromised Nodes on Normal Nodes

In this subsection, first we discuss the impact of multiple
compromised nodes attacking a single normal node, and then
analyze the impact a compromised node can have beyond its
immediate neighbors.

Lemma 3: If the compromised nodes send identical message
as proposed in (12), then multiple compromised nodes attack-
ing one normal node is equivalent to one compromised node
attacking the normal node.

The next problem to consider is if a compromised node could
indirectly impact its neighbors’ neighbors that at the same time
are not the neighbors of the attacker a. To illustrate this, we
consider an attacker node a, a normal node l, and a large clique5

of normal nodes C such that each node in a clique is connected
to both a and l, and there is no edge between nodes a and l.

Using the proposed attack model, a is able to drive every node
in the clique to converge to its selected state. We are interested
in finding if the normal node l, that is connected to the clique,
is also affected by the attack. The state of l is obtained by

wl,i =
∑

k∈C
akl(i)ψk,i + all(i)ψl,i

=
∑

k∈C
akl(i)(wk,i−1 + μku

∗
k,i[dk(i)− uk,iwk,i−1])

+ all(i)(wl,i−1 + μlu
∗
l,i[dl(i)− ul,iwl,i−1]). (16)

We use Rk,i to denote the random variable μku
∗
k,i[dk(i)−

uk,iwk,i−1] for k in the clique andRl,i to denote μlu
∗
l,i[dl(i)−

ul,iwl,i−1] for normal node l. Suppose the compromised node
a could affect nodes beyond its neighborhood, from some point
i,wk,i converges to wa

k andwl,i converges to wa
l (assume both

wa
k �= w0

k and wa
l �= w0

l ).
Thus, (16) turns into:

wa
l =

∑

k∈C
akl(i)(w

a
k +Rk,i)+

(
1−

∑

k∈C
akl(i)

)
(wa

l +Rl,i)

=
∑

k∈C
akl(i)(w

a
k − wa

l +Rk,i −Rl,i)+wa
l +Rl,i. (17)

5Every node is connected to every other node in a clique.
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After inserting constants and random variables, (17) can be
written as

∑

k∈C
akl(i)(w

a
l − wa

k)=
∑

k∈C
akl(i)Rk,i+

(
1−
∑

k∈C
akl(i)

)
Rl,i.

(18)

Here, (wa
k − wa

l ) is a constant and alk(i) changes slowly and
can be considered as a constant that does not change within a
small period of time. Then, (18) implies a constant equals to
a random variable, which does not hold except that both sides
equal to zero. For the left side, that is when

∑
k∈C akl(i) → 0

or (wa
l − wa

k) → 0. Consider, when (wa
l − wa

k) → 0, that is,
wa

l → wa
k . In such cases,

Rl,i = μlu
∗
l,i[dl(i)− ul,iwl,i−1]

= μlu
∗
l,i[ul,iw

0
l + vl(i)− ul,iw

a
l ]

= μlu
∗
l,i[ul,i(w

0
l − wa

l ) + vl(i)] �= 0.

So is Rk,i. Therefore, equation (18) does not hold under the
condition (wa

l − wa
k) → 0.

The other possible solution for equation (18) is when∑
k∈C akl(i) → 0. This means l does not assign any weight to

k ∈ C and operates by itself. In such cases, equation (18) holds
when the right side of the equation is zero. Since

∑
k∈C akl(i) →

0, the right side turns into Rl,i. We know when l converges to
its true objective state w0

l ,Rl,i is zero, i.e.,

Rl,i = μlu
∗
l,i[dl(i)− ul,iwl,i−1]

= μlu
∗
l,i[ul,iw

0
l + vl(i)− ul,iw

0
l ]

= μlu
∗
l,ivl(i) → 0.

Thus, equation (18) holds under two conditions: First,∑
k∈C akl(i) → 0, that is, l does not give any weight to k ∈ C.

Second, Rl,i → 0, that is, l converges to its true objective state
w0

l .
We note that the above two conditions indicate that l converges

to its original goal state and will not assign any weight to its
compromised neighbors under the above conditions. Based on
this discussion, we have Lemma 4.

Lemma 4: The attacker cannot change the convergence state
of the nodes that are not its immediate neighbors.

Next, we see how many compromised nodes are needed to
attack the entire network.

B. Minimum Set of Compromised Nodes to Attack the
Entire Network

Since it is not necessary to use more than one compromised
nodes to attack one single normal agent, and a compromised
node cannot affect nodes beyond its neighborhood, finding a
minimum set of nodes to compromise in order to attack the
entire network is equivalent to finding a minimum dominating
set of the network as defined below [17].

Definition 1: (Dominating set) A dominating set of a graph
G = (V,E) is a subset D of V such that every vertex not in D
is adjacent to at least one member of D.

Definition 2: (Minimum dominating set) A minimum domi-
nating set of a graph is a dominating set of the smallest size.

It should be noted that finding a minimum dominating set of a
network is an NP-complete problem but approximate solutions
using greedy approaches work well in practice (for instance,
see [17]). With the above discussion, we state the following:

Proposition 2: The compromised nodes need to form a dom-
inating set if the attacker wants every node in the network to
converge to its desired state.

Based on the above discussion, we observe that the above
condition is both necessary and sufficient.

VI. RESILIENT DISTRIBUTED DIFFUSION

In this section, we propose a resilient diffusion algorithm that
guarantees convergence of normal nodes to their actual states
if the number of compromised nodes in the neighborhood of
a normal node is bounded. The proposed algorithm takes a
non-negative integer F as an input parameter. If the number
of compromised nodes in the neighborhood of a normal node is
at most F , then the algorithm is resilient to any such attack. It is
obvious that selecting a large F value achieves a higher level of
resilience, while selectingF = 0means that the algorithm is not
resilient to any attack. However, there exists a trade-off between
the resilience and the steady-state MSD performance of the
algorithm, which we will analyze in detail. Since the proposed
algorithm is adapted from the known DLMSAW, we call it a
Resilient Diffusion Least Mean Square with Adaptive Weights
(R-DLMSAW). We also note that in contrast to the connectivity
requirements needed by resilient concensus problems [11], in
resilient diffusion, connectivity does not affect convergence, but
only the estimation performance measured by the steady-state
MSD.

Since our algorithm can achieve resilience to up to F com-
promised nodes, we assume that there can be at most F com-
promised nodes in the neighborhood of any node, which is also
referred to as the F -local model in [11]. Specifically, we define:

Definition 3: (F -local model) A node satisfies the F -local
model if there is at most F compromised nodes in its neighbor-
hood.

Definition 4: (F -local network) A network is considered to
satisfy the F -local model if every node in the network has at
most F compromised nodes in its neighborhood.

While the paper focuses on the F -local model, scenarios
involving bounds on the total number of compromised nodes
within the network (F -total model [11]) can also be analyzed
using a similar approach. Next, we describe our resilient diffu-
sion algorithm.

A. Resilient Diffusion Algorithm (R-DLMSAW)

In the context of distributed consensus, it is shown in [11] that
for Mean-Subsequence-Reduced (MSR) algorithms, that during
the state update phase, a node discards the values of neighbors
that are too far off from the node’s own value, resilience against
attacks can be achieved, that is, distributed consensus in the
presence of compromised nodes (F -local andF -total models) is
guaranteed. In distributed diffusion, we recall that a node updates
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its estimate by taking a weighted average of the estimates of all
of its neighbors (3). For resilient diffusion, we utilize a similar
idea as in [11], that is instead of considering the estimates of all
neighbors during the state update phase, only consider values
from a subset of neighbors sharing close estimates. We show
that this strategy guarantees convergence of normal nodes to
true estimates. Before outlining the resilient distributed diffusion
algorithm, we first explain the notion of the cost of a node.

Following (3), normal agent k follows diffusion dynamics
given by

wk,i =
∑

l∈Nk

alk(i)ψl,i.

Thus, the cost function in (1) in the ith iteration can be
written as:

Jk(wk,i) = Jk

(
∑

l∈Nk

alk(i)ψl,i

)

= E

{
‖dk(i)− uk,i

(
∑

l∈Nk

alk(i)ψl,i

)
‖2
}
.

Since
∑

l∈Nk
alk(i) = 1, we have

dk(i) =
∑

l∈Nk

alk(i)dk(i).

Thus,

Jk(wk,i) = E

{
‖
∑

l∈Nk

alk(i)dk(i)−
∑

l∈Nk

alk(i)uk,iψl,i‖2
}

= E

{
‖
∑

l∈Nk

alk(i)(dk(i)− uk,iψl,i)‖2
}

=
∑

l∈Nk

a2lk(i)E{‖dk(i)− uk,iψl,i‖2}

=
∑

l∈Nk

a2lk(i)Jk(ψl,i)

=

∑
l∈Nk

γ−4
lk (i)Jk(ψl,i)

[
∑

m∈Nk
γ−2
mk(i)]

2
. (19)

The goal of k is to minimize its cost at every iteration, i.e.,
to minimize Jk(wk,i) by discarding F neighbors’ message.
Therefore, the removal set Rk(i) of size F should be selected
by

Rk(i) = argmin Jk(wk,i)

= argmin

∑
l∈Nk\Rk(i)

γ−4
lk (i)Jk(ψl,i)

[
∑

m∈Nk\Rk(i)
γ−2
mk(i)]

2
.

We note that the algorithm presented here is a generalization
of the algorithm in [1] which is resilient to a specific type of
Byzantine attack and has a lower computational cost. In contrast,
the algorithm proposed in this work is resilient to any Byzantine
attack, but has a higher computational cost. Thus, there is a trade

off between the computation complexity of the algorithm and
the scope of attacks to which the algorithm is resilient.

To compute the costJk(ψl,i) = E‖dk(i)− uk,iψl,i‖2, agent
k has to store all the streaming data. Alternatively, we can
approximate Jk(ψl,i) using a moving average based on the
previous iterations.

Next, we outline the basic idea of the proposed resilient
distributed diffusion algorithm below, and present the details
of R-DLMSAW in Algorithm 1.

1) If F ≥ |Nk|, agent k updates its current state wk,i using
only its ownψk,i, which degenerates distributed diffusion
to non-cooperative LMS.

2) If F < |Nk|, at each iteration i, agent k computes
(|Nk |

F

)

possible removal sets, and selects the one by removing
which Jk(ψl,i) is minimized. Then, the agent updates
its current weight alk(i) and state wk,i without using
information from nodes in Rk(i).

We note that for F = 0, DLMSAW and R-DLMSAW are
essentially identical.

Proposition 3: If the network is a F -local network, then R-
DLMSAW is resilient to any message falsification attack.

Proof: Given the F -local model, we assume that there are
n ≤ F compromised nodes in the neighborhood of a normal
node k. In the case of F ≥ |Nk|, k updates its state without
using information from neighbors. Next, consider the case when
F < |Nk|. To deploy the attack, the attacker must try to make the
message it sends to the normal nodes not being discarded by the
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normal nodes. This can only be achieved if the cost of keeping
the attacker’s message is smaller than keeping some normal
agents’ message (discarding the attacker’s message). Therefore,
any attack message not being discarded actually results in a
cost smaller than the normal case. Therefore, R-DLMSAW is
resilient to any message falsification attack. From the attacker’s
perspective, since its goal is to maximize cost Jk(wk,i), the
optimal strategy for the attacker is not to make this cost even
smaller. As a result, the information from the attacker will be
discarded.

Thus,

wk,i =
∑

l∈Nk\Rk(i)

alk(i)ψl,i,

meaning the algorithm performs the diffusion adaptation step as
if there were no compromised node in its neighborhood. Note
that messages from normal neighbors may also be discarded
since F may be greater than the number of compromised neigh-
bors. However, the distributed diffusion algorithm is robust to
node and link failures [8], and it converges to the true state
despite the links to some or all of its neighbors fail. Finally,
the algorithm will converge and equation (8) holds, showing the
resilience of R-DLMSAW. �

B. Trade-Off Between Resilience and MSD Performance

An important aspect of R-DLMSAW is the selection of pa-
rameter F by each normal node. On the one hand, selection of
a large F degrades the performance of the diffusion algorithm
as measured by the steady-state MSD, but on the other hand, a
smallerF might result in an algorithm that is not resilient against
attacks. In the following, we summarize the trade-off between
the steady-state MSD performance and resilience.

It is rather obvious that if a normal node selects F smaller
than the number of compromised nodes in its neighborhood,
then the messages from the compromised nodes might not be
discarded entirely during the state update phase of R-DLMSAW.
As a result, the algorithm might not be resilient against the
attack, and the normal node might eventually converge to the
attacker’s desired state. However, if F is selected too large,
then in the worst case, normal agents discard all the information
from their neighbors. The algorithm becomes a non-cooperative
diffusion algorithm and incurs an N -fold MSD performance
deterioration. Thus, the performance of R-DLMSAW lies some-
where in-between the cooperative diffusion and non-cooperative
diffusion depending on the choice of F selected.

Consider a connected network with N normal agents running
R-DLMSAW. Let σ2

v,k = {σ2
v,1, . . . , σ

2
v,N} be the noise vari-

ance. Suppose by selecting some F the network is resilient,
but is no longer a connected graph and is decomposed into
n connected sub-networks, each of which is denoted by Sj

where j ∈ {1, . . . , n}. Using (6), the steady-state MSD for each
sub-network is

MSDSj
≈ μM

2
· 1

(|Sj |)2
∑

k∈Sj

σ2
v,k,

where |Sj | is the number of nodes in jth sub-network. The
steady-state MSD for the overall network (consisting of sub-
networks) after running R-DLMSAW is the weighted average
of the steady-state MSD of the sub-networks, that is

MSDafter =
1

N

n∑

j=1

MSDSj
· |Sj | ≈ μM

2N
·

n∑

j=1

1

|Sj |
∑

k∈Sj

σ2
v,k.

At the same time, the steady-state MSD for the (original) con-
nected network before running R-DLMSAW is

MSDbefore ≈ μM

2
· 1

N2

N∑

k=1

σ2
v,k ≈ μM

2N
·

n∑

j=1

1

N

∑

k∈Sj

σ2
v,k.

The difference between the two is

MSDafter − MSDbefore =
μM

2N
·

n∑

j=1

(
1

|Sj | −
1

N

) ∑

k∈Sj

σ2
v,k.

We know that |sj | ≤ N . Therefore, 1
|Sj | − 1

N ≥ 0, meaning the
steady-state MSD of the network after running R-DLMSAW
is worse than the steady-state MSD of the original network,
and as the network is decomposed into more sub-networks,∑n

j=1(
1

|Sj | − 1
N ) and MSDafter becomes larger.

Therefore, it is crucial to select an appropriateF , that is a value
with which the algorithm is resilient against compromised nodes
and at the same time useful links between nodes are preserved. To
this end, a simple way to select F is to first estimatewncop,k,i by
a non-cooperative diffusion and compute Jk(wncop,k,i). Then,
starting with a small F , for instance F = 0, perform cooper-
ative diffusion and compute Jk(wcoop,k,i). If Jk(wcoop,k,i) >
Jk(wncop,k,i), it means that a compromised node is able to effect
the estimation, and therefore increaseF by 1. We keep repeating
this as long as Jk(wcoop,k,i) > Jk(wncop,k,i) is true.

VII. EVALUATION

In this section, we evaluate three algorithms, non-cooperative
diffusion, DLMSAW, and R-DLMSAW; and compare their per-
formance for no-attack and attack scenarios. We evaluate the
proposed attack model and resilient algorithms using the appli-
cation of multi-target localization [16], [18] for both stationary
and non-stationary targets.

We consider a network of N = 100 agents, in which each
agent’s objective is to estimate the unknown location of its target
of interest by the noisy observations of both the distance and the
direction vector towards the target. These agents and targets are
distributed in a plane. The location of agent k is denoted by
the two-dimensional vector pk = [xk, yk]

�, and similarly the
location of target is represented by the vector w0

k = [x0
k, y

0
k]

�.
Figure 1 illustrates how an agent estimates the location of the
target.

In Figure 1, the distance between agent k and the target
is denoted by r0k = ‖w0

k − pk‖, and the unit direction vector

from agent k to the target is u0
k =

(w0
k−pk)

�

‖w0
k−pk‖ . Therefore, the

relationship holds such that r0k = u0
k(w

0
k − pk). Since agents

have only noisy observations {rk(i),uk,i} of the distance and
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Fig. 1. Illustration of target localization.

direction vector at every iteration i, we get the following:

rk(i) = uk,i(w
0
k − pk) + vk(i).

If we use the adjusted signal dk(i), such that

dk(i) = rk(i) + uk,ipk,

then we derive the following linear model for variables
{dk(i),uk,i} in order to estimate the target w0

k:

dk(i) = uk,iw
0
k + vk(i).

As a result, agents can rely on DLMSAW algorithm for the
multi-target localization problem. Figure 2a shows the network
topology before the application of diffusion algorithms. For
better readability, we only illustrate the network topology of
agents without showing targets.

For stationary target localization, the location of the two
stationary targets are given by

w0
k =

{
[0.1, 0.1]�, for k depicted in blue

[0.9, 0.9]�, for k depicted in green

Non-stationary targets are given by

w0
k,i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
0.1 + 0.1 cos(2πωi)

0.1 + 0.1 sin(2πωi)

]
, for k depicted in blue

[
0.9 + 0.1 cos(2πωi)

0.9 + 0.1 sin(2πωi)

]
, for k depicted in green

where ω = 1
2000 .

Regression data is white Gaussian with diagonal covariance
matrices Ru,k = σ2

u,kIM with M = 2, σ2
u,k ∈ [0.8, 1.2] and

noise variance σ2
k ∈ [0.15, 0.2]. The step size of μk = 0.01 and

the forgetting factor νk = 0.01 are set uniformly across the
network. Note that we adopt a signal-to-noise ratio (SNR) of
5–10 dB in our setup. However, the same results are generated
if we choose low SNR values.

A. Strong Attacks

We consider the strong attack model discussed in Sections IV
and V. The attacker aims at making the normal agents estimate a
specific location selected by the attacker. In this evaluation, we
select the attacker’s targeted location to be wa

k = [0.5, 0.5]�,
and the attack parameters are selected uniformly across the
compromised agents as rak = 0.002. For non-stationary esti-
mation, we select θak,i = [0.1 cos(2πωai), 0.1 sin(2πωai)]

�,

Δθak,i = [−0.2πωa sin(2πωai), 0.2πωa cos(2πωai)]
�, where

ωa = 1
2000 . Figure 2b shows the network topology at the end of

the simulation using DLMSAW with no attack for both station-
ary and non-stationary tasks. If the weights between agents k and
l are such that alk(i) < 0.01 and akl(i) < 0.01, then we remove
the link between such nodes from the network. We observe that
only the links between agents estimating the same target are kept,
that is green nodes are connected with green nodes only, and
blue nodes are connected with only blue ones, thus, illustrating
the robustness of DLMSAW in multi-task networks. Figure 3a
and Figure 3b shows the estimation dynamics by DLMSAW
for the targets’ locations wk,i(1) and wk,i(2) for every agent
k and iteration i from 0 to 5000 under no attack. Here wk,i(1)
and wk,i(2) are the first and second element of the estimate
respectively, that iswk,i = [wk,i(1),wk,i(2)]

�. It is shown that
the two groups of nodes converge to their goal state.

Figure 2c shows the initial network topology with compro-
mised nodes. There are four compromised nodes (red nodes with
yellow centres) in the network. Figure 2d shows the network
topology at the end of DLMSAW in the case of a strong attack.
All red nodes are the normal agents converging to wa

k . We ob-
serve that neighbors of a compromised node communicate only
with the compromised node, and not with any other node in the
network. As a result, compromised nodes successfully drive all
of their neighbors to desired stateswa

k as discussed in Section V.
Figure 3c and Figure 3d shows the estimation dynamics by
DLMSAW for the targets’ location wk,i(1) and wk,i(2) for
every agent k and iteration from 0 to 5000 under attack. The
attacked nodes in the figure refer to the immediate neighbors
of the compromised nodes. It is shown that all the immediate
neighbors of compromised nodes are driven to converge to wa

k

whereas all the other normal nodes converge to their original
goal states.

Figure 4a shows the convergence of nodes under attack (sta-
tionary targets). We note at around 3000 iterations, the difference
between the average state of nodes under attack and the at-
tacker’s desired state wa

k becomes almost zero. This observation
is also consistent with the result in (15), as for i = 3000 and
rak = 0.002, the value of ε turns out to be 0.0025, which is indeed
quite small and indicates the convergence of node’s estimate
to wa

k .
Figure 4b shows the average state dynamics of nodes under

attack for non-stationary targets. Since states are changing over
time, we illustrate the dynamics of average states’ changing
with respect to the dynamics of attacker’s selected state, instead
of a convergence plot like 4a. Here, the X-coordinate denotes
the first element of the estimation vector, i.e., wk,i(1), and
Y -coordinate denotes the second, i.e., wk,i(2). At iteration 0,
the average state wk,i of the nodes under attack is different than
the attacker’s desired state wa

k,i. As the attack proceeds, wk,i

gradually converges towardswa
k,i, which shows the effectiveness

of attack for non-stationary state estimation.
Figure 5 shows the steady-state MSD performance of DLM-

SAW and non-cooperative LMS. We observe that under no
attack, cooperation indeed improves the steady-state MSD per-
formance of DLMSAW. However, in the case of an attack, the
steady-state MSD level of DLMSAW is quite high, whereas,
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Fig. 2. Network topologies in the case of DLMSAW algorithm.

Fig. 3. Estimation dynamics for stationary target localization by DLMSAW.

Fig. 4. Average state dynamics of compromised nodes neighbors (under strong
attack).

the steady-state MSD level of non-cooperative LMS is barely
affected by the attack.

B. Resilient Diffusion for Strong Attacks

To evaluate R-DLMSAW, we compute the costJk(ψl,i) using
the streaming data from the latest 100 iterations. We adopt
uniform F for every normal agent but it can be distinct for each
agent. R-DLMSAW behaves identically to DLMSAW at one
extreme, that is whenF = 0, and on the other extreme it behaves
like a non-cooperative LMS algorithm, that is for large F . We
consider the same initial network as in Figure 2a and consider an
attack consisting of four compromised nodes as previously. Note

Fig. 5. Steady-state MSD levels in non-cooperative LMS and DLMSAW
(under strong attack).

that there is at most one compromised node in the neighborhood
of a normal agent. Figure 6 shows network topologies after
executing R-DLMSAW for various values of F . Since there is
at most one compromised node in the neighborhood of a normal
agent, the selection of F = 1 should be sufficient to guarantee
that none of the normal nodes converge to attacker’s desired
states, which is indeed the case as indicated by the removal of
all links between normal and compromised nodes in Figure 6a.
As we increaseF , resilience against attack is certainly achieved,
but at the same time the network becomes sparser as illustrated in
Figures 6b and 6c. In the case of non-stationary state estimation,
the resulting network topologies are similar, and hence, are not
presented.
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Fig. 6. Network topologies at the end of R-DLMSAW under strong attack (stationary targets) for various values of F .

Fig. 7. Estimation dynamics for stationary target localization by R-DLMSAW under strong attack.

Fig. 8. A comparison of MSD performance of non-cooperative LMS, DLM-
SAW, and R-DLMSAW under strong attack.

Figure 7 shows the estimation dynamics by R-DLMSAW for
the targets’ location wk,i(1) and wk,i(2) for every agent k and
iteration i from 0 to 5000 under attack. The attacked nodes in
the figure refer to the immediate neighbors of the compromised
nodes. Since there is at most one compromised node in a normal
node’s neighborhood, setting F ≥ 1 will make R-DLMSAW
algorithm resilient to attacks, which is demonstrated by the
results from the figure. We also observe that by setting a smaller
F value, which is sufficient to make the algorithm resilient, we
achieve better estimation performance (F = 1 has less noise
than that of F = 5).

Figure 8 shows the steady-state MSD level of the network for
the three algorithms, that is, non-cooperative LMS, DLMSAW,
and R-DLMSAW. The simulation results validate claims in
Section VI. We observe that in the presence of compromised

nodes, DLMSAW performs the worst and has the highest steady-
state MSD. Since there is at most one compromised node in the
neighborhood of any normal node, the most appropriate value
of F for R-DLMSAW is 1. We note that the steady-state MSD is
indeed minimum for F = 1. As we increase F , the steady-state
MSD also increases. In fact, for F = 5, the performance of
R-DLMSAW and non-cooperative LMS is almost the same as
we expect.

VIII. WEAK ATTACKS

Though it is common to assume a strong attacker with com-
plete knowledge when examining the resilience of a distributed
system, it is interesting to examine what an attacker can do in
practise if all the information is not available. In this section,
we analyze how the attack can still be deployed on a normal
agent k without the assumption of a strong knowledge by the
attacker (streaming data and parameters used by k). We assume
that an attacker has access only to the intermediate estimates
shared by agents with others in their neighborhood. For instance,
if l ∈ Nk then agent k receives ψl,i from l and attacker also
has an access to it. We show that the other knowledge needed
by the attacker can actually be approximated in an alternative
way, and the success of the attack relies on how accurate this
information can be approximated. We refer to such an attack in
which attacker can only gather intermediate estimates and not
the other data (including streaming data and agent parameters)
as the weak attack.

The strong attack in (10) relies essentially on the knowledge of
wk,i−1, that is the estimated state of agent k in the last iteration.
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If the attacker has complete knowledge, it can compute wk,i−1

exactly as Lemma 1 indicates. However, without such knowl-
edge, wk,i−1 can only be approximately computed. We note
that approximating wk,i−1 is equivalent to approximating the
weight matrix Ak(i) = [alk(i)], ∀l ∈ Nk. This is true because
wk,i =

∑
l∈Nk

alk(i)ψl,i, andψl,i is received by the attacker a
from l.

Next, we discuss how to compute the approximated weight
matrix Âk(i− 1) using only the information ψl,i, ∀l ∈ Nk.
Note that the adaptation step (2) of diffusion can be written
as,

ψk,i = wk,i−1 +∇k,i = Ak(i− 1)Ψk,i−1 +∇k,i.

where ∇k,i = μku
∗
k,i(dk(i)− uk,iwk,i−1), Ψk,i−1 is an

|Nk| ×M matrix Ψk,i−1 = [ψl,i−1], ∀l ∈ Nk. Thus,

∇k,i = ψk,i −Ak(i− 1)Ψk,i−1,

and therefore,

lim
i→∞

E{‖∇k,i‖2} = lim
i→∞

E{‖ψk,i −Ak(i− 1)Ψk,i−1‖2}.

Since limi→∞ E{‖∇k,i‖2} = 0, the value of Ak(i) can be ap-
proximated by assigning a cost function

	(Ak(i)) � E{‖ψk,i+1 −Ak(i)Ψk,i‖2},
where Ak(i) is the global minimizer of 	(Ak(i)) as i → ∞.
Next, we compute the successive estimators of the weight matrix
based on stochastic gradient descent method as follows:

Âk(i) = Âk(i− 1)− μ′
A∇A	(Âk(i− 1))

= Âk(i− 1) + μAΨk,i−1(ψk,i − Âk(i− 1)Ψk,i−1),
(20)

where μA = 1
2μ

′
A.

Also recall weight matrix Ak(i) has to satisfy the condition
(4). Thus, to make the adaptive approximation of weight matrix
hold condition (4), we introduce two more steps following (20),
that is the clip step and the normalization step. In the clip step,
the negative weights are clipped and are set to zero; and the in
the normalization step, weights are divided by their sum. The
operation for approximating weight matrix of a normal agent k
is summarized in Algorithm 2.

We then approximate normal agent k’s estimated state by

ŵk,i = Âk(i)Ψk,i,

Fig. 9. Network topologies at the end of simulation under weak attack.

Fig. 10. Sate estimation precision.

and use ŵk,i instead of wk,i. The attack model in (10) then
becomes

ψa,i = ŵk,i−1 + rak(xi − ŵk,i−1). (21)

Note that the sufficient condition listed in Proposition 1 guaran-
tees the convergence of the attack objective. However, without
an exact knowledge ofwk,i−1 it is not guaranteed the sufficient
condition can be satisfied. In other words, the success of the
attack relies highly on how accurate the state ŵk,i can be
approximated. In the following, we provide evaluation results
for such an attack.

A. Evaluation

We adopt the same evaluation set-up as we used in Section VII.
Initial network topology is the same as in Figure 2a. Parameters
we select are: σ2

u,k ∈ [0.75, 0.85], σ2
k ∈ [0.75, 0.85] for each

agent k and μA = 0.002, while all the other settings are the
same as in Section VII.

At the end of DLMSAW under weak attack, we reach the
network topology as shown in Figure 9a. From the plots, we find
some of the agents maintain connection with the compromised
nodes, while others do not, which is not the case with a strong
attack, where all the neighboring agents of a compromised node
end up cooperating only with the compromised node. The main
reason for this is that the weak attack may not have an accurate
approximation of normal agents’ state. Without an accurate
approximation, compromised nodes may not be able to collect
large weights from their neighbors and may not keep influencing
the states of their neighbors.
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Fig. 11. Steady-state MSD comparison under weak attack.

Fig. 12. Estimation dynamics for stationary target localization by DLMSAW
under weak attack.

Figure 10 illustrates the estimation precision (‖ŵk,i −wk,i‖)
by the attacker. It shows that the attacker has different levels of
accuracy to estimate the states of its neighboring agents. For
some agents, the attacker has accurate approximation along the
simulation iterations. As a result, the attacker is more likely to
make its attack successful on those agents. However, for other
agents, the attacker does not have very good approximation accu-
racy and therefore, it is hard for the attacker to successfully attack
such agents. Figure 12 shows the state estimation dynamics of
normal agents (wherein attacked nodes refer to the neighboring
nodes of the compromised nodes). We find the attacker can only
drive a few of its neighbors to its desired state, whereas most of
the normal neighbors converge to their true goal state, which is
consistent with the results of Figure 10. The steady-state MSD
performance for the weak attack is shown in the yellow line in
Figure 11. We find that such an attack still worsens the network
steady-state MSD as compared to the non-cooperative LMS (the
blue line) and DLMSAW without attack (the red line).

Next, we evaluate the proposed resilient diffusion algorithm
R-DLMSAW against the weak attack. The network topology at
the end of simulation is shown in Figure 9b. Most normal agents
have cut the link with the compromised nodes. Yet some links
are maintained because these compromised nodes behave in a
benign way as to send message with a smaller cost than a normal
neighbor of the targeted node. In other words, these compro-
mised nodes exchange a state message similar to normal nodes
in order to maintain communication with them. Therefore, such
links need not to be cut down to achieve the network resilience.

Fig. 13. Estimation dynamics for stationary target localization by R-
DLMSAW under weak attack.

Figure 13 shows the estimation dynamics of normal nodes by
R-DLMSAW. We find none of the attacked nodes are driven to
the attacker’s selected state. All the nodes successfully converge
to their true goal states. The purple line in Figure 11 shows the
steady-state MSD performance of R-DLMSAW withF = 1. We
observe that this line lies between the noncooperative LMS and
DLMSAW (without attack), and has a much smaller steady-state
MSD than DLMSAW under such attack. This illustrates the
effectiveness of the proposed resilient diffusion algorithm by
showing that the algorithm is resilient to not only strong but
also to weak attacks, as well as other data falsification attacks.

IX. RELATED WORK

Many distributed algorithms are vulnerable to cyber attacks.
The existence of an adversarial agent may prevent the algorithm
from performing the desired task. Distributed consensus and dif-
fusion based strategies are often employed to resolve distributed
estimation and optimization problems, for instance see [2],
[19]–[23]. Resilience of consensus-based distributed algorithms
in the presence of malicious nodes has received considerable
attention in recent years. In particular, the approaches presented
in [11], [24]–[26] consider the consensus problem for scalar pa-
rameters in the presence of attackers, and resilience is achieved
by leveraging high connectivity. Resilient consensus in the case
of special network structures, such as triangular networks for
distributed robotic applications [27], has also been studied. To
achieve resilience in sparse networks, [28] presents the idea of
employing few trusted nodes, which are hardened nodes that
cannot be attacked. Resilience for concensus+innovation prob-
lems have also been studied by [29]–[31] in a fully-distributed
way via agents’ local observations and high network connec-
tivity. Resilience can also be achieved via fault detection and
isolation (FDI). For instance, [32] studied the FDI problem for
linear consensus networks via high connectivity networks and
global knowledge of the network structure by each agent. [33]
considered a similar FDI problem for second-order systems.
Authors in [34] presented distributed detection method for con-
sensus+innovation algorithms via local observations of agents
only. For attacks, typical approaches usually consider Byzantine
adversaries with fixed target different than the true value [11]
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or with updates without time-dependent intention [30], [34] and
assume that the goal of the attacker is to disrupt the convergence
(stability) of the distributed algorithm. In contrast, this work fo-
cuses on attacks that do not disrupt convergence but drive normal
agents to converge to states selected by the attacker. Moreover, in
our attack model, the attacker continuously changes its values
over time as compared to the fixed value attacks considered
previously.

Resilience of diffusion-based distributed algorithms has been
studied in [2], [5], [8]. Similar to the resilient consensus prob-
lems, fixed-value attacks are usually considered, and the main
approach has been to use adaptive combination rules to coun-
teract malicious values. This is an effective measure and has
been applied to multi-task networks and distributed clustering
problems [5]. Several variants focusing on adaptive weights
applied to multi-task networks can be found in [18], [35]–[37].
Note that the essence of adaptive weights is similar to distributed
detection. In contrast, it turns the detection method from a
binary classification problem to a regression problem. Detection
approach has also been applied in [35] for clustering over
diffusion networks. Although adaptive weights provide some
degree of resilience to byzantine adversaries with fixed values,
we have shown in this work that adaptive weights may introduce
vulnerabilities that allow time-dependent deception attacks.

Finally, there has been considerable work on applications of
diffusion algorithms that include spectrum sensing in cognitive
networks [3], target localization [4], distributed clustering [5],
biologically inspired designs [6]. Although our approach can be
used for resilience of various applications, we have focused on
multi-target localization [18].

X. CONCLUSION

In this paper, we studied distributed diffusion for multi-task
networks and investigated vulnerabilities introduced by adaptive
weights. Cooperative diffusion is a powerful strategy to perform
optimization and estimation tasks, however, its performance
and accuracy can deteriorate significantly in the presence of
adversarial nodes. In fact, cooperative diffusion performs sig-
nificantly better (in terms of steady-state MSD) as compared
to non-cooperative diffusion if there are no adversarial nodes.
However, with adversaries, cooperative diffusion could be even
worse than the non-cooperative diffusion. To illustrate this,
we proposed attack models that can drive normal agents—
implementing distributed diffusion (DLMSAW)—to any state
selected by the attacker, for both stationary and non-stationary
estimation. We then proposed a resilient distributed diffusion
algorithm (R-DLMSAW) to counteract adversaries’ effect. The
proposed algorithm always performs at least as good as the
non-cooperative diffusion, but if an input parameter F in the al-
gorithm is selected appropriately, it performs significantly better
than the non-cooperative diffusion in the presence of adversaries.
We also analyzed how the performance of R-DLMSAW changes
with the selection of parameter F by the nodes. We evaluated
our approach by applying it to stationary and non-stationary
multi-target localization. In future, we are interested in general-
izing our model to other types of distributed diffusion algorithms

and with the missing data. It is also worth investigating the
relationship between the underlying network connectivity and
the steady-state performance of such algorithms.

APPENDIX

PROOF OF LEMMA 1

The message received by a from k ∈ Na isψk,i. Agent a can
compute wk,i−1 from ψk,i using

wk,i−1 = ψk,i − μku
∗
k,i(dk(i)− uk,iwk,i−1),

from which it can compute wk,i−1 as:

wk,i−1 =
ψk,i − μku

∗
k,idk(i)

1− μku∗
k,iuk,i

.

Given the knowledge of μk, dk(i), and uk,i, the value wk,i−1

can be computed exactly.

PROOF OF LEMMA 2

We use δa,k,i to denote ‖ψa,i −wk,i−1‖, and δl,k,i to denote
‖ψl,i −wk,i−1‖, for l ∈ Nk, l �= a. Since

γ2
lk(i) = (1− νk)γ

2
lk(i− 1) + νk‖ψl,i −wk,i−1‖2, l ∈ Nk,

Suppose the attack starts at ia, then at iteration (ia + n),

γ2
ak(ia + n)

= (1− νk)γ
2
ak(ia + n− 1) + νkδ

2
a,k,ia+n

= (1− νk)((1− νk)γ
2
ak(ia + n− 2) + νkδ

2
a,k,ia+n−1)

+ νkδ
2
a,k,ia+n

= (1− νk)
n+1γ2

ak(ia − 1)

+ νk[(1− νk)
nδ2a,k,ia + (1− νk)

n−1δ2a,k,ia+1

+ · · ·+ (1− νk)δ
2
a,k,ia+n−1 + δ2a,k,ia+n],

γ2
lk(ia + n) = (1− νk)

n+1γ2
lk(ia − 1)

+ νk[(1− νk)
nδ2l,k,ia + (1− νk)

n−1δ2l,k,ia+1

+ · · ·+ (1− νk)δ
2
l,k,ia+n−1 + δ2l,k,ia+n].

For large enough n, (1− νk)
n+1 → 0. Since we assume

‖ψa,i −wk,i−1‖ � ‖ψl,i −wk,i−1‖, i.e., δa,k,i � δl,k,i, for
i ≥ ia + n, γ2

ak(i) � γ2
lk(i) holds. Thus,

alk(i)

aak(i)
∝ γ−2

lk (i)

γ−2
ak (i)

→ 0. (22)

Given the property of weights, (13) is true.

PROOF OF LEMMA 3

We use A to denote the set of compromised nodes targeting
at the same normal node k. The proposed attack strategy results
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in the following condition holding as proved in Lemma 2:

alk(i)

aak(i)
→ 0, l ∈ Nk\A, a ∈ A,

(i ≥ ia + n, subject to (1− νk)
n+1 = 0).

Given that
∑

l∈Nk
alk = 1, we have

alk(i) = 0, aak(i) =
1

|A| , l ∈ Nk\A, a ∈ A,

where |A| denotes the number of nodes in A. Since every
compromised node a ∈ A sends the same message and is as-
signed the same weight that sums up to 1, it is equivalent to
only one compromised node attacking the target node and being
assigned a weight of 1. Therefore, there is no need for multiple
compromised nodes attacking a single normal node.

PROOF OF PROPOSITION 1

The constraint of rak is consistent with the condition of
Lemma 2. Thus, from some point i, the state of node k will
be attacked as to be:

wk,i = wk,i−1 − rak(wk,i−1 − xi)

= rakxi + (1− rak)wk,i−1,

(i ≥ ia + n, subject to (1− νk)
n+1 = 0). (23)

Let Xi be wk,i, Xi−1 be wk,i−1, Ai be rakxi, and B be (1−
rak). Equation (23) turns to:

Xi = Ai +BXi−1. (24)

Assume limi→∞ Xi−1 = X0
i−1 and limi→∞ Xi = X0

i , then for
i → ∞ we get:

X0
i = Ai +BX0

i−1. (25)

Subtract (25) from (24), we get Xi −X0
i = B(Xi−1 −X0

i−1).
Let εi = Xi −X0

i , for i = 0, 1, 2, . . ., then εi = Bεi−1 =
B2εi−2 = · · · = Biε0. The necessary and sufficient require-
ment for convergence is limi→∞ εi = 0 or, limi→∞ Biε0 = 0,
that is,

lim
i→∞

Bi = 0. (26)

Therefore, we get a necessary and sufficient requirement for con-
vergence as |B| < 1. Since B = 1− rak , and rak ∈ (0, 1), we get
B ∈ (0, 1). Therefore, limi→∞(Xi −X0

i ) = 0. The assumption
limi→∞ Xi = X0

i holds, and therefore, Xi is convergent to X0
i .

To get the value of X0
i , we need to analyze the following two

scenarios: stationary state estimation and non-stationary state
estimation, separately.

1) Stationary State Estimation: In stationary scenarios, the
convergence state is independent of time, that is, X0

i = X0
i−1 =

X0. Therefore, equation (25) turns to:

X0 = Ai +BX0.

Thus, (1−B)X0 = Ai, X0 = Ai

1−B . The convergent point is:

wk,i=
rakxi+1

1− (1− rak)
=

rakw
a
k

1− (1− rak)
= wa

k = wa
k,i, i → ∞

which realizes the attacker’s objective (7).

2) Non-Stationary State Estimation: In non-stationary sce-
narios, we first assume xi = wa

k + θak,i−1 and later we will show

how θak,i−1 turns to θak,i−1 +
Δθa

k,i−1

rak
.

Assume the convergence point X0
i is a combination of

a time-independent value and a time-dependent value, such
that X0

i = X0 + ρi. After taking original values into (25), we
get

X0 + ρi = rak(w
a
k + θak,i−1) + (1− rak)(X0 + ρi−1). (27)

Next, we divide (27) into the time-independent and time-
dependent components to get

X0 = wa
k , ρi − ρi−1 = rak(θ

a
k,i−1 − ρi−1).

Let Δρi−1 = ρi − ρi−1, we get:

ρi−1 = θak,i−1 −
Δρi−1

rak
and ρi = θak,i −

Δρi
rak

. (28)

Thus, Δρi−1=ρi − ρi−1=θak,i − θak,i−1 − 1
rak
(Δρi −Δρi−1).

Let Δθak,i−1 = θak,i − θak,i−1 and Δ2ρi−1 = Δρi −Δρi−1, then

Δρi−1 = Δθak,i−1 − Δ2ρi−1

rak
or Δρi = Δθak,i − Δ2ρi

rak
. If we

assume Δ2ρi

rak
� Δθak,i, then we have Δρi = Δθak,i. Therefore,

(28) can be written as ρi = θak,i −
Δθa

k,i

rak
. Thus, the dynamic

convergence point for k is

wk,i = wa
k + θak,i −

Δθak,i
rak

, i → ∞.

This means when sending ψa,i = wk,i−1 + rak(w
a
k + θak,i−1 −

wk,i−1) as the communication message, the compromised node

a can make k converge to wa
k + θak,i −

Δθa
k,i

rak
. To make agent k

converge to a desired state wa
k +Ωa

k,i, we assume the message
sent is

ψa,i = wk,i−1 + rak(w
a
k +mi−1 −wk,i−1).

The corresponding convergence point will be wa
k +mi − Δmi

rak
.

We want the following equation to hold,

wa
k +mi − Δmi

rak
= wa

k +Ωa
k,i. (29)

Assuming Δ2mi → 0, the solution of (29) is: mi = Ωa
k,i +

ΔΩa
k,i

rak
, meaning to make k converge to a desired statewa

k +Ωa
k,i,

the compromised node a should send communication message:

ψa,i = wk,i−1 + rak

(
wa

k +Ωa
k,i−1 +

ΔΩa
k,i−1

rak
−wk,i−1

)
.

Thus, to makek converge towa
k + θak,i, the compromised node

a should send communication message:

ψa,i = wk,i−1 + rak

(
wa

k + θak,i−1 +
Δθak,i−1

rak
−wk,i−1

)
.

The convergence point is:

wk,i = wa
k + θak,i = w

a
k,i, i → ∞,

which realizes the attacker’s objective (7).
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We can verify the convergence point by putting xi = wa
k +

θak,i−1 +
Δθa

k,i−1

rak
,wk,i = wa

k + θak,i,wk,i−1 = wa
k + θak,i−1

back into equation (23), we get:

wa
k + θak,i = rak

(
wa

k + θak,i−1 +
Δθak,i−1

rak

)

+ (1− rak)(w
a
k + θak,i−1)

θak,i = rak

(
θak,i−1 +

Δθak,i−1

rak

)
+ (1− rak)θ

a
k,i−1

θak,i = θak,i−1 +Δθak,i−1.

The resulting equation holds, illustrating the validity of the
convergence state.
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