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Abstract—Fog/Edge computing is increasingly used to sup-
port a wide range of latency-sensitive Internet of Things (IoT)
applications due to its elastic computing capabilities that are
offered closer to the users. Despite this promise, IoT applications
with user mobility face many challenges since offloading the
application functionality from the edge to the fog may not always
be feasible due to the intermittent connectivity to the fog, and
could require application migration among fog nodes due to user
mobility. Likewise, executing the applications exclusively on the
edge may not be feasible due to resource constraints and battery
drain. To address these challenges, this paper describes URMILA,
a resource management middleware that makes effective trade-
offs between using fog and edge resources while ensuring that
the latency requirements of the IoT applications are met. We
evaluate URMILA in the context of a real-world use case on an
emulated but realistic IoT testbed.

Index Terms—Fog Computing, Edge Computing, Ubiquitous
Computing, User Mobility, Latency-sensitive, IoT Services, Re-
source Management, Energy Consumption.

I. INTRODUCTION

Traditional cloud computing is proving to be inadequate

to host latency-sensitive Internet of Things (IoT) applications

due both to the possibility of violating their quality of service

(QoS) constraints (e.g., due to the long round-trip latencies

to reach the distant cloud) and the resource constraints (e.g.,

scarce battery power that drains due to the communication

overhead and fluctuating connectivity). The fog/edge com-

puting paradigm [1] addresses these concerns, where IoT

application computations are performed at either the edge layer

(e.g., smartphones and wearables) or the fog layer (e.g., micro

data centers or cloudlets, which are a collection of a small set

of server machines used to host computations from nearby

clients), or both. The fog layer is essentially a miniaturized

data center and hence supports multi-tenancy and elasticity,

however, at a limited scale and significantly less variety.
Despite the promise of fog/edge computing, many chal-

lenges remain unresolved. For instance, IoT applications tend

to involve sensing and processing of information collected

from one or more sources in real-time, and in turn making

decisions to satisfy the needs of the applications, e.g., in smart

transportation to alert drivers of congestion and take alternate

routes. Processing the information requires sufficient compu-

tational capabilities. Thus, exclusively using edge resources

‡ Work performed by the first author during doctoral studies at Vanderbilt
University.

for these computations may not always be feasible because

either or both of the computational and storage requirements

of the involved data may exceed the edge device’s resource

capacity. Even if it were feasible, the battery power constraints

of the edge device limit how intensive and how long such

computations can be carried. In contrast, exclusive use of

cyberforaging, i.e., offloading the computations to the fog

layer is not a solution because offloading of data incurs

communication and when users of the IoT application are

mobile, it is possible that the user may lose connectivity to a

fog resource and/or may need to frequently hand-off between

fog resources. In addition, the closest fog resource to the user

may not have enough capacity to host the IoT application

because other IoT applications may already be running at

that fog resource, which will lead to severe performance

interference problems [2], [3], [4], [5] and hence degradation

in QoS for all the fog-hosted applications.

In summary, although the need to use fog/edge resources

for latency-sensitive IoT applications is well-understood [6],

[7], a solution that relies exclusively on a fog or edge resource

is unlikely to deliver the desired QoS of the IoT applications,

maintain service availability, minimize the deployment costs

and ensure longevity of scarce edge resources, such as battery.

These are collectively referred to as the service level objectives

(SLOs) of the IoT application. Thus, an approach that can

intelligently switch between fog and edge resources as the user

moves is needed to meet the SLO by accounting for latency

variations due to mobility and execution time variations due to

performance interference from co-located application. To that

end, we present URMILA (Ubiquitous Resource Management
for Interference and Latency-Aware services), which is a

middleware solution to manage the resources across the cloud,

fog and edge spectrum1 and to ensure that SLO violations are

minimized for latency-sensitive IoT applications, particularly

those that are utilized in mobile environments.

The rest of this paper is organized as follows: Section II

discusses the application and the system models; Section III

explains the URMILA solution in detail; Section IV provides

empirical validation of our work; Section V describes related

work in comparison to URMILA; and finally Section VI

provides concluding remarks.

1The use of the terms fog and edge, and their semantics are based on [8].
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II. SYSTEM MODEL AND ASSUMPTIONS

This section presents the system and application models for

this research along with the assumptions we made.

A. System Model

Figure 1 is representative of a setup that our system in-

frastructure uses, which comprises a collection of distributed

wireless access points (WAPs). WAPs leverage micro data

centers (MDCs), which are fog resources. URMILA main-

tains a local manager at each MDC, and they all coordinate

their actions with a global, centralized manager. The WAPs

are interconnected via wide area network (WAN) links and

hence may incur variable latencies and multiple hops to

reach each other. The mobile edge devices have standard 2.4

GHz WiFi adapters to connect to the WAPs and implement

well-established mechanisms to hand-off from one WAP to

another. The edge devices are also provisioned with client-side

URMILA middleware components including a local controller.

We assume that mobile clients do not use cellular networks

for the data transmission needs due to the higher monetary

cost of cellular services and the higher energy consumption of

cellular over wireless networks [9].

Edge Device

Micro Data Center 
m1

Micro Data Center 
mk

Local 
Manager (lm)

Wireless Access 
Point apn

Link to Global Manager gm 
at Centralized Data Center

Local 
Manager (lm)

Fig. 1: System infrastructure model

B. Application Model

We present our IoT application model via a use case

comprising a soft real-time object detection, cognitive navi-

gational assistance application targeted towards the visually

impaired. Advances in wearable devices and computer vision

algorithms have enabled cognitive assistance and augmented

reality applications to become a reality, e.g., Microsoft’s Seein-

gAI (www.microsoft.com/en-us/seeing-ai) and Gabriel [1] that

leverage Google Glass and cloudlets. As the user moves, the

application frequently captures video frames of the surround-

ings using the wearable equipment, processes and analyzes

these frames, and subsequently provides feedback (e.g., audio

and haptics) to the user in real-time to ensure safe navigation.

Our objective is not to replace service dogs or white canes but

to augment the user’s understanding of the surroundings.

Our use case belongs to a class of latency-sensitive IoT

applications that are interactive or streaming in nature, such

as augmented reality, online gaming, and cognitive assistance

applications. Application execution is assumed to be made up

of a sequence of individual, repeated tasks of approximately

equal length (e.g., frame capture, processing and feedback

steps of our use case).2 We assume the applications are

containerized and can be deployed across edge and fog/cloud

thereby eliminating the need to continuously re-deploy the

application logic between the fog and edge devices. However,

for platforms such as Android that does not run containers,

a separate implementation for Android device and fog/cloud

are used and it is just a matter of dynamically (de)activating

the provisioned task on either the edge or fog device based on

URMILA’s resource management decisions.

C. User Mobility and Client Session

To make effective resource management decisions, UR-

MILA must estimate user mobility patterns. Although there

exist both probabilistic and deterministic user mobility estima-

tion techniques, for this research we focus on the determin-

istic approach, where the source and destination are known

(e.g., via calendar events) or provided by the user a priori.
Our solution can then determine a fixed route (or alternate

sets of routes) for a given pair of start and end locations

by leveraging external services such as Open Street Maps

(http://www.openstreetmap.org), Here APIs (https://developer.

here.com/) or Google Maps APIs (https://cloud.google.com/

maps-platform/). These are reasonable assumptions for ser-

vices like navigational assistance to the visually impaired

or for students in or near college campuses who are using

mobility-aware IoT applications. Our future work will explore

the probabilistic approach. When a user wants to use the ap-

plication, a session is initiated, and the client-side application

uses a RESTful API to inform URMILA about the start time,

source and destination for the trip.

III. URMILA: DESIGN AND IMPLEMENTATION

This section presents the design and implementation of our

URMILA dynamic resource management middleware.

A. Overview of URMILA’s Behavior

To better understand the rationale for URMILA’s design and

its architecture, let us consider the runtime interactions that

ensue once a user session is initiated. URMILA computes

the set of routes that the user may take using the provided

trip details. Then, based on instantaneous loads on all fog

nodes of the MDCs on the path, URMILA determines a

suitable fog server (i.e., node) in an MDC on which the IoT

application’s cloud/fog-ready task can be executed throughout

the session, and deploys the corresponding task on that server.

URMILA will not change this selected server for the rest of

the session even if the user may go out of wireless range from

it because the user can still reach it through a nearby WAP and

traversing the WAN links. This approach and the architectural

components involved in the process are depicted in Figure 2.

This sequence is repeated whenever a new user is added to

the system. Selecting the appropriate fog server based on the

2Tasks are assumed to be periodic, but our work is not limited to periodic
tasks.
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instantaneous utilizations of the available resources, which are

not known statically, while ensuring SLOs are met is a hard

problem. URMILA’s key contribution lies in addressing it.

Latency
Estimation

Route
Calculation

Fog Node
Selection

Service
Deployment

Deployment EngineRequest
<Src, Dest>

Fig. 2: Components for fog server selection

As time progresses, for each period (or a well-defined

epoch) of application execution, the client-side URMILA

middleware determines the instantaneous network conditions

and determines whether to process the request locally or

remotely on the selected fog server such that the application’s

SLO is met. This process continues until the user reaches

the destination and terminates the session with the service, at

which point the provisioned tasks on the fog resources can be

terminated. The architecture for these interactions is presented

in Figure 3, where the controller component on the client-

side middleware is informed by URMILA to opportunistically

switch between fog-based or edge-based execution in a way

that meets application SLOs. The remainder of this section

describes how URMILA achieves these goals.

Sensors

Actuators

Controller

Local Sensor Data
ProcessingService

Remote Sensor Data
ProcessingService

Sensors

Actuators

Edge Device Fog Device

Fig. 3: URMILA architecture for decision making

B. Latency Estimation: Rationale and Approach

Recall that URMILA will choose to execute task(s) of the

IoT application on the fog server if it can assure its SLO,

which means that for every user and for every period/epoch

of that user’s session, URMILA must be able to estimate the

expected latency as the user moves along the route. Hence,

once the route (or set of alternate routes) taken by the user is

determined using mechanisms like Google Maps, the Latency
Estimator component of Figure 2 will estimate the expected

latencies along the route. This is a hard problem to address

due to the dynamic nature of the Wi-Fi channels and the

dynamically changing traffic patterns (due to changing user

densities) throughout the day. To that end, URMILA employs

a data-driven model that maps every route point on the path

to an expected latency to be observed at that point. One of

the salient features of this estimation model is its adaptability,

i.e., the model is refined continuously in accordance with the

actual observed latencies.

The estimated latency is made up of three parts: the last-

hop latency to a WAP along the route, the WAN latencies to

reach the fog server by traversing the WAN links, and the task

execution time on the fog server (See Section III-C).

Estimating Last-hop Latency: The last hop latency itself

is affected primarily by channel utilization, number of active
users and received signal strength [10]. Initially, we assume

that the channel utilization and the number of active users

do not impact the latency significantly. As the routes get

profiled, we maintain a database that stores network latencies

for different coordinates and times of the day. Whenever a

request arrives with known route segments, the latency can be

estimated by querying this database.

The client device selects a WAP with the highest signal

strength and sticks to it till the strength drops below a thresh-

old. The network becomes unreliable if the received signal

strength falls below -67dBm for streaming applications [10],

which we use as the threshold for URMILA. We also use the

well-known methods for determining the signal strength based

on received power and distance from an access point [11].

Using this together with the calculated route and WAP’s data,

the latency estimator is able to calculate the last-hop latency

for each period/epoch along the route.

Estimating WAN Latency: The WAN latency between two

WAPs depends on the link capacity connecting the nodes and

the number of hops between them. We use another database

to maintain the latencies between different access points.

Estimating Total Latency: Based on the computed individ-

ual components, a map of total network latency can then be

generated for every period/epoch along the route.

C. Selecting the Most Suitable Fog Server

To avoid the high cost involved in transferring application

state and initialization, URMILA performs a one-time fog

server selection within a fog layer, and reserves the resource

for the entire trip duration plus a margin to account for the

deviation from the ideal mobility pattern. To determine the

right fog server to execute the task, besides having accurate

latency estimates, we also need an accurate estimate for task

execution on the to-be selected fog server, which will depend

on the instantaneous co-located workloads on that server and

the incurred performance interference. For this, we leverage

our INDICES performance metric collection and interference

modeling framework [7].

URMILA’s fog server selection process consists of an offline

performance modeling stage and an online server selection

stage as depicted in Figure 4 and described below.

Performance
Monitoring

Performance
Model Learning

(Offline)

Performance 
Estimation 

Network Latency 
Estimation

State Transfer
Cost Estimation

Server
Selection 
Algorithm 

Online

Fig. 4: Fog server selection process

Offline Performance Model Learning: Since URMILA

uses a data-driven approach in its run-time decision making,

it uses offline training to develop a performance model for each

latency-sensitive application task that gets executed on the
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fog server. The model depends on two factors: (1) the server

architecture and configuration, which is a leading cause of

performance variability [2], and (2) the application’s sensitivity

in the presence of co-located applications and its pressure

on those applications [3] since no perfect isolation in shared

multi-tenant environments is feasible due to non-partitionable

resources such as shared last-level cache, interconnect net-

work, disk and memory bandwidth [4].

To obtain a performance interference model, we first bench-

mark the execution time tisolation(u,w) of each latency-

sensitive application u on a specific hardware type w in

isolation. Then, we execute the application with different co-

located workload patterns and learn its impact gu on the

system-level and obtain micro-architectural metrics as follows:

Xnew
w = gu(X

cur
w ) (1)

where Xcur
w and Xnew

w denote the vectors of the selected

metrics before and after running application u on hardware w,

respectively. Lastly, we learn the performance deterioration fu
(compared to isolated performance) for application u under

the new metric vector Xnew
w on hardware w to predict its

execution time on the fog server under the same conditions:

tremote(u,w) = tisolation(u,w) · fu(Xnew
w ) (2)

We apply supervised machine learning based on Gradient Tree

Boosting curve fitting to learn both functions gu and fu. This

stage also involves feature selection, correlation analysis and

regression technique selection. Note that Equations (1) and

(2) can be applied together to model both sensitivity and

pressure for application deployment on each server in order to

accurately estimate remote execution times.

The learned performance models for different applications

are then distributed to the different MDCs for each of the

hardware type w that they contain. Since MDCs typically

contain just a few heterogeneous server types, we do not

anticipate a large amount of performance model dissemination.

Online Server Selection: The online stage performs server

selection for an application as follows. First, when a user

initiates a session, URMILA’s global manager initiates the

fog server selection process. For this, URMILA uses the route

information and queries the local manager at each MDC on the

user’s route. The goal is to determine the expected execution

time of the application task on each fog server in that MDC

using the performance model developed in the offline stage

such that the SLOs for the existing applications can still

be met despite expected performance interference. Next, the

global manager combines this queried information with the

latency estimates to determine which execution mode (local

or remote) should the client-side use at each period/epoch of

the application that meets all SLO constraints.

Algorithm 1 shows the pseudocode for selecting a fog server

s∗ and deciding a tentative execution-mode plan y∗[p] for a

user u at each period/epoch p in the route, where y∗[p] =
1 indicates remote execution and y∗[p] = 0 indicates local

execution. This execution plan will be used for cost estimation

Algorithm 1: Fog Server Selection

Input: Target application u and other information on the user’s
route, networks, servers and their loads

Output: Server s∗ to deploy u and a tentative execution mode
vector y∗[p] ∈ {0, 1} for each period p during the user’s
route

1 begin
2 Initialize costmin ←∞, s∗ ← ∅, and y∗[p]← 0 ∀p;
3 for each server s do
4 Xcur ← GetCurrentSystemMetrics(s);
5 Xnew ← gu(Xcur);
6 V ← GetListOfExistingApplications(s);
7 for each application v ∈ V do
8 tprocess ← GetPreProcessingT ime(v);
9 tisolation ← GetIsolatedExecT ime(v, s);

10 tremote ← tisolation · fv(Xnew);
11 tSLO

network ← GetPercentileLatency(v, s);
12 if tprocess + tremote + tSLO

network > φ(v) then
13 skip s;
14 end
15 end
16 Initialize y[p]← 0 ∀p; // execute locally by default;
17 tprocess ← GetPreProcessingT ime(u);
18 tisolation ← GetIsolatedExecT ime(u, s);
19 tremote ← tisolation · fu(Xnew);
20 Tdeploy ← GetDeploymentCost(u, s);
21 Ttransfer ← GetStateTransferCost(u, s);
22 for each period p in the route do
23 tSLO

network(p)← GetPercentileLatency(u, s, p);
24 if tprocess + tremote + tSLO

network(p) ≤ φ(u) then
25 y[p]← 1; // execute this period remotely;
26 end
27 end
28 Tuser ← ComputeUserCost(y);
29 cost← α · Tdeploy + β · Ttransfer + κ · Tuser ;
30 if cost ≤ costmin then
31 costmin ← cost;
32 s∗ ← s and y∗ ← y;
33 end
34 end
35 end

by the global manager and is subject to dynamic adjustment

at run-time (See Section III-D).

Specifically, the algorithm goes through all servers (Line

3), and first checks whether deploying the target application

u on a server s will result in SLO violation for each existing

application v on that server, as specified by the user’s response

time bound φ(v) (Lines 4-15). For each application v, its

total response time consists of a fixed pre-processing time

tprocess, an execution time and a network latency. Since it

may have a variable network latency and a variable execution

time depending on the user’s location and choice of execution

mode, we should ideally check for its SLO at each period

of its execution. However, doing so may incur unnecessary

overhead on the global manager since the execution-mode plan

for v is also tentative. Instead, the algorithm considers the

estimated network SLO percentile latency tSLO
network (e.g., 90th,

95th, 99th) while assuming that in the worst case the application

always executes remotely for the execution time, i.e., tremote.

This approach provides a more robust performance guarantee

for existing applications in case of unexpected user mobility

behavior. Subsequently, for each feasible server, the algorithm

evaluates the overall cost of deploying the target application u
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on that server (Lines 16-29) and chooses the one that results in

the least cost (Lines 30-33). Note that the overall cost consists

of the server deployment cost Tdeploy and application state

transfer cost Ttransfer, both of which are fixed for a given

server, as well as the user’ energy cost Tuser, which could

vary depending on the execution mode vector y. Hence, to

minimize the overall cost, the algorithm offloads the execution

to the remote server as much as possible subject to its SLO

being met (Lines 22-27).

D. RunTime Phase

The deployment phase outputs the network address of the

fog server where the application will be deployed and a list of

execution modes as shown in Algorithm 1. This information

is relayed to the client-side middleware, which then starts

forwarding the application data to the fog server as per the

execution mode at every step. The runtime phase minimizes

the SLO violations due to inaccurate predictions by employing

a robust mode selection strategy that updates the decision at

any step based on the feedback from previous steps. The mode

selection strategy is described in more details in [12].

IV. EXPERIMENTAL VALIDATION

We now present the results of empirically evaluating UR-

MILA’s capabilities and validating the claims we made.

A. IoT Application Use Case

For the experimental evaluation, we use the cognitive nav-

igational assistance use case from Section II-B. Since similar

use cases reported in the literature are not available for

research or use obsoleted technologies, and also to demonstrate

the variety in the edge devices used, we implemented two

versions of the same application. The first implementation

uses an Android smartphone that inter-operates with a Sony

SmartEyeGlass, which is used to capture video frames as

the user moves in a region and provides audio feedback

after processing the frame. The second version comprises

a Python application running on Linux-based board devices

such as MinnowBoard with a Web camera. The edge-based

and fog-based image processing tasks implement MobileNet

and Inception V3 real-time object detection algorithms from

Tensorflow, respectively.

For our evaluations we assume that users of URMILA

will move within a region, such as a university campus,

with distributed WAPs or wireless hotspots owned by internet

service providers some of which will have an associated MDC.

We also assume an average speed of 5 kms/hour or 3.1

miles/hour for user mobility while accessing the service.3 Note

that URMILA is not restricted to this use case alone nor to

the considered user mobility speeds. Empirical validations in

other scenarios remain part of our future work.

3https://goo.gl/cMxdtZ

B. Experimental Setup
We create two experimental setups to emulate realistic user

mobility for our IoT application use case as follows:
First Setup: We create an indoor experimental scenario

with user mobility emulated over a small region and using our

Android-based client. The Android client runs on a Motorola

Moto G4 Play phone with a Qualcomm Snapdragon 410

processor, 2 GB of memory and Android OS version 6.0.1. The

battery capacity is 2800 mAh. It is connected via bluetooth to

Sony SmartEyeglass SED-E1 which acts as both the sensor for

capturing frames and the actuator for providing the detected

object as feedback. The device can be set to capture the

video frames at variable frames per second (fps). We used

a Raspberry Pi 2B running OpenWRT 15.05.1 as our WAP,

which operates at a channel frequency of 2.4 GHz.
We set the application SLO to 0.5 second based on a

previous study, which reported mean reaction times to sign

targets to be 0.42-0.48 second in one experiment and 0.6-0.7

second in another [13]. Accordingly, we capture the frames at

2 fps, while the user walking at 5 kms/hour expects an update

within 500 ms if the detected object changes.
Second Setup: We emulate a large area containing 18

WAPs, four of which have an associated MDC. We experiment

with different source and destination scenarios and apply the

latency estimation technique to estimate the signal strength

at different segments of the entire route. We then use three

OpenWRT-RaspberryPi WAPs to emulate the signal strengths

over the route by varying the transmit power of the WAPs at

the handover points, i.e., where the signal strength exceeds

or drops below the threshold of -67 dBm. We achieve this by

creating a mapping of the received signal strength on the client

device at the current location and varying the transmit power

of the WAP from 0 to 30 dBm.
For the client, we use our second implementation compris-

ing Minnowboard Turbot, which has an Intel Atom E3845

processor with 2 GB memory. The device runs Ubuntu 16.04.3

64-bit operating system and is connected to a Creative VF0770

webcam and Panda Wireless PAU06 WiFi adapter on the

available USB ports. In this case too, we capture the frames

at 2 fps with a frame size of 224x224. To measure the energy

consumption, we connect the Minnowboard power adapter

to a Watts Up Pro power meter. We measure the energy

consumption when our application is not running, which

on average is 3.37 Watts. We then run our application and

measure the power every second. By considering the power

difference in both scenarios, we derive the energy consumption

per period for a duration of 500 ms.
Application Task Platform: The Android device runs

Tensorflow Light 1.7.1 for the MobileNet task. The Linux

client runs the task in a Docker container. We use this model

so that we can port the application across platforms and

benefit from Docker’s near native performance. We use Ubuntu

16.04.3 containers with Keras 2.1.2 and Tensorflow 1.4.1.
Micro Data Center Configuration: For the deployment,

we use heterogeneous hardware configurations shown in Ta-

ble I. The servers have different number of processors, cores
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and threads. Configurations F, G and H also support hyper-

threads but we disabled them in our setting. We randomly

select from a uniform distribution of the 16 servers specified

in Table I and assign four of them to each MDC. In addition,

for each server, the interference load and their profiles are

selected randomly such that the servers have medium to high

load without any resource over-commitment, which is typical

of data centers [14]. Although the MDCs are connected to each

other over LAN in our setup, to emulate WANs with multi-hop

latencies, we used www.speedtest.net on intra-city servers for

ping latencies and found 32.6 ms as the average latency. So,

we added 32.6 ms ping latency with a 3 ms deviation between

WAPs using the netem network emulator.

TABLE I: Server Architectures

Conf sockets/cores/
threads/ GHz

L1/L2/L3
Cache(KB)

Mem Type/
MHz/GB

Count

A 1/4/2/2.8 32/256/8192 DDR3/1066/6 1
B 1/4/2/2.93 32/256/8192 DDR3/1333/16 2
C 1/4/2/3.40 32/256/8192 DDR3/1600/8 1
D 1/4/2/2.8 32/256/8192 DDR3/1333/6 1
E 2/6/1/2.1 64/512/5118 DDR3/1333/32 7
F 2/6/1/2.4 32/256/15360 DDR4/2400/64 1
G 2/8/1/2.1 32/256/20480 DDR4/2400/32 2
H 2/10/1/2.4 32/256/25600 DDR4/2400/64 1

The Docker guest application has been assigned 2 GB mem-

ory and 4 CPU-pinned cores. The size of a typical frame in our

experiment is 30 KB. For the co-located workloads that cause

performance interference, we use 6 different test applications

from the Phoronix test suite (www.phoronix-test-suite.com/),

which are either CPU, memory or disk intensive, and our

target latency-sensitive applications, which involve Tensorflow

inference algorithms.

C. Empirical Results

To obtain the response time, we need the edge-based task

execution time, and the fog-based execution time plus network

delay. When the MinnowBoard Linux client device processes

a 224x224 frame, the measured mean execution times for

MobileNet and Inception V3 are 434 ms and 698.6 ms, with

standard deviations of 8.6 ms and 12.9 ms, respectively.

1) Accuracy of Performance Estimation: We report on the

accuracy of the offline learned performance models. We first

measure tisolation(u,w) for each hardware type given in Table

I, and the results are shown in Figure 5a. We observe that

the CPU speed, memory and cache bandwidth and the use of

hyper-threads instead of physical cores play a significant role

in the resulting performance. Thus, the use of a per-hardware

configuration performance model is a key requirement met

by URMILA. We also profile the performance interference

using gradient tree boosting regression model with tools we

developed in [7]. Figure 5b shows the estimation errors on

different hardwares, which are well within 10% and hence

can be used in our response time estimations by allowing for

a corresponding margin of error.

(a) Execution time in isolation

(b) Mean absolute percentage error

Fig. 5: Performance estimation model evaluations

2) Accuracy of Latency Estimation: We evaluate the

accuracy of URMILA’s network latency estimation module.

From Section III-B, the total latency includes last hop, WAN

latencies interconnecting WAPs and fog-based task execution.

The WAN latencies tend to remain relatively stable over a long

duration of time [15], which is sufficient for the URMILA

scenarios and we emulate these as described in Section IV-B.

Since the received signal strength is a key factor for last hop

latency, we determine the path loss exponent γ [11] for a

typical access point in our experimental setup also described

in Section IV-B. We use the Android device to measure signal

strength and network latency for the used data transfer size.

Figure 6a shows the results where we found γ to be 1.74,

which is inline with the expected indoor value of 1.6-1.8.

Figure 6b affirms our assertion that network latency remains

near constant within a fixed range of received signal strength.

(a) RSSI

(b) Network latency

Fig. 6: Signal strength and network latency variations with

distance

Next, we measure network latency for five different routes

on our selected campus area with 18 WAPs. We chose γ = 2
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(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Fig. 7: Observed mean, std dev, 95th and 99th percentile network latencies and received signal strengths on emulated routes

(a) Local Inception (b) Local Mobilenet (c) Max Coverage Inception (d) URMILA Inception

Fig. 8: Response time for different techniques on the routes. and depict the 95th and 99th percentile, respectively

for outdoors [11] and generated varied signal strengths for the

entire path on five routes. Using these values, we setup the

WAPs such that the client device experiences WAP handovers

and regions with no connectivity. Figure 7 shows the results

for the five routes (R1–R5). The shaded areas show the regions

with no network connectivity and regions with different colors

show connectivity to different WAPs. The green line is the

signal strength and the black line is the mean latency. There

are gaps in latency values, which indicate that the client device

is performing handover to the access point. We observe from

these plots that even though the mean latency values are low

when connected to the wireless network, there are large latency

deviations. For example, on route R1 at t = 400s, the mean

latency is 52 ms but the 99th percentile latency is 384 ms.

Hence, for ensuring SLOs, we need to use the required SLO

percentile values from our database of network latencies on

the user’s route as described in Algorithm 1.

3) Efficacy of URMILA’s Fog Server Selection: We eval-

uate how effective is URMILA’s server selection technique in

ensuring that SLOs are met. We evaluate the system for the

five routes described above and set four of the 18 available

access points as MDCs and assign servers as described in

Section IV-B. We compare URMILA against different mech-

anisms. One approach is when we perform everything locally

(Local), and another approach is the maximum network cov-

erage (Max Coverage) algorithm, where the server is selected

based on the network connectivity. We keep the deployment

and transfer costs in Algorithm 1 constant for all the scenarios.

We also set the required SLO at 95th percentile of the desired

response time of 500 ms (2 fps). We then optimize for energy

consumption while meeting all the constraints. Figure 8a

reveals that if we run higher accuracy Inception as the target

application, the Local mode always misses the deadline of

500ms, however, the lower accuracy MobileNet always meets

the deadline (Figure 8b). Figure 8d shows that URMILA meets

the SLO 95% of the time for all routes while consuming 9.7%

less energy in comparison to Max Coverage (Figure 8c).

V. RELATED WORK

Since URMILA considers the three dimensions of perfor-

mance interference issues, mobility-aware resource manage-

ment and exploiting edge/fog holistically, we provide a brief

sampling of the prior work in these areas.

Performance Interference-aware Resource Optimization:
Bubble-Flux [4] is a dynamic interference measurement frame-

work that performs online QoS management while maximizing

server utilization and uses a dynamic memory bubble for

profiling by pausing other co-located applications. Although

in this work, a priori knowledge of the target application is

not required nor extra benchmarking efforts, pausing of co-

located applications is not desirable and in several cases not

even possible. DeepDive [16] is a benchmarking based effort

that identifies the performance interference profile by cloning

the target VM and benchmarking it when QoS violations are

encountered. However, this is too expensive an operation to

be employed at run-time. URMILA falls in this category of

work, nevertheless, it goes a step further and also considers

scheduler-specific metrics which play a significant role in

accurate performance estimation on multi-tenant platforms.

Mobility-aware Resource Management: MOBaaS [17] is a

mobile and bandwidth prediction service based on dynamic

Bayesian networks. Sousa et al. [6] utilize MOBaaS to enhance

the follow-me cloud (FMC) model, where they first perform

mobility and bandwidth prediction with MoBaaS and then

apply a multiple attribute decision algorithm to place services.

However, this approach needs a history of mobility patterns by

monitoring the users. URMILA uses a deterministic path for

the user, which provides a more accurate and efficient solution.

MuSIC defines applications as location-time workflows, and

optimizes their QoS expressed as the power of the mobile

device, network delay and price [18]. Like MuSIC, URMILA

aims to minimize energy consumption of edge devices, com-

munication costs, and cost of operating fog resources. Unlike

MuSIC, which evaluates its ideas via simulations, URMILA

has been evaluated empirically.
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Resource Management involving Fog/Edge Resources:
CloudPath [19] expands on the cloud-fog-edge architecture [8]

by proposing the notion of path computing comprising n tiers

between the edge and the cloud. CloudPath requires applica-

tions to be stateless and made up of short-lived functions –

similar to the notion of function-as-a-service, which is realized

by serverless computing solutions with state in externalized

databases. We believe that the research foci of CloudPath and

URMILA are orthogonal; the CloudPath platform and its path

computing paradigm can potentially be used by URMILA

to host its services and by incorporating our optimization

algorithm in CloudPath’s platform.

Our prior work called INDICES [7] is an effort that exploits

the cloud-fog tiers. INDICES decides the best cloudlet and

the server within that cloudlet to migrate a service from the

centralized cloud so that SLOs are met. INDICES does not

handle user mobility and its focus is only on selecting an initial

server on a fog resource to migrate to. It does not deal with

executing tasks on the edge device. Thus, URMILA’s goals

are complementary to INDICES’ and benefits from INDICES

to make the initial server selection in the fog layer.

VI. CONCLUSION

Despite the promise of fog/edge computing, user mobility

brings in new challenges. Executing a service exclusively on

edge devices or fog resources is not acceptable, and choosing

the fog server with minimal interference between co-located

tasks becomes critical. This paper presented URMILA to

holistically address these issues by adaptively using edge and

fog resources to make trade-offs while satisfying SLOs for

mobility-aware IoT applications.

URMILA has broader applicability beyond cognitive assis-

tance application that is evaluated in this work. For instance,

URMILA can be used in cloud gaming (such as Pokemon

GO), 3D modeling, graphics rendering, etc.

By no means does URMILA address all the challenges in

this realm and our future work will involve: (a) considering

probabilistic routes taken by the user; (b) evaluating URMILA

in other applications, e.g., smart transportation where the speed

is higher and distances covered are larger so choosing only one

fog server at initialization may not be feasible; (c) leveraging

the benefits stemming from upcoming 5G networks; and (d)

showcasing URMILA’s strengths in the context of multiple

competing IoT applications.

The software and experimental setup of URMILA is avail-

able in open source at github.com/doc-vu.
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