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Abstract—Inmany cooperative networks, individuals participate
actively as long as they recognize a sufficient value in participation,
which depends not only on the number, but also on the attributes
of other participating members. In this paper, we present a
generalized model of individuals’ participation in such networks,
and a strategy to maximize the number of participating individuals.
Unlike most of the existing literature, our model incorporates both
the network structure and the heterogeneity of individuals in terms
of their attributes and resources. We consider that each individual
possesses a subset of available resources (attributes), which it shares
with neighbors as long as neighbors reciprocate and provide the
missing resources to the individual. However, individual leaves the
network if it cannot find all the resources in its neighborhood. To
model this phenomenon, we introduce a graph-theoretic notion of
the ðr; sÞ-core, which is the sub-network consisting of only those
individuals who can access all the resources by collaborating with
their neighbors. Since disengagement of an individual could initiate
a cascading withdrawal of more individuals from the network, one
of our main goals is to prevent this unraveling and maximize the
number of participating individuals. For this purpose, we utilize the
notion of anchors—individuals that continue to participate (due to
incentives) even if they cannot find all of the resources in their
neighborhood. By introducing only a few anchors, we can
significantly increase the number of participating individuals,
which in our model corresponds to increasing the size of the
ðr; sÞ-core. We formulate and thoroughly analyze the anchors’
selection problem by classifying the cases in which the problem is
polynomial-time solvable, NP-complete, and inapproximable.
Further, we provide greedy and metaheuristic search algorithms to
compute a set of anchors and evaluate our results on various
networks. Our results are applicable to a large number of
cooperative networking applications, including participatory
sensing in which users develop an elaborate knowledge of their
environment through sharingmeasurements.

Index Terms—Network structure, graph algorithms, k-core,
ðr; sÞ-core, social networks, participatory sensing.

I. INTRODUCTION

IN the broad domain of cooperative networks, it is crucial

to understand how and when individuals cooperate with

each other and actively participate in a network activity. At

what point individuals decide to disengage themselves from

the network, and how can we maximize the participation of

individuals? It turns out that mutual benefit is a key to sus-

tainable coordination among individuals in cooperative net-

works. Studies in social networks, behavioral economics, and

sociobiology also reveal that individuals are more likely to

share (their resources, information, etc.) with others in a soci-

ety if others reciprocate (e.g., see [1]–[5]). This sharing indu-

ces a positive network effect and allows individuals to utilize

a broad spectrum of resources available within the network.

On the other hand, individuals are more likely to disengage

from the network if they do not find a sufficient value in par-

ticipation, or if they fail to receive the desired resources or

information from the network. This behavior describes a

group participation mechanism, in which individuals collabo-

rate and contribute in a group as long as they receive a

sufficient reward in terms of access to the overall group

resources.

As an example, consider the phenomenon of participa-

tory sensing, that enables users to share measurements of

their environment [6]–[8], such as traffic and parking situa-

tions [9], [10], waiting times at businesses, weather infor-

mation, or disaster scenarios [11]. The goal is to allow

users to develop a knowledge of their environment through

sharing. This knowledge is significantly more elaborate

than what individuals could develop on their own, relying

only on their limited sensing capabilities. A key feature of

participatory sensing is that an individual’s benefit from

the application depends strongly on what measurements

are shared by the other users. Consequently, an individu-

al’s eagerness to participate depends on the group of users

already participating, which results in a cascading effect:

as the size of the user base grows, other individuals

become more eager to join. Since the success of a partici-

patory-sensing application is very often measured in terms

of the number of its users, finding innovative ways to max-

imize the number of individuals joining the application

is crucial.
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In this paper, we model the participation of individuals in a

network, each of which has a certain type of resources (capabili-

ties, information, attributes), as a graph-theoretic problem. An

individual shares (personal) resources with friends in a network,

and in return expects them to reciprocate by providing the

resources not possessed by the individual. If friends in the net-

work fail to cater the missing resources, the individual disen-

gages from the network, thus reducing the size of the overall

network. As a result of a disassociation of the individual from

the network, one of the friends that might be depending on the

individual for a particular resource might also leave the network

due to the unavailability of the desired resources. This phenom-

enon could lead to a cascading effect involving a subsequent

disengagement of many more individuals. At the end, we are

left with a small network in which every individual, as a result

of collaboration with friends, has an access to all types of

resources available within the network.We introduce the notion

of ðr; sÞ-core of the network to model this participation strategy.

If r is the total number of various resources available in the net-

work, and each individual possesses at most s of them, then the

ðr; sÞ-core represents the sub-network in which every individual
finds all r resources between himself and friends (neighbors).

As we observe in participatory sensing, it is desired to maxi-

mize the number of active users. In other words, we need to

modify or design the network so as to maximize the size of its

ðr; sÞ-core. A key factor here is to prevent the unraveling of

the network by averting the cascading removal of individuals.

To achieve this objective, we utilize the notion of anchor

nodes inspired by the work of Bhawalkar et al. [12]. In our

work, anchors are the individuals that continue to participate

in the network even if they do not find the desired resources in

their neighborhood, i.e., whose participation in the network

does not depend on the attributes of their peers. A small subset

of individuals in a network can be made anchors by incentiviz-

ing them, for example, by providing them with rewards for

their participation. We show that by incentivizing a small but

strategically selected set of individuals can lead to a very large

number of users following them and joining the network, thus,

resulting in a significantly larger ðr; sÞ-core. Finding such a

small set of anchors that maximize the ðr; sÞ-core of the net-

work is a computationally challenging problem. We analyze

the complexity of this problem in detail, and present heuristics

to find anchors that significantly increase the size of the

ðr; sÞ-core of the network.
We summarize our main contributions below:

� We introduce the notion of ðr; sÞ-core to model the par-

ticipation of individuals in a network. Our model is gen-

eral in the sense that it incorporates the participation

mechanism in which individual’s decision to participate

in the network depends not only on the number of

friends (neighbors), but also on their types and attrib-

utes (resources, capabilities).

� To maximize the number of participants in a network

and increase the size of ðr; sÞ-core, we propose to incen-
tivize few individuals called anchors. We show that the

size of ðr; sÞ-core is significantly increased by having

few anchors in a network that are strategically selected.

We formulate the problem of finding a given number of

anchors that maximize the size of the ðr; sÞ-core, and
provide an integer linear program (ILP) for the anchor

selection problem.

� We analyze the complexity of the anchors selection

problem in detail. We show that in arbitrary graphs the

problem can be solved in polynomial time in the special

case of r ¼ sþ 1 (Theorem 5.1). For any other value of

r, the problem is NP-complete (Theorem 5.2). In fact,

we show strong inapproximability results for general

graphs and r � sþ 4 (Theorem 5.3). This detailed com-

plexity analysis of the anchors selection problem is one

of the main highlights of this work.

� We propose a greedy heuristic and a metaheuristic

search algorithm based on simulated annealing to find a

given number of anchors to increase the size of the

ðr; sÞ-core of the network.
� Finally, we evaluate our results numerically on a num-

ber of networks, and use simulations to demonstrate the

efficacy of our approach.

We presented preliminary ideas in a brief note in [13]. The

current paper provides a thorough description of the problem

along with the technical details, which are not available in

[13]. In fact, majority of the results here are new, including

ILP formulation of the anchors selection problem, and the

main results such as Theorems 5.1 and 5.3 (that classify the

cases in which the anchors selection problem is polynomial

time solvable, and is inapproximable). Moreover, simulated

annealing based heuristic along with detailed numerical evalu-

ation of the results are also new. We also discuss a number of

extensions and further directions here.

The rest of the paper is organized as follows: Section II

gives an overview of the related work. Section III introduces

the network model, and formally defines the ðr; sÞ-core of the
network. Section IV presents the idea of anchors to maximize

the size of the core. It presents the anchor selection problem,

and also provides an ILP formulation of the problem. Section V

analyzes the complexity of the anchors selection problem in

detail, showing that the problem is computationally challeng-

ing in general. Section VI proposes heuristics to select a given

number of anchors to maximize the core, and Section VII pro-

vides a generalization of the ðr; sÞ-core. Section VIII presents

a numerical evaluation of our approach. Section IX provides

various ideas and directions to further extend this work.

II. RELATED WORK

To describe the norms and mechanisms that explain coordi-

nation in societies, prosocial behaviors, and reciprocity for the

mutual benefit of the network members, various theories and

ideas have been put forward in the social sciences, behavioral

sciences and psychology literature. A good account of the

dilemmas of social cooperation and an overview of the human

cooperation mechanisms is presented in [3], [14]. It is reported

that reciprocity plays a key role in defining human cooperation.

Based on various aspects including when and with whom to

cooperate, different notions of reciprocity have been specified,
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such as direct reciprocity [15], [16], indirect reciprocity [1], and

generalized reciprocity [2], [17]. Individuals help others in a

social set up as long as they also receive help from the other

members of the society. Another related phenomenon is of

social cohesion [18], in which individual’s decision to partici-

pate in a group and retain its membership, has a significant

impact on the overall cohesiveness of the group.

Various mathematical models, for instance as in [12],

[19]–[22], characterize the processes by which groups get

together, grow by engaging new members, or diminish as a

result of defection of members. In a recent paper, a mathemati-

cal model of the evolution of a social network based on the

notion of social capital is presented in [23]. Threshold models

of collective behavior (e.g., [24], [25]) hold a central position in

this domain. The basic premise is that individual’s behavior and

decision to stay or leave a network depends on a certain number

of other individuals (threshold) engaged in a similar behavior.

The k-core of the network, introduced in [26], is one such

widely studied and applied model. It asserts that an individual

continues to participate in a network if at least k of the individu-
al’s friends are also participating. In graph-theoretic terms, it

means that a node with degree less thank k is removed from the

graph, and k-core is the maximal subgraph in which each node

has degree at least k. k-core and its extensions, including defin-
ing a distinct threshold k for each node [27], [28], k-core in

weighted graphs [29], directed graphs [30], and various others

have been extensively studied in the context of social networks

(e.g., [31]–[33]), as well as other networks (e.g., see [34] and

the references therein).

Disengagement of one member from the network could ini-

tiate a cascaded withdrawal of others. To prevent this unravel-

ing in social networks, the idea of anchor nodes has been

presented in [12] in the context of k-core. The authors showed
that the size of the k-core can be increased through anchors –

nodes that remain engaged even if they have less than k
friends. Our work is related to [12] in this direction, as we also

utilize the notion of anchors to maximize the size of

ðr; sÞ-core. However, a major limitation of the k-core based

participation model is that it assumes participation to be deter-

mined solely by the network structure, ignoring the heteroge-

neity of users and their attributes. In many realistic scenarios,

such as in participatory sensing, the heterogeneity of users

plays a key role. For example, users may take measurements

at different geographical locations, and they may have devices

with different sensing capabilities. To develop a more com-

plete knowledge of the environment, these heterogeneous

measurements must be combined. As a consequence, a users’

benefit from a participatory-sensing application depends not

only on the number of participating peers, but also on the het-

erogeneous nature of the measurements shared by them. To

account for heterogeneity, we introduce the concept of ðr; sÞ-
core, which incorporates the attributes (resources, capabilities,

information) of users also.

Finally, the anchors selection problem is closely related to

finding the most influential nodes in social networks that could

instigate the cascading removal of nodes as studied in [35].

Based on a network model, there are many variants and

extensions of the problem (e.g., [36]–[39]) along with

detailed complexity results [40]–[43]. We note that similar to

the notion of anchors, the idea of having some ‘special

nodes’ that are more resilient to structural changes in the

network, have been used previously in other contexts, for

instance to increase the connectivity and structural robustness

of the network [44], [45]. In this paper, we study the anchors

selection problem to maximize the ðr; sÞ-core of the network,

which is an elaborate model of users participation in a

network of individuals with assorted resources and attributes.

We analyze the complexity of the problem in detail and out-

line heuristics to compute anchors.

III. NETWORK MODEL AND ðr; sÞðr; sÞ-CORE

Wemodel the network by a simple, undirected graph GðV; EÞ,
in which the node set V represents the set of individuals, and the

edge set E represents connections between them. Any two nodes

x; y 2 V are adjacent in G if an edge exists between them, for

instance, if the corresponding individuals share measurements

with each other. A set of nodes that are adjacent to x 2 V is

called the neighborhood of x, and is denoted by NðxÞ.
Similarly, we define the closed neighborhood of x as

N ½x� ¼ N ðxÞ [ fxg. Each node of the graph has attributes,

which model the specific set of resources, sensing capabilities,

measurements, or information contained by the corresponding

individual. A node shares its attributes with its neighbors, and

make them accessible to the neighbors. We model these attrib-

utes by a label set containing r distinct labels, that is

R ¼ f0; 1; 2; . . . ; r� 1g, and assign a subset of s � r labels to
each node in G, depending on the attributes of the node. As a

result, we have a (node) labeled graph that captures the sharing

phenomenon between individuals with different attributes. We

denote labels assigned to node x by ‘ðxÞ, i.e.,

‘ : V�!½R�s: (1)

Here, ½R�s is the set of all subsets of R having exactly s
elements.

Node Participation Rule – A node (individual) participates

in the network on the reciprocity principle, that is, it shares its

resources with neighbors in the network, and in return expects

to receive the missing set of resources from the neighbors. In

particular, a node participates (or engages) in the network as

long as its neighbors provide all the labels that are missing

from the node’s own label set. Formally, a node x participates

in the network as long as the following condition is satisfied:

[

y2N ½x�
‘ðyÞ ¼ R: (2)

This engagement rule models networking phenomena in

which a node continues to participate in the network and

shares its information as long as it acquires all the missing

information from the neighbors. If the condition in (2) is not

satisfied for a node, then the node simply leaves the network.

We note here that there could be other variants and extensions

of the above participation rule depending on the networking
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applications. We further discuss these variations and general-

izations in Section IX.

A. ðr; sÞðr; sÞ-Core of the Network
Consider a network in which each node has a subset of s

labels from the set of r labels, and nodes participate as per

engagement rule (2). In such a setup, a node leaving the net-

work can have a cascading effect as it may further cause its

neighbors to depart. For instance, consider a node x with a

label a 2 ‘ðxÞ, and let y 2 NðxÞ be such that x is the only

node in N ½y� with the label a. Then, node x leaving the net-

work will also result in node y leaving. Thus, the removal of a

node from a network may cause a cascading effect, or unravel-

ing, due to which nodes that initially satisfy the condition (2)

may also get removed from the network. In the end, we are

left with a subnetwork consisting of nodes all of which satisfy

the participation rule (2). We call this remaining network as

the ðr; sÞ-core of the original network. More precisely, we

define ðr; sÞ-core as follows:
ðr; sÞ-Core Given a graph GðV; EÞ, a set of r labels, denoted

by R, and an assignment ‘ : V ! ½R�s (that is, assigning s
labels from R to each node v 2 V), the (r; s)-core of G,
denoted by ~Gð~V; ~EÞ, is the maximal subgraph in which every

node satisfies

[

y2 N ½x�\~Vð Þ
‘ðyÞ ¼ R; 8x 2 ~V: (3)

Note that it follows from the definition readily that every

labeled graph has a unique (r; s)-core.
Example – As an example, consider the network shown in

Fig. 1a. This network has ten nodes, each of which has s ¼ 2
labels from the set R ¼ f0; 1; 2; 3; 4g. Initially, there are two

nodes x and y that do not satisfy the condition (2). As a result,

they leave the network, which leads to further node removals.

In the end, only three nodes remain, as shown in Fig. 1b. Each

of these nodes have all five labels between itself and its neigh-

bors; thus, constituting the (5,2)-core of the network.

IV. ANCHORED ðr; sÞðr; sÞ-CORE PROBLEM

The ðr; sÞ-core represents individuals that actively partici-

pate in the networking application, for instance, individuals in

a participatory-sensing application that share measurements

with their peers. To increase the participation of individuals,

we desire to increase the size of the ðr; sÞ-core. Thus, from a

design perspective, the following question arises.

For a given network G, label setR, and a positive integer s,
how can we modify or design our network so as to maximize

the size of its ðr; sÞ-core?
One way to achieve this objective is to find an optimal

assignment of labels to nodes, that is, a labeling ‘ defined in

(1) that maximizes the size of the ðr; sÞ-core. However, in
some situations, the labeling ‘ is fixed, that is, the labels

assigned to nodes are given and cannot be changed. For exam-

ple, in participatory sensing, users can have devices with fixed

sensing capabilities that cannot be easily changed. A new

approach is needed in these situations to increase participa-

tion. In this paper, we explore the idea of significantly increas-

ing participation by incentivizing a few selected individuals to

participate regardless of their peers’ attributes.

The departure of a node from the network may lead to the

departure of its neighbors, thereby causing a cascading phe-

nomenon. The size of the ðr; sÞ-core of the network can be

larger if we can prevent this cascading effect. By ensuring the

participation of few individuals, even if they do not satisfy the

participation rule, we can prevent the unraveling of the net-

work. We call such individuals as anchors.

Anchors Anchors are the nodes that never leave the net-

work and participate irrespective of the labels assigned to

them or to their neighbors. In other words, they continue to

participate even if they do not satisfy the rule in (2).

Individuals can be made anchors by offering them rewards

for their participation when condition (2) is not satisfied. We

now define the ðr; sÞ-core with anchors as follows:
ðr; sÞ-Core with Anchors Given a graph GðV; EÞ, a set of r

labels, denoted by R, an assignment ‘ : V ! ½R�s that assigns
s labels from R to each node v 2 V, and a set of anchor nodes

A � V, the ðr; sÞ-core with anchors A is the maximal sub-

graph ~GAð~VA; ~EAÞ consisting of all anchor nodes as well as

non-anchor nodes satisfying

[

y2N ½x�\~VA
‘ðyÞ ¼ R; 8x 2 ~VA n A: (4)

Note that it follows from the definition readily that for every

labeled graph and set of anchor nodes, the (r; s)-core with

anchors exists uniquely. An example of ðr; sÞ-core with an

Fig. 1. (a) Example network. (b) (5,2)-core of the example network. (c) (5,2)-core with an anchor node (marked green).
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anchor node is shown in Fig. 1c. Without any anchor node, the

maximum subgraph in which each node has all five labels

between itself and its neighbors consists of only three nodes,

that is, the size of the (5,2)-core is three, as shown in Fig. 1b.

However, with only one anchor node, we obtain a subgraph

consisting of eight nodes in which each non-anchor node has a

complete set of five labels between itself and its neighbors.

Thus, we see a significant improvement in terms of users par-

ticipation even with a single anchor.

Next, we study the problem of maximizing the size of

ðr; sÞ-core by selecting an appropriate set of anchor nodes A.
Formally, we state the problem as:

ððr; sÞ-Core with Anchors Maximization Problem (CAMP)
Given a node labeled graph GðV; EÞ, in which each node is

assigned a subset of s labels from a set of r labels, and a bud-

get b, then the ðr; sÞ-Core with Anchors Maximization Prob-

lem is to find a subset A � V such that the number of nodes in

the anchored ðr; sÞ-core is maximized over all sets A � V of

size jAj � b.
In Section V, we analyze the complexity of this problem in

detail. First, we outline an integer linear program to solve the

CAMP.

A. An ILP for the ðr; sÞðr; sÞ-Core With Anchors Maximization

Problem

An ILP formulation of the CAMP is as follows:

maximize
X

u2V
xu;

subject to
X

u2V
zu � b;

X

v2N ½u�
xv � wðv; cÞ þ zu � xu; 8u 2 V; c 2 R

xu; zu 2 f0; 1g; 8u 2 V
wðc; vÞ 2 f0; 1g; 8v 2 V; c 2 R:

The variable zu represents whether the node u is anchored

or not, and the variable xu represents whether the node u is

included in the ðr; sÞ-core or not. The goal is maximize the

number of nodes in the core. The first constraint shows that

the number of anchors is bounded by the budget b. The second
constraint makes sure that for each node u 2 V and for each

label c 2 R, if xu ¼ 1 (that is u is in the core), then u is either

an anchor node, or u must have c in its closed neighborhood.

Here, wðv; cÞ is an indicator variable for whether the label c is
in the label set of node v, that is wðv; cÞ ¼ 1 if c 2 ‘ðvÞ and 0

otherwise. Note that if node u is anchor (zu ¼ 1), then the cor-

responding xu ¼ 1 and u is included in the core.

V. COMPLEXITY RESULTS

In this section, we discuss in detail the complexity of the

ðr; sÞ-core with anchors maximization problem. In particular,

we show that for any positive integer s, the problem can be

solved in polynomial time for a special case of r ¼ sþ 1
(Theorem 5.1). For all other r > sþ 1, the problem is NP-

complete (Theorem 5.2). In fact, for r � sþ 4, we prove a

strong inapproximability result (Theorem 5.3). The main

results of this section are stated below.

Theorem 5.1: For any positive integer s, the ðsþ 1; sÞ-core
with anchors maximization problem can be solved in

OðN þ sEÞ, where N and E are the number of nodes and

edges in GðV; EÞ respectively.
Theorem 5.2: Given a graph GðV; EÞ, a positive integer s, a

set of r ¼ sþ j labels where j > 1, a labeling ‘, a number of

anchor nodes b, and a threshold core size d, determining if

there exists a set A of at most b anchor nodes that results in an

anchored ðr; sÞ-core whose cardinality is at least d is an NP-

complete problem.

Theorem 5.3: For any positive integer s and j � 4, it is NP-
complete to approximate the ðsþ j; sÞ-core with anchors

maximization problem within any factor OðN1��Þ for � > 0,
where N is the number of nodes in the graph GðV; EÞ.
We prove the above results in Sections V-A, V-B, and V-C

respectively.

A. Maximization of the Anchored ðsþ 1; sÞðsþ 1; sÞ-Core
Whenever the total number of labels is only one more

than the number of labels assigned to each node, then

every node misses at most one label in its closed neighbor-

hood. An important observation in this special case is out-

lined below.

Lemma 5.4: For any positive integer s and a graph GðV; EÞ,
let ~V be the set of nodes in the ðsþ 1; sÞ-core of G with no

anchors, and ~VA be the set of nodes in the ðsþ 1; sÞ-core of G
with one anchor node A ¼ fxg, where x 2 V n ~V, then ~VA ¼
~V [ fxg.

Proof: For the sake of contradiction, we assume that by mak-

ing x an anchor node, another node y 2 V n ~V is included in ~VA.
It implies that y 2 NðxÞ, and ‘ðxÞ \ ‘ðyÞ 6¼ ‘ðyÞ, where ‘ðxÞ and
‘ðyÞ are the labels assigned to x and y respectively. This is only

possible when there exists a label i 2 ‘ðxÞ such that i =2 ‘ðyÞ, and
a label j 2 ‘ðyÞ such that j =2 ‘ðxÞ. Since both x and y already

have s labels each, and miss only a single label, their labels must

complement each others, that is, f0; 1; . . . ; sg n ‘ðxÞ 2 ‘ðyÞ, and
f0; 1; . . . ; sg n ‘ðyÞ 2 ‘ðxÞ. It means that both x and y have

ðsþ 1Þ labels in their closed neighborhoods and are included in ~V
which constitutes the ðsþ 1; sÞ-core with no anchors, which is a

contradiction. &
1) Proof of Theorem 5.1: From Lemma 5.4, we get that the

size of the ðsþ 1; sÞ-core with anchors A is simply j~V [ Aj,
where ~V is the set of nodes in the ðsþ 1; sÞ-core (with no

anchors). Thus, to prove Theorem 5.1, all we need to show is

that ðsþ 1; sÞ-core of a labeled graph can be computed in

OðN þ sEÞ, which is indeed the case using the algorithm out-

lined below.

Let ðu; vÞ be a monochromatic edge, that is an edge

between u and v such that ‘ðuÞ ¼ ‘ðvÞ. Then we observe thatS
i2N ½v�‘ðiÞ ¼

S
i2 N ½v�nfugð Þ‘ðiÞ, and similarly

S
i2N ½u�‘ðiÞ ¼S

i2 N ½u�nfvgð Þ‘ðiÞ. Hence, removing edge ðu; vÞ doesn’t affect
the ðsþ 1; sÞ-core of given G. Once we have removed all mono-
chromatic edges, all vertices with at least one neighbor will be
included in the ðsþ 1; sÞ-core. Checking whether an edge is
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monochromatic or not takes s:E time, while enumerating all verti-
ces with at least one neighbor can be achieved in N time. This
completes the proof of the theorem.

B. Hardness of Anchored ðsþ j; sÞðsþ j; sÞ-Core for j > 1j > 1

The membership in NP is obvious because the size of the

anchored ðsþ j; sÞ-core can be verified in polynomial time. In

the following, we show that for any j > 1, the ðsþ j; sÞ-core
with anchors maximization problem is computationally hard

using a reduction from a well-known NP-hard problem, the

Set Cover Problem.

Set Cover Problem (SCP). Given a base set U ¼ f1; 2; . . . ;
mg, a collection F ¼ fS1; S2; . . . ; Sn : Si � Ug whereS

Si2F ¼ U, and a number s; determine if there exists a sub-

collection F0 � F of at most s subsets such that every ele-

ment of U is contained by at least one subset in F0.
Proof of Theorem 5.2: Given an instance of the Set Cover

Problem, we construct an instance of the anchored

ðsþ j; sÞ-core problem for j > 1 as follows:
� R ¼ f0; 1; . . . ; s; sþ 1; . . . ; sþ j� 1g, and b ¼ s;

� for every Si 2 F , there is a node wi with labels

f0; 1; . . . ; s� 1g;
� for every u 2 U , there is a node vu with a set of s labels
f1; 2; . . . ; sg;

� there exists a clique of jRj ¼ sþ j nodes, denoted by

Ksþj, where each node oi 2 Ksþj is assigned a set of

labels ‘ðoiÞ ¼ fi� 1g [Qi, where Qi is a subset of

s� 1 arbitrarily picked labels from the setR n fi� 1g.
� for every u 2 U and Si 2 F , the corresponding nodes

vu and wi are adjacent if and only if u 2 Si;

� every vu is adjacent to all the clique nodes in the set

fosþ2; osþ3; . . . ; osþjg. Note that as a result of these

connections, each vu has a set of labels f1; 2; . . . ; sg [
fsþ 1; sþ 2; . . . ; sþ j� 1g available in its closed

neighborhood.

� d ¼ bþ jUj þ jRj.
The above reduction can be clearly carried out in time

that is polynomial in the size of the Set Cover Problem

instance. Hence, it remains to show that the Set Cover Prob-

lem has a solution if and only if the anchored ðsþ j; sÞ-core
problem does.

First, if there exists a set cover F0 containing s subsets of U,
then the anchor set A consisting of nodes corresponding to

those subsets in F0 is a solution to the anchored

ðsþ j; sÞ-core problem. To see this, consider that every node

vu (corresponding to u 2 U) is adjacent to at least one node in

wi 2 A, which provides label 0 to each vu in its neighborhood.
Moreover, we note that ‘ðvuÞ ¼ f1; . . . ; sg, 8vu, and labels in

fsþ 1; 	 	 	 ; sþ j� 1g are available in the closed neighbor-

hood of each vu by its connections with the nodes of in Ksþj.
Thus, the anchored ðsþ j; sÞ-core includes all vu, 8u 2 U.
Since all nodes in the clique Ksþj have all R labels in their

closed neighborhoods, they are also in the anchored

ðsþ j; sÞ-core, which implies that the size of the anchored

ðsþ j; sÞ-core is bþ jUj þ jRj (after including b anchor nodes
in A).

Second, the other direction (that is, proving that any solu-

tion A to the anchored ðsþ j; sÞ-core problem is also a set

cover) follows from a similar argument.

C. Inapproximability of the Anchored ðsþ j; sÞðsþ j; sÞ-Core for
j � 4j � 4

To prove Theorem 5.3, first we show that it is NP-hard to

approximate the problem of maximizing the anchored (5,1)-

core. Then, using this result, we show that it is always possible

to get an instance of maximizing the anchored ðsþ j; sÞ-core
for j � 4 from an instance of maximizing the anchored (5,1)-

core, thus, implying Theorem 5.3.

Proof of Theorem 5.3: The membership in NP is trivial to

see as given a subset A, we can always confirm the size of the

anchored ðsþ j; sÞ-core by iteratively removing the nodes

that are not in the anchored ðsþ j; sÞ-core in polynomial

time. Next, we state and prove an important result required to

prove Theorem 5.3.

Theorem 5.5: It is NP-Hard to approximate the (5,1)-core

with anchors maximization problem within any factor

OðN1��Þ for � > 0.
Proof: We show this by providing a gap-based reduction from

the Set Cover problem. An instance of the set cover problem con-

sists of a set U ¼ f1; 2; 3; . . . ;mg and a family of sets F ¼
fS1; S2; . . . ; Sn : Si � Ug such that

S
Si2FSi ¼ U. The problem

is to decide whether there exists a subfamily F0 � F of b sets

such that
S

Si2F0Si ¼ U . In the following, we describe a con-

struction of a graph G as an instance of the anchored (5,1)-core

problem given a set U , a family F , and set cover budget b. We

assume that m is a multiple of 5 – otherwise, we can add upto

four extra elements to U and to all of Si without any consequence.

The graph G will have three main parts:

� a grid withm
M nodes whereM > > m,

� n complete tertiary (3-ary) trees, and

� a sink.

&

These parts will be connected with some auxiliary edges as

detailed below. For an ease of presentation, we assume that

the five labels are f0; 1; 2; 3; 4g.
The Grid:

For each i 2 U construct a path vi;1; vi;2; . . . vi;M where M
should be thought of a “large” integer to be fixed later. Add

edges between nodes vi;j; viþ1;j for all 1 � i � m� 1 and

1 � j �M. Also add edges between nodes v1;j; vm;j for

1 � j �M. We assign label 0 to the node v1;1, and then recur-
sively label the rest of the grid according to the following

rule: if a node vi;j is labeled with the label k then vi;jþ1 is

labeled with kþ 1mod 5, and viþ1;j is labeled with

kþ 2mod 5. It is easy to see that as a result of this labeling,

each node (except the nodes at the boundary of the grid, that is

vi;j where i 2 f1; . . . ;mg and j 2 f1;Mg) has all five labels

in its closed neighborhood since fk; k� 1; k� 2; kþ 1;
kþ 2gmod 5 ¼ f0; 1; 2; 3; 4g. Note that we constructed and

labeled the nodes in the grid in such a way that

� if nodes in the first row v1;1; v2;1 . . . ; vm;1 and the last

row v1;M; v2;M . . . ; vm;M are ensured to be in the core
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then all the nodes in the grid vi;j, 81 � i � m; 1 � j �
M are also in the core.

� Moreover, if there exists a node vi;j in the grid that is

not in the core of G, then none of the nodes in the grid is
in the core.

The Tree: For each set Si, we construct a tertiary (3-ary)

tree Ti with height dlog 3jSije - that is minimum height

required so that the number of leaf nodes is at least the size of

the set Si. Let wi be the root node of the tree Ti. Let

Si ¼ fa1; a2; . . . akg, then chose k arbitrary leaves of Ti and

call them wi;a1 ; wi;a2 ; . . . ; wi;ak . The remaining leaves of Ti (if

there are any) are of no interest to this reduction but we will

make sure that they are in the core by linking them to the sink

(to be discussed). We label each root wi with the label 0 and

its children with labels 1,2,3 in an arbitrary order. Rest of the

tree is recursively labeled according to the following rule: if a

node is labeled with the label x and its parent node is labeled

y, then label the three children of x with the labels

f0; 1; 2; 3; 4g n fx; yg in arbitrary order. We observe that this

labeling ensures the following:

Observation 1:

� The end nodes of every edge have different labels.

� If the root and the leaf nodes of a tree Tj are in the core

then all the nodes in the tree Tj are in the core.

� Further, if there exists a node x 2 Tj that is not in the

core then none of the nodes in the tree are in the core

(unless Tj contains anchored nodes).

An illustration is given in Fig. 2.

Connecting the Grid and Trees:

For each member i 2 Sj, we add a path of length 1 or 3

between the leaf node wj;i in the tree Tj, and vi;1 in the first

row of the grid. The length of the path is determined by the

labels of the two nodes. Note that in the grid, vi;1 has three

uniquely labeled neighbors and it has all labels in its closed

neighborhood except some label x. If wj;i is labeled x then we

simply add an edge between the two nodes. Otherwise we will

add two intermediary nodes making a path of length 3. The

neighbor of vi;1 on this path is labeled x, and the neighbor of

wj;i is labeled with a label y such that y 6¼ x and is different

from the labels of both wj;i and vi;1. We illustrate this con-

struction in an example in Fig. 2.

The Sink:

The sink of this construction is a clique of size 5, denoted

by K5. All nodes in this clique are labeled with unique labels

to make sure that all of them are in the core. Each node u that

either

(i) lies on the bottom row of the grid, that is

vi;M; 8i 2 f1; . . . ;mg, or
(ii) is a leaf node of a tree Tj, or

(iii) is an intermediary node on a path from a leaf node of a

Tj to the grid node vi;1,
may not see some of the labels in its closed neighborhood,

and thus may not be included in the core. To make sure that

any such u is in the core if all its neighbors are in the core, we

add edges between u and nodes in the sink such that u has all

five labels in its closed neighborhood. While doing this we

also make sure that every such u finds each label in its closed

neighborhood exactly once.

A detailed illustration of such a construction and G is given

in Fig. 3. Next, we use this construction to present the follow-

ing results.

Claim 5.6: If the set cover instance is a YES instance then

the size of the (5,1)-core of the graph G with b anchors is at

leastm
M.

Proof: Observe that the degree of every node vi;j in the grid,
where j 6¼ 1, is exactly four. Moreover, four neighbors of each

such vi;j are uniquely labeled with labels different from the

label of vi;j. Similarly all tree nodes, except the root nodes,

have degrees exactly four and have all five labels in their

respective closed neighborhoods. Thus, we have only two

types of nodes that may have degree not equal to four. They

include,

(i) the root node wj of tree Tj, where j 2 f1; . . . ; ng, and
(ii) node vi;1 in the first row of the grid, where

i 2 f1; . . . ;mg.
Since root nodes of all trees have exactly three neighbors,

they are not in the (5,1)-core of G. However, since for every

i 2 U there exists some Sk 2 F such that i 2 Sk in the set

cover instance, we note that vi;1, 8i 2 f1; . . . ;mg, has a

degree at least four in G and is included in the (5,1)-core of G.
As the set cover instance is a yes instance, we have F0 � F ,
consisting of b subsets of U such that their union is U. Let
F n F 0 ¼ fSj1 ; Sj2 ; . . . ; Sjn�bg, and the corresponding trees in

G are fTj1 ; Tj2 ; . . . ; Tjn�bg. Next, we obtain a graph G0 from G
by removing all the nodes in trees fTj1 ; Tj2 ; 	 	 	 ; Tjn�bg. Now,
in G0, we have b trees and we can ensure that their roots are

included in the anchored (5,1)-core by making them the

anchor nodes. It is clear that all the non-anchor nodes in G0

have all five labels in their closed neighborhoods, and are thus

in the anchored (5,1)-core. G0 contains a grid of m
M nodes

Fig. 2. An illustration of tree and its connection with the grid. Consider a set
cover instance with U ¼ f1; 2; 	 	 	 ; 10g, and Sj � F , where Sj ¼ f4; 7; 8; 9g. In
G, we have a tree Tj corresponding to Sj with a root nodewj. The four leaf nodes
fwj;a1 ; wj;a2 ; wj;a3 ; wj;a4 ; g (arbitrarily picked) correspond to four elements of
Sj. Numbers inside circles represent labels assigned to the corresponding nodes.
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in the anchored (5,1)-core, and as G0 is a subgraph of G, the
anchored (5,1)-core of G has at least the prescribed size. This

is true because the core of a graph is a superset of the core of

any of its subgraphs.

Claim 5.7: If the set cover instance is a NO instance then the

size of the (5,1)-core of G with b anchors is at most 7m2.

Proof. In this case, there are at least n� b trees that do

not have any anchor node, implying that there is at least one

node in each such tree that is not in the anchored (5,1)-core.

Due to Observation 1, all of the nodes in the corresponding

trees are also not included in the anchored (5,1)-core. Since

the set cover instance is a NO instance, the set U can’t be

covered with b sets, and we have at most b trees in the

anchored (5,1)-core. Also at least one node in the first row of

the grid in G is not in the anchored (5,1)-core as b < m
without loss of generality. Using an earlier fact that if there

exists a node in the grid that is not in the core, then none

of the nodes in the grid is in the core, we conclude that the

anchored (5,1)-core of G does not include any node in the

grid except any anchored nodes. Since there are at most 6m

nodes in each tree, we can’t have more than 6m2 nodes in the

trees that are in the anchored (5,1)-core. Furthermore, with a

budget of b anchors, we can ensure at most b2 nodes from the

grid to be in the anchored (5,1)-core. Hence, the size of the

anchored (5,1)-core is bounded1 from above by 7m2. &

We can now set M appropriately to prove the Theorem 5.5.

For examples if we set M ¼ m3=� logm7c then we can’t distin-

guish between an instance with the core size at least N and an

instance with the core size at most N�

c where N is the number

of nodes in G. Moreover size of the graph G is polynomial in

the size of the set cover instance. Therefore, this reduction

rules out the existence of a polynomial time algorithm that

can approximate the anchored (5,1)-core problem to within a

factor of c:N1�� unless P ¼ NP .

Fig. 3. An illustration of the construction of G. Labels assigned to nodes are represented inside the corresponding circles. (�) means that appropriate labels (as
defined in the construction) are assigned to such nodes.

1 Although this bound is good enough for our purpose here, with a more
careful analysis, readers may obtain a tighter bound of cm2 with c < 1.
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Now for j � 4, we can always get an instance of anchored

ðsþ j; sÞ-core problem from an instance of the anchored

(5,1)-core as follows:

� From the labeled graph G (used in the Proof of Theorem

5.5), we obtain a new labeled graph G0 by keeping the

nodes in trees and grid exactly the same. If ‘ðxÞG and

‘ðxÞG0 are the labels assigned to x in G and G0 respec-
tively, then ‘ðxÞG0 ¼ ‘ðxÞG [ f5; 6; . . . ; sþ 3g, for

every node x in the grid and trees.

� In G0, we replace the sink with a clique of ðsþ jÞ nodes,
denoted by Ksþj. Each node oi in the clique is assigned

a label set ‘ðoiÞG0 ¼ fi� 1g [Qi, where Qi is a subset

of s� 1 arbitrarily picked labels from the set Rn
ðfi� 1g [ f0; 1; 2; 3; 4gÞ.

� In G0, for every node x in trees and the gird, we add an

edge between x and clique node ou, 8u 2 fsþ 5; sþ
6; . . . ; sþ jg. Note that as a result of these edges, each

x gets a set of labels fsþ 4; sþ 5; . . . ; sþ j� 1g in its

neighborhood.

� Note that as a result of this construction, a (tree or grid)

node in G0 has all ðsþ jÞ labels in its closed neighbor-

hood if and only if the corresponding node in G has all 5

labels, that is f0; 1; 2; 3; 4g, in its closed neighborhood.
It is easy to see that Claims 5.6 and 5.7 hold for our con-

struction G0 as well. We conclude that an OðN1��Þ approxima-

tion algorithm for anchored ðsþ j; sÞ-core problem for j � 4
would imply a polynomial time algorithm for Set Cover prob-

lem. This is a contradiction unless P ¼ NP .

VI. HEURISTICS FOR THE ðr; sÞðr; sÞ-CORE WITH

ANCHORS PROBLEM

Since the problem of finding a given number of anchors

maximizing the ðr; sÞ-core is computationally hard, in fact, is

inapproximable in most cases, we present two heuristic algo-

rithms: first based on a simple greedy heuristic, and second

using a local search based strategy using simulated annealing.

First, we note that for a given labeled GðV; EÞ, r, s, and
anchor nodes A, the anchored ðr; sÞ-core is unique, and we can
compute it by iteratively removing non-anchor nodes from

GðV; EÞ that do not satisfy the condition (2). We repeat this until

we are left with the subgraph ~GAð~VA; ~EAÞ, which is the

ðr; sÞ-core with anchorsA. We denote this simple scheme by:

~GAð~VA; ~EAÞ  rs core AðG; ‘;A; r; sÞ: (5)

A. Greedy Heuristic

Let GðV; EÞ be a labeled graph with R being the set of

labels, s be the number of labels assigned to each node, and b
be the number of anchors that need to be selected to maximize

the anchored ðr; sÞ-core. In a greedy approach, as outlined in

Algorithm 1, we begin with an empty set of anchors A, com-

pute ðr; sÞ-core with no anchor node, and then iteratively add

nodes to A one-by-one. In each iteration, we include a node

v0 2 ðV n ~VAÞ in A that maximizes the size of the resulting

ðr; sÞ-core withA. Here, ~VA is the set of nodes in the anchored

ðr; sÞ-core with A. We repeat this step until jAj ¼ b.

Algorithm 1: Greedy Selection of Anchors.

1: Given: GðV; EÞ; ‘;R; s; b
2: Initialization: A ¼ ;.
3: ~GAð~VA; ~EAÞ  rs core AðG; ‘;A; r; sÞ
4: while jAj � b do
5: for all v 2 ðV n ~VAÞ do
6: ~GAð~VA; ~EAÞ  rs core AðG; ‘;A [ fvg; r; sÞ
7: fðvÞ  j~VAj
8: end for

9: v0  argmaxv2ðVn~VAÞfðvÞ
10: A  A [ fv0g
11: ~GAð~VA; ~EAÞ  rs core AðG; ‘;A; r; sÞ
12: end while

13: Return: A

Note that if a node is in the ðr; sÞ-core with anchors A, then
it is also in the ðr; sÞ-core with anchors A0 � A. Thus, when
we add v to A in each iteration, for an efficient implementa-

tion, we only need to check the nodes in V n ~VA [ fvg
� �

,

instead of V, for the inclusion in the ðr; sÞ-core with anchors.

The greedy algorithm takes OðbrjVjÞ time, where b is the

number of anchors and r is the time complexity of computing

ðr; sÞ-core for a fixed set of anchors. For our implementation

r is on the order of jEj2, but this cost can be reduced to

OðjEjlog rjVjÞ by a clever use of appropriate data structure.

However, we observe that this does not lead to any significant

improvement in running time on practical instances. A numer-

ical evaluation of the algorithm for various networks is given

in Section VIII-A.

B. Metaheuristic Search Algorithm

Next, we present an algorithm based on a metaheuristic

approach, in particular using simulated annealing, to select

a given number of anchors to maximize the size of the

anchored ðr; sÞ-core. We first compute the ðr; sÞ-core with

no trusted node, and then randomly select a subset of b
nodes that are not in the core as anchors (line 5). In each

iteration, we perturb our solution A, that is compute a

new set of anchors A0 by randomly selecting a node from

the current solution A, and replacing it with a randomly

selected node in V n ~VA (line 9). If the size of the

ðr; sÞ-core with A0 is improved as compared to the anchors

in A, then A0 becomes our current solution. In case, the

perturbed solution A0 is inferior to A, we replace A with

A0 only with a small probability that is a function of the

difference between the sizes of ðr; sÞ-cores with A and A0,
as well as a temperature parameter that decreases exponen-

tially with the number of iterations. Note that these occa-

sional replacements, in which anchors resulting in a

smaller sized cores become current solutions, prevent the

search from getting stuck at local minima. The scheme is

outlined in Algorithm 2, and takes OðkrÞ time, where k is

the number of iterations and r is the time complexity of com-

puting ðr; sÞ-core for a fixed set of anchors. Unlike the greedy

algorithm, the running time here does not depend on the

anchors’ budget b.
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Algorithm 2: Simulated Annealing for Anchor Selection.

1: Input: GðV; EÞ; ‘; r; s; b; iterations.
2: Output: A; ~GAð~VA; ~EAÞ
3: Initialize: c 1, T0, b

4: ~GAð~VA; ~EAÞ  rs core AðG; ‘; ;; r; sÞ
5: A  Random SelectionðV n ~VA; bÞ
6: ~GAð~VA; ~EAÞ  rs core AðG; ‘;A; r; sÞ
7: P  j~VAj
8: while c � iterations do
9: A0  PerturbðA;V n ~VAÞ
10: ~GA0ð~VA0 ; ~E0AÞ  rs core AðG; ‘;A0; r; sÞ
11: P0  j~VA0 j
12: p e�ðP�P

0Þ=T

13: if ðP0 > PÞ _ ðrandð0; 1Þ � pÞ then
14: A  A0, P  P0
15: ~VA  ~VA0
16: end if

17: T  T0 	 e�bc
18: c cþ 1
19: end while

20: return: A; ~GAð~VA; ~EAÞ

VII. GENERALIZED ðRR;SSÞ-CORE

So far, in the context of ðr; sÞ-core, we have assumed that

each node is assigned a subset of s labels and would remain to

be a part of the network as long as it has an access to all r
labels in its closed neighborhood. We can easily generalize

this framework by allowing nodes to have different number of

labels, that is resources/attributes. Thus, instead of having the

same number of labels s by two nodes u and v, we can have a

different number of labels for nodes u and v. Similarly, it is

also possible that a node u does not need to see all r labels in
its closed neighborhood to continue participating in the net-

work. In fact, u participates in the network as long as a subset

of labels Ru � R is available in its closed neighborhood.

Thus, each node has its own specific condition, in terms of the

subset of labels that need to be available in its closed neigh-

borhood, to participate in the network. We can model this by

the notion of generalized ðRR;SSÞ-core.
Generalized ðRR;SSÞ-core Let GðV; E be a graph and R be

a set of r labels. Each node u 2 V is assigned a subset of

labels Su � R, and u needs to have Ru � R labels in its

closed neighborhood. Then, the generalized ðRR;SSÞ-core,
denoted by �Gð�V; �EÞ is the maximal subgraph in which

every node satisfies

[
v2 N ½u�\�Vð ÞSv ¼ Ru; 8u 2 �V: (6)

Here, RR ¼ fRug and SS ¼ fSug. An example of general-

ized ðR;SÞðR;SÞ-core is shown in Fig. 4.
As with the ðr; sÞ-core, anchor nodes can significantly

improve the size of generalized ðR;SÞðR;SÞ-core (as illustrated in

Fig. 4c). We note that the greedy and simulated annealing

based heuristics in Section VI are directly applicable in select-

ing anchor nodes to maximize the size of generalized

ðR;SÞðR;SÞ-core, as we demonstrate in Section VIII-D.

VIII. NUMERICAL EVALUATION

In this section, we evaluate our results on various types of

networks including Erd€os-R�enyi (ER) networks, Barab�asi-
Albert (BA) networks, and a real-world social network of

Facebook (FB) users [46], [47].

A. Networks and Related Parameters

ER networks are generated by creating an edge between any

two nodes with a specified probability p. BA networks are

generated using a preferential attachment mechanism, in

which nodes are added to an existing network one-by-one.

Each new node is connected to m existing nodes which are

chosen with probabilities proportional to the degrees of nodes

(i.e., number of their neighbors). The details of networks used

are given below.2

– [ER–1000] An ER graph with 1000 nodes and

p ¼ 0:006. Average degree of a node is 6.
– [ER–3000] An ER graph with 3000 nodes, p ¼ 0:0027,

and average node degree of 8.

– [BA–1000] A Barab�asi-Albert graph with with 1000

nodes andm ¼ 3. The average node degree is 6.

Fig. 4. An example of generalized ðR;SÞðR;SÞ-core. (a) For each node u, Su is shown. The corresponding Ru’s are: R1 ¼ f1; 3; 5g, R2 ¼ f1; 4; 5; 6g,
R3 ¼ f1; 2; 3; 4g, R4 ¼ f1; 4; 5g, R5 ¼ f1; 2; 3; 4; 5; 6g, R6 ¼ f1; 2; 3; 4; 6g, R7 ¼ f3; 5; 6g, R8 ¼ f1; 2; 4; 5; 6g, R9 ¼ f1; 2; 3; 4; 5g, and R10 ¼ f1; 2; 4; 5g.
(b) The generalized ðR;SÞðR;SÞ-core consists of only three nodes. (c) The generalized ðR;SÞðR;SÞ-core with node 5 as anchor consists of seven nodes.

2 The adjacency matrices of all the graphs and the assignment of labels
used in various instances are available in [48].
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– [BA–3000] A Barab�asi-Albert graph with with 3000

nodes andm ¼ 3. The average node degree is 6.
– [FB–4039] A real-world social network of 4,039 Face-

book users, 88,234 edges, and average node degree of

43. More details about the network are in [46], [47].

B. ðr; sÞðr; sÞ-Cores With and Without Anchors

First, for a given r, we illustrate the size of ðr; sÞ-core (with
no anchor nodes) as a function of s in Fig. 5. As expected, the

size of ðr; sÞ-core increases as the number of labels assigned

to each node increases. To compute the ðr; sÞ-core, we ran-

domly assign s labels (using a uniform distribution) from a set

of r-labels to each node. Every point in the plots in Fig. 5 is an
average of 25 such randomly generated instances.

Second, we illustrate the significance of anchor nodes in

improving the size of the ðr; sÞ-core.We also compare the selec-

tion of anchor nodes computed by solving ILP, greedy approach

as in Algorithm 1, and simulated annealing as in Algorithm 2.

For each of the above network, we plot the size of the anchored

ðr; sÞ-core as a function of the number of anchors. In particular,

we select anchors in the network ER–1000 to maximize the

anchored (5,2)-core and the anchored (6,2)-core (Fig. 6a–6b);

and in ER-3000 to maximize the anchored (6,2)-core and the

anchored (7,2)-core (Fig. 6c–6d). Similarly, in the case of BA–

1000 network, we compute and compare the anchors’ selection

in terms of the sizes of the anchored (5,2)-core and the anchored

(6,2)-core (Fig. 7a–7b); and in the case of BA–3000, the

anchored (7,3)-core and the anchored (8,3)-core (Fig. 7c–7d).

From the plots in Figs. 6 and 7, we observe that the sizes of

the ðr; sÞ-cores are significantly increased by having a small

number of anchor nodes, as compared to the baseline cases, in

which there are no anchor nodes. For instance, in the case of

ER-3000 network, with no anchor nodes the (6,2)-core and

(7,2)-core contains 47 and 0 percent of the overall nodes respec-

tively. However, by selecting only 6 percent of the nodes as

anchors, the anchored (6,2)- and the anchored (7,2)-cores con-

tain about 80 and 47 percent of the overall nodes respectively,

which is indeed a significant improvement. Similarly, in the

case of BA-3000 network, the (7,3)-core and the (8,3)-core

(with no anchors) contain about 48 and 14 percent of the overall

nodes respectively. However, by selecting only 6 percent of the

nodes as anchors, the anchored (7,3)- and the anchored

(8,3)-cores contain about 67 and 48 percent of the overall nodes,

which is again a huge improvement in the sizes of the cores.

Moreover, from the plots in Figs. 6 and 7, we observe that

simulated annealing gives a solution that is close to ILP solu-

tion. In fact, if we perform a large number of iterations, solu-

tion by simulated annealing heuristic is very close to the

optimal. For our simulations, we use ten, twenty, and thirty

Fig. 5. Size of the anchored ðr; sÞ-core as a function of s for various values
of r.

Fig. 6. Nodes in anchored ðr; sÞ-core as a function of the number of anchors
selected by solving ILP, greedy, and simulated annealing heuristics. The base-
line case indicates the size of ðr; sÞ-core with no anchor nodes. For ER–1000,
we plot the sizes of (5,2)- and (6,2)-cores with anchors, whereas, for ER–
3000, we plot the sizes of (6,2)- and (7,2)-cores with anchors.

Fig. 7. For BA–1000 and BA–3000 networks, the plots of nodes in
ðr; sÞ-core with anchors as a function of the number of anchors selected
through an ILP solution, greedy and simulated annealing heuristics. The base-
line case indicates the size of ðr; sÞ-core with no anchors.
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thousand iterations, (as mentioned in the plots), and choose

T0 ¼ 0:5 and b ¼ 20
iterations. On the other hand greedy, also

performs well and gives solutions that are not far from optimal

solutions. We note that for all the instances, we initially assign

s unique labels to nodes randomly (using a uniform distribu-

tion) from a set of r labels.
In Fig. 8, we illustrate similar results for the FB-4039 net-

work. Fig. 8a shows the size of ðr; sÞ-core as a function of s
for various values of r. In Fig. 8b, we plot the size of (15,1)-

core with anchors as a function of number of anchors selected

by solving ILP, greedy heuristic and simulated annealing.

With no anchors, the (15,1)-core has 719 nodes, that is about

18 percent of the overall nodes. By having only 4 percent of

nodes as anchors (using ILP), the size of the (15,1)-core with

anchors is 1376 nodes, which is about 34 percent of the overall

nodes, and is a significant improvement with such a small

number of anchor nodes. Moreover, we observe that simulated

annealing performed with 20,000 iterations outperforms the

greedy heuristic.

Finally, in Fig. 9, we plot the the sizes of ðr; sÞ-cores with
anchors as a function of number of iterations in the simulated

annealing heuristic. In particular, for the ER-3000 network,

we plot the size of anchored (6,2)-core as a function of itera-

tions in Fig. 9a, and for the BA-3000 network, we plot the size

of anchored (8,3)-core as a function of the number of itera-

tions in Fig. 9b. For various values of jAj, we see a rapid

increase in the size of cores initially, and then the plots begin

to flatten after about 10,000 iterations suggesting the computa-

tion of a near-optimal solution.

C. ðr; sÞðr; sÞ-Core With and Without Anchors for Varying rr

Fig. 10 illustrates the role of anchors in improving the size

of ðr; sÞ-core with varying r values. We fix s ¼ 2, and first

plot the sizes of ðr; sÞ-cores without anchors as a function of

r. Then we select 50 anchors in ER-1000 and BA-1000 net-

works, and 300 anchors in each of the ER-3000 and BA-

3000 networks, and plot the sizes of ðr; sÞ-cores as a function
of r. We observe that the difference in the sizes of cores with

and without anchors is small whenever r and s are either too

close or too far from each other. When r and s are almost

the same, it means nodes have almost all the labels by them-

selves and do not exceedingly depend on neighbors to

acquire all the desired labels. On the other hand, if r and s
are too far off, it means that nodes depend on neighbors

excessively for the desired labels. In such a situation, if there

are not a sufficient number of neighbors and labels in the

neighborhood of a node, it will drop out unless it is an

anchor node. In the worst case, only the anchors continue to

participate as we also note this behavior in plots in Fig. 10.

Thus, maximum benefit of anchors in improving the size of

ðr; sÞ-cores is noted for certain values of r=s depending on

the underlying network topology. In our plots, anchors are

maximally beneficial for r=s ¼ 3 in case of ER-1000,

ER-3000, and BA-3000 networks, and r=s ¼ 2:5 in case of

BA-1000 network.

D. Generalized ðr; sÞðr; sÞ-Core
In Fig. 11, we illustrate the significance of anchors in

improving the sizes of generalized ðR;SÞðR;SÞ-cores. For each of

Fig. 8. (a) Size of the ðr; sÞ-core as a function of s for various r ¼ 10; 15;
and 20. (b) Size of the (15,1)-core with anchors as a function of the number of
anchors. The baseline indicates the size of (15,1)-core with no anchors.

Fig. 9. For ER–3000 and BA–3000 networks, sizes of the anchored
ðr; sÞ-cores as functions of the number of iterations in simulated annealing
for various values of jAj.

Fig. 10. Nodes in ðr; 2Þ-core as a function of r with and without anchors.
The subplot within each plot illustrate the difference in the sizes of
ðr; 2Þ-cores with and without anchors as a function of r.
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the ER-1000, ER-3000, BA-1000, and BA-3000 networks, we

randomly assign two to four labels to each node from a set of

ten labels, that is 2 � jSij � 4; 8i. Moreover, each node

requires a set of four to eight labels (4 � jRij � 8), again
selected randomly, in its closed neighborhood to continue par-

ticipating in the network. The exact SS and RR that we use in

Fig. 11 are available in [48]. However, a summary of SS and RR
used are given in Tables I–IV, in which the ðjSij; jRijÞth entry

indicates the number of nodes that are assigned jSij labels and
that require jRij labels in their closed neighborhoods. For

instance, in Table I, the number of nodes that are assigned

jSij ¼ 2 labels, and which require jRij ¼ 8 labels in their

closed neighborhoods for participating in the network is 61.

All the plots in Fig. 11 illustrate that anchors (selected by

either greedy or simulated annealing) clearly improve the

sizes of generalized ðR;SÞðR;SÞ-cores as compared to the baseline

cases, in which there are no anchors. Next, we give a numeri-

cal evaluation of the running times of heuristics.

E. Running Timing Plots

In Fig. 12, we plot the running times3 of greedy and simu-

lated annealing heuristics as a function of the number of

anchors in the case of anchored (5,2)-core in ER-1000,

anchored (6,2)-core in ER-3000, anchored (6,2)-core in BA-

1000, and anchored (7,3)-core in BA-3000 networks. We

observe in all the plots that the running time of greedy

increases as the anchors increase. However, for a fixed number

of iterations, the running time of simulated annealing remains

almost constant and does not change with the number of

anchors. In fact, the running time increases only if the number

of iterations increases. Moreover, as compared to greedy, sim-

ulated annealing scales well with an increase in the network

Fig. 11. Nodes in generalized ðR;SÞðR;SÞ-core with anchors as a function of the number of anchors selected using greedy and simulated annealing. The baseline
indicates nodes in ðR;SÞðR;SÞ-core without anchors.

TABLE I
ER-1000

TABLE II
ER-3000

TABLE III
BA-1000

TABLE IV
BA-3000

Fig. 12. Computation time of greedy and simulated annealing (using ten and
twenty thousand iterations) as a function of the number of anchors.

3 We performed simulations on an Intel Core i7 machine with a 3.6 GHz
processor, and 16 GB of RAM.
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size. It not only takes significantly lesser time than greedy, but

also produces comparable results in terms of the sizes of the

anchored ðr; sÞ-cores.

IX. FURTHER DIRECTIONS AND CONCLUSIONS

The notion of ðr; sÞ-core and the anchors based maximi-

zation of ðr; sÞ-core can be extended in many different

directions. Some of the further directions are described

below.

Node Relabeling to Maximize ðr; sÞðr; sÞ-Core. The size of the

ðr; sÞ-core depends on both the structure of the network and

the assignment ‘ of labels to nodes. So far, we have seen the

significance of anchor nodes to increase the size of

ðr; sÞ-cores, while assuming that nodes’ labels are fixed. How-

ever, if we are allowed to change the labels of nodes, we get

an alternate way – node relabeling approach – to further

increase the size of ðr; sÞ-core. In practice, re-assignment of

labels can be achieved by incentivizing users to change their

attributes (e.g., sensing capabilities, resources). An example

of this node relabeling approach is presented in Fig. 13. With

the initial labels, the (6,2)-core is an empty graph. However, if

we change the labels of nodes appropriately, the (6,2)-core is

the whole graph. Thus, the problem is to find an optimal

assignment of labels, that is ‘, to maximize the ðr; sÞ-core. For
instance, using a result (Theorem 1) in [49], we establish that

for any positive integer s, we can always find a labeling of a

graph G such that its b5s2 c; s
� �

-core is the graph G itself under

certain conditions.

� the minimum degree of G is at least two,

� a star graph with six leaf nodes , denoted by K1;6 is not

an induced subgraph of G, and
�

Along these lines, another interesting direction is to deter-

mine the (structural) conditions on the network for a given r
and s, which if satisfied would guarantee the existence of

labeling ‘ through which the ðr; sÞ-core of the network con-

sists of the whole network. Moreover, in case the node labels

are pre-defined, and changing the labels of all (or most) of the

nodes is not feasible, we can formulate a budgeted node relab-

eling problem, in which a fixed number of nodes (or labels)

can be changed with the objective of maximizing the size of

the ðr; sÞ-core.
Connectivity Augmentation to Maximize ðr; sÞðr; sÞ-Core:

Another way to improve the size of ðr; sÞ-core is by the strate-

gic addition of edges. For instance, one can ask about the mini-

mum number of edges that should be added to the labeled

network such that the resulting ðr; sÞ-core consists of the whole
network. The problem is related to the connectivity augmenta-

tion problem (e.g., [50]), in which the goal is to determine the

minimum edge set which if added to the existing graph induces

the desired connectivity or structural robustness. In Fig. 14, we

illustrate the effect of strategically adding more edges in

improving the size of ðr; sÞ-core, in which the size of original

(5,2)-core is three. However, by adding four extra edges (as

highlighted in Fig. 14c), the (5,2)-core consists of the whole

network. In fact, we can also employ a combination of these

approaches simultaneously, for instance, the anchors and and

extra edges. We illustrate this synergistic approach in Fig. 14d,

Fig. 13. Increasing the size of ðr; sÞ-core through node relabeling. (a) An initially labeled graph. (b) (6,2)-core with the initial labels. The (6,2)-core is an
empty graph in this case. (c) (6,2)-core with the new labels. All nodes are included in the core.

Fig. 14. (a) A network with ten nodes and five labels R ¼ f0; 1; 2; 3; 4g. (b) (5,2)-core of the network. (c) The (5,2)-core after adding four extra edges
(highlighted). (d) The (5,2)-core after adding two extra edges and a single anchor (highlighted).
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in which we have one anchor ad two extra edges that result in

the (5,2)-core consisting of the whole network.

Further Generalizations of ðr; sÞðr; sÞ-Core: We discussed a

generalization of ðr; sÞ-core in Section VII, in which nodes

contain different number of resources (labels). Moreover,

nodes have their own personalized requirements in terms of

labels that need to be available in their neighborhoods for

continuous participation. However, we assumed that a node

shares its resources uniformly with all of its neighbors. Fur-

thermore, neighbors on which a node depends for resources

and neighbors with whom it shares its resources are identical.

By considering directed graphs, we can distinguish between

two types of neighbors. The out-neighbors of a node u in a

directed graph can represent the set of nodes with whom u
shares its resources, whereas, the in-neighbor can correspond

to the individuals that share their resources with u. Now, u
continues to participate and share resources with out-neigh-

bors as along as it receives a desired set of resources from its

in-neighbors. As in the case of undirected networks, we can

introduce anchors to maximize the number of participating

individuals.

As an example, consider a directed network of ten nodes

in Fig. 15, in which each node is assigned two distinct

labels (s ¼ 2) from a set of five labels R ¼ f1; 2; 3; 4; 5g. A
node continues to be a part of the network if it finds all five

labels in R between itself and its in-neighbors, otherwise, it

drops out from the network. At the end, the sub-network

that remains is the ðr; sÞ-core, where r ¼ 5 and s ¼ 2. We

observe that the (5,2)-core is empty (Fig. 15b). However, if

we make three nodes (green circled) as anchors, (5,2)-core

consists of all ten nodes, as each non-anchor node finds a

complete set of five labels between itself and its in-

neighbors.

X. CONCLUSIONS

In cooperative networks, reciprocity and mutual benefit are

significant in attaining sustainable cooperation among its mem-

bers. Individuals participate in a network as long as they recog-

nize a sufficient value in such a participation, which depends

both on the number and types of peers also participating, which

may be different in terms of their attributes, capabilities, resour-

ces, information etc. To model such an engagement among het-

erogeneous nodes within a network, we introduced the notion

of ðr; sÞ-core. We considered that each node had a subset of

resources that are available within the overall network. A node

shared its resources with neighbors as long as it acquired the

missing resources from them also. ðr; sÞ-core of the network

was the sub-network in which each node had access to all the

resources available within the network. We observed that

ðr; sÞ-core of the network could be small due to the cascading

withdrawal of individuals. To maximize the size of the

ðr; sÞ-core, we utilized the idea of anchors – individuals that

continued to participate irrespective of the attributes of their

neighbors. We showed that by introducing few anchors that

are placed strategically within the network, the size of the

ðr; sÞ-core can be significantly increased.We analyzed the com-

plexity of the anchors selection problem in detail showing that it

is a computationally challenging problem. In fact, we classified

the cases in which the problem is polynomial-time solvable,

NP-complete, and inapproximable. We also presented heuris-

tics to select anchors, and showed that the anchors selected

using the proposed heuristics significantly improved the sizes of

the ðr; sÞ-cores with anchors.
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