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Abstract

The applicability of employing a parameter-dependent control to a nuclear pressurized water

reactor is investigated and is compared to that of using an H1 control. A linear time-invariant

controller cannot maintain performance over the entire operating range. The parameter-

dependent synthesis technique produces a controller which achieves speci�ed performance

against the worst-case time variation of a measurable parameter which enters the plant in a

linear fractional manner. The plant can thus have widely varying dynamics over the operating

range. The controllers designed perform well over the entire operating range.

Keywords: parameter-dependent control, gain-scheduling,H1 synthesis, system iden-

ti�cation, nuclear reactor

1 Introduction

In France and certain other countries the major contribution to electricity production is provided

by nuclear power. When this is the case, the nuclear power plant must provide electricity as it

is needed and the plant becomes a time-varying system with dynamics changing slowly as the

internal power changes. Nonetheless, large transients can occur, for example, when the plant

shuts down. Most nuclear power plants are pressurized water reactors (PWR). The dynamics

of a PWR change enough over its operating range that a linear time-invariant (LTI) controller

cannot guarantee performance over the entire range, especially when operating conditions change

suddenly.
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If a �xed LTI controller is not capable of maintaining performance over the entire operating

range, then a possible approach to control a PWR is to design a parameter-dependent controller

with the operating power as the parameter. One advantage such a controller would have over

a standard gain-scheduled controller is that performance and stability could be guaranteed over

the operating range of the plant, and large transients in switching are avoided. An additional

advantage of linear parameter-varying (LPV) synthesis is that the controller is designed in one step,

rather than by designing several controllers and then scheduling them. The potential drawback of

LPV synthesis is that the technique is conservative. This conservatism may be so great that the

controller performs quite poorly.

Previous work focused on related aspects of the control of a PWR. The dynamics change enough

during the lifetime of the fuel that the controllers need to be periodically updated. This work

investigated the applicability of employing �-synthesis techniques to maintain the performance of

a PWR over the entire lifetime of the fuel [1] [19].

In this paper our goal is control of this system over the operating range from 50% to 100% of

its output power. We show the di�culties an LTI controller encounters because of the changing

dynamics and how LPV control solves them. For the general control designer, the main points of

interest are the construction of the parameter-varying model from identi�ed, rather than analytic,

models, and the use of a design weight which varies as the operating point changes. The material

in this paper arose from previous work. In particular, the system identi�cation and H1 control

design were originally presented in [2, 3, 4] and the LPV synthesis in [5, 4]. The aim of this paper

is to review the main results obtained and evaluate them using a realistic nonlinear simulator.

Section 2 reviews much of the theoretical machinery applied in this work. Section 3 is devoted

to a description of the problem statement. Section 4 describes the identi�cation and modelling

of the plant. Section 5 presents the design of H1 controllers around two operating points. The

main results of the chapter are presented in Sections 6 and 7 which describe the LPV synthesis

and evaluation of the controllers.

2 Review of Linear Parameter-Varying Synthesis

We assume the reader has some familiarity with the fundamentals of feedback system analy-

sis. In particular, we assume knowledge of the small-gain theorem and of memoryless operators.

Willems [6] is an excellent reference for such material. The basic concepts of �-analysis and �-

synthesis are also assumed; they can be found in Packard and Doyle [7]. Complete and rigorous

explanations of this work can be found in [8, 7, 9].

The notation is standard. Rand C denote the �elds of real and complex numbers, respectively.

R
k and C k denote the real and complex k-dimensional vector spaces. Rn�m and Cn�m are the rings

of real and complex n�m matrices. If M 2 Cn�m , the maximum singular value of M is denoted

by �(M ); M? denotes the complex conjugate transpose. The Hilbert space of square summable
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sequences is denoted by `2; L(`2) represents the set of all linear time-varying operators on `2. The

shift operator on `2 is denoted by z�1. For a rational transfer function matrix G(z), if all poles of

G(z) are in the open unit disk, then kGk1 = max!2[0;2�] �
�
G(ej!)

�
= maxjzj�1 � [G(z)] :

2.1 Linear Fractional Transformations

The background machinery for almost all results in this work is that of linear fractional transfor-

mations (LFTs). These were �rst introduced by Redhe�er [10], but did not gain acceptance in

the control community until the work of Safonov [11] and Doyle [12]. With LFTs, we can easily

describe sets of systems as an operation between an operator and a matrix. All linear intercon-

nections of systems and LFTs and more importantly, any rational function, can be represented as

an LFT [13, 14].

Our notation for LFTs will be as follows. Let � denote the set

�
diag [�0In0 ; : : : ; �mInm ;�m+1; : : : ;�m+F ] : �i 2 L(`2); �mj

2 L(`2)
mj�kj

	
:

Let B� = f� 2� : k�k`2!`2 � 1g: For each � 2�, consider the loop equations

z = Pzvv + Pzuu

y = Pyvv + Pyuu

v = �z:

This set of equations is shown pictorially as a block diagram in Figure 1, and we let

P =

24 Pzv Pzu

Pyv Pyu

35 :
Usually P will be considered as a matrix of complex numbers. Its use in an LFT framework,

however, gives it interpretations as a system and an operator depending on our set �. See [13, 14]

for further details.

Pyv

Pzv

Pyu

Pzu

�-

�

� �y u

z v

Figure 1: Block diagram representing a general LFT.
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We can eliminate z and v from the loop equations, solving for y in terms of P , �, and u, which

gives us

y =
�
Pyu + Pyv�(I � Pzv�)

�1
Pzu

�
u (1)

subject to the condition, which we shall henceforth assume, that I � Pzv� is invertible as an

operator in L(`2) for every � 2 B�. The operator � ? P is said to be stable in this case.

Equation 1 will be denoted as y = (� ? P )u: Another common notation is y = Fu(�; P )u:

In particular, when all �i 2 L(`2) are time-varying (with a possible exception of one transform

variable), then �?P is stable for all � 2 B� if and only if there exists 0 < X 2 T and 0 < Y 2 T

such that

PzvXP
?
zv �X < 0 P ?

zvY Pzv � Y < 0;

(see [15]) where T is referred to as the set of allowable transformations for �, and is as follows

T =
�
T 2 Cn�n : det(T ) 6= 0; T� = �T; 8� 2�

	
(2)

Furthermore, P is stabilizable with respect to � i� there exists X > 0, X 2 T such that

PzvXP
?
zv �X � PzuP

?
zu < 0:

If so, there exists a constant matrix F such that A+BF is stable. Detectability follows by duality.

A detailed discussion of these results can be found in [16]-[17].

2.2 H1 Synthesis

In this section we assume all systems are LTI. P will refer to the generalized plant, that is, what

is normally called the plant, plus any weighting functions. Consider the standard feedback system

shown in Figure 2. The vector signal w of exogenous inputs contains all disturbances, noises, and

commands; e is the vector signal of quantities we wish to minimize; u and y are the controls and

measurements, respectively.

� �

�

-

e
P

u

w

K

y

Figure 2: Feedback interconnection of P and K.

Roughly speaking, our goal is to �nd a controller K which minimizes the transfer function

from w to e, denoted P ?K, in the sense of making the maximal energy captured by P ?K small.

This problem was elegantly solved by Doyle et al. in the classic paper [8].
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The actual synthesis procedure is sub-optimal in the sense that a controller K is found such

that kP ?Kk1 <  for some pre-speci�ed . There exists some optimal o such that for all  < o

no stabilizing controller can be found for which the inequality holds. Optimal H1 controllers do

not have many desirable qualities [18] and the standard practice is to approximate the optimal

controller with a sub-optimal one for some desired tolerance. This procedure of minimizing the

value of  to a prescribed tolerance is known as -iteration. We may refer to a controller as being

an H1 optimal controller: what we really mean is a sub-optimal controller to some tolerance.

Finally, note that in robust performance terminology, H1 synthesis is a one block technique,

and this block is a performance block. When there is uncertainty present in the model, we will still

perform H1 Synthesis by collecting all the uncertainty blocks into a diagonal structure with the

performance block and covering this structure with one full block. This approach is conservative.

2.3 LPV Synthesis

In this section a brief overview of the LPV synthesis theory is presented. A complete and rigorous

explanation of the synthesis technique can be found in [9].

Consider the general time-varying system shown in Figure 3, where x(k); e(k); y(k); w(k); and

u(k) are the state, error, measurement, disturbance, and input vectors, respectively. We assume

the time-variation of the plant can be represented as an LFT of a parameter set and a constant

matrix. Thus P (k) is given by

P (k) = �(k) ? P (3)

where

�(k) = diag [�0(k)In0 : : : �m(k)Inm ] (4)

where each of the parameter variables �i is assumed to be a time-varying operator on `2 and

satis�es j�i(k)j � 1 for all k � 0 and 0 � i � m, and ni is the dimension of the identity matrix

associated with �i. Notice that one �i may represent the shift operator. Equation 4 becomes

� = [z�1In0 ;�]. We assume that each �i can be measured on-line. Note that any system

with rational time-varying entries can be represented in this framework, and many others can be

arbitrarily closely approximated. This type of system is known as a parameter-dependent LFT

system. The representation of P as an LFT is shown in Figure 4.

� �

� �

� �P (k)

x(k + 1)

e(k)

y(k)

x(k)

w(k)

u(k)

Figure 3: Time-varying system.

The controller we will design for this plant will also be parameter-dependent, depending on

the same �i's as the plant; these copies are collectively denoted by b�. K thus has the form shown
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in Figure 5. P can be augmented to collect all the time-varying parameters and states together;

K can then be treated as a simple matrix. This is depicted in Figure 6, where R is the augmented

form of P , and K is a matrix. The problem then appears as a robust control problem with a

special structure on the plant and parameters. The design objective is to �nd a controller K

such that the interconnection is stable and the `2 ! `2 induced norm from w to e is small for

all allowable parameter variations �(k) (see Equation 4). Combining the gain from w to e with

the gain of R ?K (that is, treating the gain from w to e as a \performance block," another block

in the � structure) gives us a small-gain condition. Since the small-gain theorem can be quite

conservative, we can reduce the conservatism by introducing scaling matrices from the set T ,

given in Equation 2. Recall from Section 2.1 such matrices commute with the set of parameter

variations.

�

-

�

� �

� P

�

z�1In0

y

e

u

w

Figure 4: Parameter-dependent plant. The z�1In0 term represents the states of P , and the �

represents the time variation of Equation 4.

-

�

� �

K

z�1Ir0b�

u y

Figure 5: Parameter-dependent controller; z�1Ir0 represents the states of the controller and b�
the time variations.

The resulting condition is then the state-space upper bound (SSUB) of [7]. This condition now

becomes (compare Lemma 3.1 of [9] and Theorem 10.4 of [7]):

Theorem 1 Let R be given as above, along with an uncertainty structure �. If there is a T 2 T

6



�

�

-

-

� �

-

�

-

�

K

b��

we R

z�1In0

z�1Ir0

Figure 6: Parameter-dependent closed-loop system.

and a stabilizing, �nite-dimensional, time-invariant K such that
24 T 0

0 I

35 (R ?K)

24 T�1 0

0 I

35
1

< 1 (5)

then there is a , 0 �  < 1, such that for all parameter sequences �i(k) with j�i(k)j � 1 for all

k � 0, the system in Figure 6 is internally exponentially stable, and for zero initial conditions, if

w 2 `2, then kek2 �  kwk2.

Pictorially, this theorem is shown in Figure 7. A natural question arising from this theorem is

when does such a K exist for any value of , not just  < 1? It is a simple corollary of results

in [16] that such a K will exist when R is stabilizable and detectable with respect to the block

structure (see de�nition given in Section 2.1) � = diag

�
z�1In0 ; z

�1Ir0 ;�;
b�� :

The important fact resulting from Theorem 1 is that the synthesis of T and K to meet the

objective can be cast as a computationally tractable convex optimization problem involving 3

LMIs. These LMIs have the following form

UT
?

0@E
24 X 0

0 I

35ET
�

24 X 0

0 I

351AU? < 0;

V?

0@ET

24 Y 0

0 I

35E �
24 Y 0

0 I

351A V T
? < 0;

24 X I

I Y

35 � 0;

where U?, V?, and E are obtained from the system realization, and X and Y are structured pos-

itive de�nite matrices. Interested readers may �nd the exact LMIs in Theorem 6.3 of Packard [9].
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E, U , and V have a scaling  absorbed into them, and thus the synthesis procedure is a -

iteration, as H1 is. Once a desired  level has been reached, a controller K can be obtained by

linear algebraic operations on X and Y .

R

K

T T�1

-

�

-

�

� �

�� ��

�� ��

1

< 1

Figure 7: Diagram of Theorem 1.

A few points are important in understanding the rami�cations of employing the state-space

upper bound (SSUB). Most importantly, this technique results in a controller optimal with respect

to a time-varying perturbation with memory (the sequence �(k) of Equation 4, becomes a time-

varying operator with memory, rather than a sequence of complex numbers). The relationship

between such an operator and a parameter useful in gain-scheduling is tenuous, at best. Depending

on the problem, this technique could conceivably yield controllers so conservative as to have

extremely poor performance. Nonetheless, if a controller with acceptable performance can be

designed with this technique, then it will have at least the same level of performance for all

variations of the operating point (the operating point is a �xed value of �). Additionally, a time-

varying operator with memory does not in general have a frequency spectrum, so there is no way to

\�lter" it to achieve a closer relationship to an operating parameter. Moreover, it is interesting to

contrast this technique with �-synthesis where instead of the SSUB the frequency-domain upper

bound is usually employed; this di�erence reects the di�erent assumptions about the type of

perturbations.

If � is a constant value and is \wrapped into" the plant, the resulting model becomes a

linear time-invariant model around the operating point of the �. Similarly, we can do this for

controllers, and the LPV controller becomes a linear time-invariant controller. We will refer to the

LTI controller obtained by holding � at a constant value as the LPV controller locked at the value

of �. We are interested in looking at controllers locked in various positions because by comparing

them with the full LPV controller we hope to gain better insight into the nature of LPV control.
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3 Problem Statement

3.1 Description of the primary circuit

Consider the application depicted in Figure 8. This is the primary circuit of a PWR, and our goal

is to control this part of the reactor.

Steam Flow

AA
AA
AA

AA
AA
AA

AA
AA
AA

AAAA

AAA

A
A

AA

A

A

A
A

Steam 
Generator

PWR

Pressurizer

d(t)

Tm(t)

u1(t)

Primary 
TemperatureAO(t)

 Axial Offset

u2(t)

Primary Pump

Figure 8: Primary circuit and steam generator.

The pressurized water in the primary circuit transmits the heat generated by the nuclear

reaction to the steam generator. The rate of the reaction is regulated by the control rods. The

rods capture neutrons, slowing down the nuclear reaction; withdrawing the rods increases the

reaction.

Because of the way in which the control rods enter the reactor, the rate of reaction is always

higher at the bottom of the reactor. The axial o�set is de�ned as the di�erence in power generated

between the top and bottom of the PWR. Safety speci�cations require minimizing the axial o�set;

this also increases the lifetime of the fuel and reduces operating costs.

The pressurizer has an inner control loop which holds the pressure in the primary circuit

constant. In the steam generator, water of the secondary circuit turns into hot steam, which

drives a turbo-alternator to generate electricity.

3.2 Control Objective

The main objective in controlling a PWR is to provide the commanded power while respecting

certain physical constraints. Since the generated power in the secondary circuit, noted P, is closely
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related to the steam ow, we will assume in the sequel both signals equal. Hence, the required

power corresponds to a speci�c steam ow that may be viewed as a measurable disturbance. The

pressure is held constant, thus for a steam ow increase in the secondary circuit, the temperature

in the primary circuit will decrease. From the primary circuit standpoint, one natural control

objective is to track a temperature reference derived from the steam ow. A secondary objective

is to minimize the axial o�set to comply with safety speci�cations.

To achieve such objectives, two sets of rods are available as control. The rates of motion of

the control rods are denoted u1 and u2, respectively; the positions of the rods are denoted v1

and v2, respectively. The positions are measurable. Due to the physics of the reactor, u2 has

more authority than u1 at low power and using it results in a smaller axial o�set. At high power,

however, u2 has almost no authority, so all control must come from u1. Furthermore, the dynamics

of a PWR change with both the operating power and the reactivity of the fuel during the lifetime

of the reactor [19].

Due to the complexity of the physical plant, performance speci�cations cannot be uniquely

or easily derived. Moreover, safety speci�cations require basically that any meaningful physical

variable lies in a pre-speci�ed domain. Thus, it makes the control problem mainly driven by

constraints. In the unconstrained setting, the problem is to derive performance speci�cations that

are consistent with the actual constraints. The idea is to have, as much as possible, the same closed

loop behavior with and without constraints. Indeed, investigations into the best performance

speci�cations are currently underway at Electricit�e de France (EDF). Below are the �rst attempts

to automatically control the axial o�set, a speci�cation we will also use here. Nonetheless, we do

not have precise speci�cations the controllers must meet.

4 System Identi�cation and Modelling

The �rst step of any design procedure is to obtain a model. Here we review the identi�cation

process for the PWR. Our goal is to obtain a reasonably low order model for the plant.

4.1 Identi�cation Experiments

The identi�cation experiments were carried out using a realistic nonlinear simulator developed at

EDF. The simulator is based on various �nite element models of the PWR.

The system possesses nonlinearities of two types. The �rst depends on the operating condition

and hence is strongly related to the commanded power. No a priori knowledge can be used in the

identi�cation process for this type of nonlinearity, so the nonlinear (NL) simulation data are ob-

tained around di�erent operating points and the resulting model is a linearization at the operating

point. The second nonlinearity is on the input magnitude of v2. This control becomes ine�ective

when the commanded power tends to its maximum. This maximal value is usually referred to as
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the nominal power of the plant, Pn. The static characteristic of the input e�ectiveness is actually

known, so its inversion allows identi�cation close to the nominal power, where the nonlinear e�ect

is maximal.

4.2 MIMO State-space Description

Consider the system depicted in Figure 9, where Tm, AO, PI , d, v1 and v2 are the temperature, the

axial o�set, the primary power, the steam ow and the vertical positions of the rods, respectively.

Recall from Section 3 that, from the primary circuit control standpoint, the steam ow is a

disturbance, thus it needs to be an input in the identi�cation process.

�

�

�

�

�

�

Nuclear

Boiler

v1

v2

d

Tm

AO

PI

Figure 9: Input/Output diagram of the primary circuit.

The physical system is described by an LTI system around an operating point given by the

following: 24 x(k + 1)

ys(k)

35 =

24 A B �

C D

35
26664
x(k)

v(k)

d(k)

37775 (6)

with

ys(k) =

26664
Tm(k)

AO(k)

PI(k)

37775 and v(k) =

24 v1(k)

v2(k)

35
where x(k), ys(k), v(k), and d(k) represent the state, the output, the input, and the disturbance

at time k, respectively. The parameters of the state-space realization consist of the elements of

the A, B, C, D, and � matrices.

Since the number of parameters rises quadratically with the state dimension, there are a large

number of them in a state-space realization. To meaningfully reduce them, speci�c realizations

are used where some parameters are �xed at either zero or one, for example, the well known

MIMO canonical forms. Unfortunately, these realizations still contain too many parameters to be

uniquely identi�ed.

Re-parameterizing the realizations using physical considerations can overcome this problem.

Preliminary identi�cation of several SISO and MISO transfer functions are performed providing

insight into an appropriate re-parameterization (cf . references in [2]). Indeed, the primary tem-

perature and power are mainly related to the control inputs by a second and �rst order system,
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respectively. Furthermore, the inputs a�ect the plant dynamics in an identical manner, although

the gains are di�erent. The axial o�set is almost a linear combination of the inputs: thus no

states are needed for it. These insights provide an appropriate identi�cation-oriented state-space

realization structure. Hence, only the temperature and the power have dynamics. The e�ect of

the disturbance has a larger delay than the e�ect of the control and hence the dimension of the

state must reect this. More precisely, 3 delay values for each of temperature and power (instead

of 2 and 1, respectively, in the disturbance-free case) are required to appropriately predict the

input-output behavior. This leads to a sixth order state-space realization de�ned as follows:

24 A B �

C D 0

35 =

26666666666666666666664

0 1 0 0 0 0 b11 b12 0

0 0 1 0 0 0 0 0 0

a111 a112 a113 0 a122 0 0 0 3

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

a211 0 0 a221 a222 a223 0 0 6

1 0 0 0 0 0 0 0 0

0 c22 0 c24 0 0 d12 d22 0

0 0 0 1 0 0 d13 d23 0

37777777777777777777775

: (7)

The state matrix A can be partitioned as follows:

A =

24 A11 A12

A21 A22

35
where A11 and A22 denote the third order systems for the temperature and the power; A12 and

A21 represent the cross-coupling matrices which contain only one non-zero term, appropriately

located. The input matrix B accounts for the actual delayed e�ect of the control inputs on

primary temperature and power, so only the �rst row of B has non-zero elements. Similarly,

the delay between the control inputs and the disturbance can be taken into account using only

the third and sixth elements of the disturbance input matrix �. The second row of the output

matrix C adds memory to the axial o�set. Finally, the elements of D correspond to the direct

terms appearing in the axial o�set and the power. This results in a speci�c identi�cation-oriented

realization with 18 parameters, instead of the 28 parameters in the standard canonical form.

4.3 MIMO Identi�cation

Similarly, the overall system (6) can also be modelled by the transfer function:

ys(k) = Gv(�; q)v(k) +Gd(�; q)d(k) (8)

where q denotes the standard forward shift operator (the corresponding z operator will be omitted

for simplicity), and � represents the vector of free parameters to be identi�ed.
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Given a description (8) properly parameterized by the speci�c form (7) and the input{output

data v, ys and d, the prediction error " is computed as follows:

"(k) = ys(k)� Gv(�; q)v(k) � Gd(�; q)d(k):

The identi�cation method consists in determining the parameter estimates by minimizing the

following quadratic criterion:

b� = arg min det
�

"
1

N

NX
k=1

"(k)"T (k)

#

using an iterative Gauss-Newton algorithm [20].

4.4 Con�rmation and Results

Finally, we con�rm the identi�ed model is accurate by checking how well it predicts the behavior

of the physical system when simulated with a di�erent data set to see how well it matches the

actual output of the physical system. This procedure was successful over a large operating range

due to the static inversion performed at the plant input. In particular, the speci�c form used for

the parameterization was veri�ed.

The time-domain responses of the identi�ed model obtained around 0:5Pn (dashed) are plotted

against the NL simulation data (solid) in Figure 10. The inputs used to generate this data | v1

(solid), v2 (dashed) and d (dotted) | are plotted in the right lower diagram in Figure 10. The

step-responses of the identi�ed models obtained around 0:5Pn, 0:9Pn and 0:99Pn, called bG0, bG1,

and bG2, respectively, are shown in Figure 11.

4.5 Model Reduction

Since our design methods yield controllers with state dimension equal to that of the open-loop

interconnection structure, often we can reduce the order of the controller by reducing the plant

model before controller synthesis. In the present case we are reducing the sixth order models. A

balanced realization technique [21], including speci�ed model reduction weightings, is used [22].

In particular, dynamic behavior at high frequencies can be considered uncertainty. Therefore,

the measurements are weighted with low-pass �lters to attenuate the high frequency dynamics.

Finally, the reduced order model is obtained by truncating weakly controllable and observable

states. The resulting MIMO reduced order plant model is �rst order, i.e., only the dominant mode

is retained.

The nominal reduced order plant model is the design model G0 while the nominal plant model

is bG0. Figure 11 shows the step-responses of bG0 in solid lines against those corresponding to G0

in dashed lines. For purposes of comparison, those corresponding to bG1 (dotted) and bG2 (mixed)

are plotted on the same graphs.
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Figure 10: NL Simulation data versus time-domain responses of bG0. The data is in solid lines,

and the time response in dashed lines.

Due to the lower order approximation, model inaccuracy is unavoidable. Since the high fre-

quency dynamics are no longer modelled, there is a signi�cant di�erence between the identi�ed

model and the reduced order model. Figure 12 shows the Bode plots corresponding to the multiplic-

ative-errors relating the design modelG0 to bG0 (dashed), bG1 (mixed) and bG2 (dotted), respectively.

`^' is replaced by `~' to denote these errors. Please note, the �gure also contains the uncertainty

weight which will be explained later.

4.6 Parameter Dependence

Our model in the form of Equation 3 will be derived using the �rst-order models of the previous

section with the operating power P as the parameter. To derive the parameter dependence, each

term of the three �rst-order models is compared; those which vary are individually �tted with a

rational function of �1, using a least-squares technique. For the PWR, �rst order LFTs of the

form e+f�1(1�g�1)
�1h �t the parameters extremely well, as shown in Figure 13. The parameter

variation is normalized using P = (�1 + 3)=4 such that �1 � �1 � 1. Thus, 0:5Pn corresponds to

�1 = �1, 0:9Pn corresponds to �1 = 0:6, and 0:99Pn to �1 = 0:998 (these are the asterisks in the

�gure). The resulting model with �1-dependence, G�1 , becomes

24 A B

C D

35 =

26666664
a(�1) bv1(�1) bv2(�1) b3

c1 d11 dTm2
(�1) d13

c2 d21 �bv2(�1) d23

cAO(�1) dAO1
(�1) d32 0

37777775 : (9)
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Figure 11: Step-responses of bG0 (solid), G0 (dashed), bG1 (dotted) and bG2 (mixed).

The inputs for this model are the vertical positions v1, v2, and the steam disturbance d; the outputs

are the mean temperature Tm, the primary power PI, and the axial o�set AO, respectively (see

Figure 8). Placing this model in the form of Equation 3 results in a system shown in Figure 4,

where n0 = 1 and n1 = 6, that is � = diag[z�1; �1I6].

From Figure 13, notice the system matrix a(�1) is inversely proportional to the operating power

and the time constant changes by a factor of 2 over the operating range. Also, the variation of bv2

and dP2 di�ers only by a constant, �, which is used to reduce the size of the �nal �-block. More

importantly, the e�ectiveness of u2 decreases as the power increases, and is almost zero at full

power. The gain in the axial o�set channel increases as power increases, making it more di�cult

to control at high power. In particular, the e�ect of u1 on the axial o�set (dAO1
) increases, while

the e�ect of u2 decreases. This makes it practically impossible to require any performance on axial

o�set at high power.

5 H1 Controller Design

The �rst controllers are designed using an H1 methodology; this gives us a �rst approximation

for the weights used in LPV synthesis. Recall that H1 synthesis is aimed at disturbance rejection.

A tracking problem such as the PWR can be cast as disturbance rejection by rejecting the low

frequency components of the error between plant output and the reference. As the synthesis is

in continuous-time, the weighting functions are speci�ed in continuous-time as well. Then the

discrete-time H1 controller is obtained using the bilinear transformation. The LPV design is
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carried out in discrete-time.

5.1 Uncertainty Description

As the controllers must stabilize the actual plant, our design methodology must account for the

discrepancy between model and reality. We employ the standard approach of designing a controller

stabilizing the nominal model in the presence of modelling errors.

A multiplicative-error is used to provide a description of the plant mismatch as well as a

characterization of robust stability.

Consider the design model G0 and rewrite it as follows:24 y1(k)

y2(k)

35 =

24 Gv1 Gd1

Gv2 Gd2

35
| {z }

G0

24 v(k)

d(k)

35 (10)

where y1 denotes the controlled outputs and y2 is an auxiliary output:

y1(k) =

24 Tm(k)

AO(k)

35and y2(k) = PI(k):

The plant model description corresponding to the identi�ed plant model bG0 in (8) is obtained by

replacing G with bG in (10).

Given a nominal model Gv1 as well as the weighting function Wm, the multiplicative model

set is de�ned as:

�(Gv1;Wm) = fGv1(I +�2Wm) j �2 stable; k�2k1 � 1g:

A typical robust stability test for multiplicative perturbations is to �nd a stabilizing controller
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value, and the line shows the LFT �t.

K which satis�es

8! ��(WmT ) � 1 () kWm Tk1 � 1 =) kTk1 � kWmk
�1
1

(11)

where T = KG(I +KG)�1 is the plant input complementary sensitivity function and Wm is the

multiplicative uncertainty weight specifying the amount of uncertainty in the model as a function

of frequency.

In the present case, the uncertainty weight is of the form Wm = wmI2, where wm is a stable

minimum-phase scalar valued function and has a large magnitude in the frequency range where

the modelling error is too large; wm is chosen as follows:

� In the frequency range where known dynamics have been neglected,

jwmj � kG
�1
v1 (

bGv1 � Gv1)k2 (12)

where bGv1 is the identi�ed transfer function from v to y1 while Gv1 is the corresponding

transfer of the nominal reduced order model (as shown in Equation 10).

� Outside the frequency range of the experiment, jwmj is large to account for unmodelled

dynamics.

Figure 12 shows wm(s) =
200s+20
s+10

(solid) and the relative modelling errors (12) relating G0 tobG0 (dashed), bG1 (mixed) and bG2 (dotted), respectively
1.

5.2 Performance Speci�cations

The synthesis structure is shown in Figure 14. The design model includes the actuator dynamics,

modelled by two integrators and denoted by Act. Also, the vertical positions of the control rods

1The weight is given in continuous-time using the Laplace transform s.
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and the disturbance d are measured. In this �gure, d, n, r, u, and y refer to the disturbance,

noise, reference, control, and measurement signals, respectively. This synthesis structure leads to

a one degree of freedom (1DOF) controller, thus the controller inputs are the tracking errors or

the measured outputs. In the latter case, no reference is speci�ed and the signal r represents noise.

Note that this structure involves a feedforward on the disturbance since this signal is measured.
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Figure 14: Synthesis structure for the PWR.

To have nominal performance we attempt to �nd a controller K which satis�es

8! ��(WpS) � 1 () kWp Sk1 � 1 =) kSk1 � kWpk
�1
1

(13)

where S = (I+GK)�1 denotes the plant output sensitivity function and Wp denotes the diagonal

weighting matrix reecting the performance speci�cations. Wp is given as follows:

Wp = diag[WTm ;WPI ;WAO;Wpos]

= diag

�
0:01(s2 + 1:2522s+ 0:8)

s2 + 0:0056s+ 1:610�6
; 5; 2; 0:45I2

�1
which weights the performance on temperature, power, axial o�set, and vertical position of the

control rods. To insure low steady-state error in tracking and to reject step disturbances, WTm

resembles an integrator. As a second objective, the control strategy should minimize the e�ect of

the control on the axial o�set. A constant weight WAO is introduced on the axial o�set (dotted

lines). This causes the use of u2 to be preferred over u1 since it has more authority at low power

and results in lower axial o�set. Because the system has fewer degrees of freedom than performance

measures, it is only possible to minimize the axial o�set, not to reject it.

To limit the magnitude of the positions of the control rods, a constant weight Wpos is used

(dotted lines). As an aside, it is interesting to note that if Wpos is omitted, both the H1 and

LPV methods will produce controllers which give a dramatically lower axial o�set. They do this

by moving the control rods in opposition to one another, which clearly will produce lower power

generation at the top and bottom of the vessel. Unfortunately, this type of motion is not physically

possible on this reactor. We eliminate it by placing a penalty on the movement, which works since
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when the rods move in opposition to one another, they must move more to achieve the same a�ect

on the temperature. Penalizing their movement causes them to move together, at the expense of

the axial o�set.

The synthesis structure shown Figure 14 can be redrawn in a more standard way as depicted

in Figure 15.
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Figure 15: Augmented plant P for the PWR.

Consider the two sets of inputs

wr =

24 r

n

35 ; wd =

24 d

dm

35
where wr de�nes the reference and measurement noise at the plant output, and wd represents the

disturbance at the plant input. The structure has also two sets of outputs, noted ep and em. The

generalized plant P consists of 4 blocks arranged 2�2 and the corresponding � structure presents

two blocks on the diagonal. The robust performance objective is achieved if

kP ? Kk1 =

 WpS WpSG

WmKS WmKSG


1

� 1 (14)

Note that for multivariable systems, KSG = KG(I +KG)�1 = T .

Recall from Section 2.2 that our two block problem is treated as an H1 problem by covering

the uncertainty structure with one full block and not exploiting the structure of the problem. This

is conservative, and the diagram is drawn as an implicit two block problem to remind us of that.

5.3 Synthesis

Once the weights have been selected, the design process is simply an iteration on improving the

weights to get a satisfactory controller, using the process detailed in Section 2.2. Two controllers

were designed, for the operating points at 0:5Pn and 0:99Pn, that is G�1 is replaced by the design

models G0 ' Gj�1=�1 and G2 ' Gj�1=:998, respectively. The minimization is carried out iteratively

resulting in suboptimalH1 controllers achieving a closed-loop1-norm of approximately 17:6 and

16, respectively. To meet the robust performance objective given in Equation 14, the weights need
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to be scaled by approximately 1
18
. The weights were slightly di�erent to optimize the performance

at the di�erent operating conditions. The corresponding augmented plant will be termed \P50"

and \P99", while the controllers will be denoted by \H50" and \H99" in the sequel.

5.4 Robustness Analysis

Both H1 designs for H50 and H99 are analyzed with respect to structured uncertainty using � [7].

The upper and lower bounds for � are calculated on the closed-loop response of P50 ? H50 and

P99 ? H99 using the following structure:

� =
�
diag[�2; ;�3] : �2 2 C

2�2 ;�3 2 C
5�6

	
where �2 and �3 are the uncertainty and performance blocks, respectively. Recall the weights

have been scaled as suggested in Section 5.3.

The upper and lower bounds for � using P50 ? H50 with respect to this block structure are

plotted in Figure 16 in solid lines (they lie on top of one another). Furthermore, the maximum

singular values for robust stability (dashed) and nominal performance (mixed) as de�ned in Equa-

tions (11) and (13) are shown in the same plot. Similar bounds are obtained using P99 ? H99.

Since they are close to those shown in Figure 16, they are not included in this paper.
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Figure 16: � bounds for robust performance (RP) and maximum singular values for robust stability

(RS) - nominal performance (NP). The bounds for � are plotted in solid lines, and the maximum

singular values for RS and NP are shown in dashed and mixed lines, respectively.

6 LPV Synthesis

Once the parameterized model G�1 is obtained, the controller design becomes similar to the H1

design of the previous section. The synthesis structure used is the same as for the H1 synthesis,

shown in Figure 14, with uncertainty and performance weights included (see Figure 15). The
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values these weights take for the LPV design are

Wm =
800s+ 20

s+ 10
I12 Wp = diag

�
0:01(s2 + 1:2522s+ 0:8)

s2 + 0:0056s+ 1:610�5
; 8; AO(�); 0:5I2

�1
Placing the augmented plant model in the form of Equation 3 results in a system shown in Figure 4,

where n0 = 7 and n1 = 6, that is � = diag[z�1I7; �1I6].

In general, for a system with widely varying dynamics, the same performance requirements

over the entire operating range may not be desirable or provide adequate performance. For LPV

synthesis, the solution to this problem is to incorporate parameter variations (depending on �1)

into the weights. This may be inadvisable, however, because including a �-dependence in the

weight increases the size of the time-varying perturbation block, which may degrade performance.

Thus the applicability of this technique must be determined on a problem-by-problem basis.

For the PWR, the same performance requirements over the entire operating range are not

desirable. At low power, the axial o�set can be minimized much better than at high, as previously

noted. Thus the weight on the axial o�set will contain a weight depending on �1, which requires

higher performance at low power than at high power. This weight is shown, as a function of �1,

in Figure 17.
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Figure 17: Performance weight on the axial o�set as a function of �1, where P = (�1 + 3)=4. A `*'

shows a value corresponding to 0:5Pn, 0:9Pn, or 0:99Pn.

Two controllers were designed. The �rst is called \LPV #1" and is an LPV controller with

the constant weight on the axial o�set as shown in Figure 17 in dashed line. The second is called

\LPV #2" and uses the same weights as LPV #1, except WAO was allowed to depend on the

operating power, according to Figure 17 in solid line.

For a given open-loop interconnection, we can compare the LTI H1 performance level for the

various designs. We consider the open-loop interconnection used for LPV #2 and close the loop

with each controller. The values obtained over the whole operating range are shown in Figure 18.

For each linear time-invariant design, the best performance level is obtained in the power range
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corresponding to the nominal model used for the synthesis, that is H50 does better at low power

while H99 does better at high power. The graph on the left side in the same Figure, gives a

closer look at the LPV designs (the LTI designs are omitted). Note that LPV #2 achieves a

better performance level at low power. This reects the original intent for adding a delta in the

performance weight.
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Figure 18: LTI H1 performance level of controllers on LFT model: H1 controllers, H50 (dotted)

and H99 (mixed), and LPV#1 (dashed) and LPV#2 (solid).

7 Evaluation

In this section we evaluate the LPV controllers by comparing them with the H1 controllers, H50

and H99.

Figure 19 shows the step responses of the closed-loop systems consisting of each of the con-

trollers and a linearization of the plant at 0:99Pn. Note that both LPV controllers are locked at

�1 = :998. Step responses are shown because we are interested in the low frequency rejection prop-

erties of the closed-loop system. The magnitude of the step is chosen to facilitate the comparison

with NL simulations in the sequel. In the �rst column of plots, the dotted lines are the reference

signals, the dashed lines are the responses with the �rst LPV controller, the solid lines are with

the second LPV controller, and the mixed lines are with H99. The second column of plots shows

u1 and u2 for each of the controllers; u1 is the solid line and u2 the dashed one. Figure 20 is

identical to Figure 19 except that the responses are with respect to a linearization of the plant at

0:5Pn and both LPV controllers are locked at �1 = �1.

At high power the plant is more di�cult to control, because the control rods are almost

withdrawn from the reactor. Referring to Figure 19, the LPV controllers are almost identical in

behavior. They perform equally well, but are not as fast as H99, although they have no overshoot

on the temperature. The noticeable di�erence is that the LPV controllers have less axial o�set

than H99. At this power, we consider LPV #2 the best of these controllers.
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Some of this behavior is preserved in Figure 20, but the model is quite di�erent here. Here H50

is slightly faster than the LPV controllers. The major di�erence at this power is that u2 now has

more control authority than u1, so controllers do better to use it more, since this results in lower

axial o�set. H50 does use u2 more, and the axial o�set is considerably lower. At this operating

point, we consider H50 the best controller.

At low power, u2 is the dominant control, but as the power increases u1 should be used more

and more to better meet the control objectives. The LPV controllers do not change strategy

between these operating points. Notice that the control plots for LPV #2 are almost identical, up

to a scale change in magnitude. This is a result of the worst-case nature of LPV controllers. Even

though, LPV controllers are indeed parameter-dependent, the change in the gain of the controllers

when the parameter varies from high power too low power is too restricted. Since achieving worst-

case performance does not require a change of strategy, and may in fact forbid one, the controllers

do not change their use of the inputs. An attempt to alleviate this problem is to use synthesis

techniques that incorporate a priori bounds on the parameter rate of variation [23]. Preliminary

results lead to less conservative designs [24].

Next, the behavior of the LPV controllers on a nonlinear simulator of the PWR is shown. Also,

control systems for a PWR normally have dead-bands included to prevent moving the control rods

for small changes in operating conditions. These, as well as saturations on the controls, would

require the use of speci�c conditioning techniques to guarantee anti-wind up bumpless transfer.

These aspects lie beyond the scope of this paper and complementary investigations are underway.

Hence, saturations and dead-bands have been removed, for the purposes of this study. Finally, the

control system contains a static nonlinearity on u2 which reects an a priori knowledge on its loss

of e�ectiveness as the power increases. The nonlinearity proved necessary in the identi�cation of

the models, and the control system simply inverts it out. In particular, this will explain the larger

magnitude of u2 at high power (the nonlinearity is unity at low power).

Figures 21 through 23 show the NL simulation results. In these �gures, the response of LPV#1

is shown in dashed lines, the response of LPV#2 is shown in solid lines, and the references are

shown in dotted lines. Also, u1 is shown in solid lines, and u2 in dashed lines. Figure 21 shows

the response to a one percent step down around 0:99Pn. LPV#2 is faster, and introduces slightly

less axial o�set. This di�erence is even more noticeable in Figure 22, which is a �ve percent step

at 0:5Pn. Comparing these results to the LTI simulations, we see that there is overshoot and the

response is slower. LPV#2 clearly outperforms LPV#1 in the NL simulations.

Finally, the response of the LPV controllers to a large transient is shown in Figure 23. This is a

ramp of �5%=minute from Pn to 0:5Pn. For comparison, we performed an ad hoc controller design

(see [24]) that interpolates the gains of H50 and H99, based on bv2(�) in Figure 13. This ad hoc

controller is noted \H50H99" in the sequel and is given by H50H99 = �(�)H50 + (1� �(�))H99

where �(�) =
bv2(�)�bv2(�1)

bv2(1)�bv2(�1)
. The idea is to develop a control law which smoothly schedules
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between the output of these two controllers, using some interpolation scheme, based on the current

power level. There is not much di�erence in either LPV controller on this trajectory. This is not

surprising as stability for large transients is inherent in the LPV methodology, provided that the

synthesis model is accurate over the operating range. The ad hoc controller has much less e�ect

on the axial o�set since it uses more v2 and much less v1. However, it does not track the reference

on the temperature as well, thus facilitating the minimization on the axial o�set.

A �nal validation on an actual plant would de�nitely be considered if allowable. As a matter of

fact, safety regulations prevent us from testing new advanced controllers, especially those with an

impact on the primary circuit. Therefore, real experimental data cannot be included and realistic

simulators are used instead.
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Figure 19: Comparison of Three Controllers at 0:99Pn. LPV#1 (dashed) - LPV#2 (solid) - H99

(mixed)

8 Concluding remarks

A preliminary objective for this study was to assess the e�ectiveness of an H1 controller based on

a low-order model to control a pressurized water reactor. Of particular importance, the physical

system was identi�ed from NL simulation data using a MIMO identi�cation-oriented state-space

realization. The resulting model has been reduced using a frequency-weighted balanced realization

technique.

A �xed LTI controller cannot maintain performance over the entire operating range. Hence,

we have constructed an LPV controller which performs well, although not ideally, over the plant's

operating range. This involved the construction of a parameter-dependent model from identi�ed
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Figure 20: Comparison of Three Controllers at 0:5Pn.LPV#1 (dashed) - LPV#2 (solid) - H50

(mixed)

models, and the development of a parameter-dependent weight on its performance. The LPV

controller is able to do better over the entire operating range of the power plant than a single

LTI design, but does not switch strategies in its use of the control rods from low to high power,

a behavior we would prefer. This is attributable to the worst-case nature of the designs. Using

an ad hoc gain-scheduled controller, that intrinsically changes strategies, leads to less conservative

results in practice. However, such design provides no a priori guarantee of stability with respect

to the rate of variation of the parameter. In fact, less conservative designs could be obtained using

synthesis techniques that incorporate a priori bounds on the parameter rate of variation [23] as

shown in [24].
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