Conceptual Issues in the Study of Dynamic Hazard Warnings

Joachim Meyer, et al

Outline

- Intro
- Dynamic Warning Example
- Expected Response
- Compliance/Reliance
- Correct Responses/Errors
- Response Determinants
 - Normative Factors
 - Task Factors
 - Operator Factors
- Conclusions

Introduction

- Dynamic warnings - “sensor-based signaling systems”
 - on/off (sensors think there is or isn't a hazard)
- Simple Examples
 - Smoke alarms
 - Collision avoidance alarms
 - Check Engine Light
 - Crying Baby

A More in Depth Example

- Carburetor Ice Warning
 - Airplane cockpit
 - Cold most air = possible ice in carburetor
 - Recirculate exhaust gases by carburetor
- No action under condition
 - Plane crashes
- Action under false positive
 - Wasted fuel
A More in Depth Example

- Failure – yes/no
- Warning – yes/no
- Operator takes action - yes/no

Expected Response

- “Rational” operator
 - Expected Value – EV
 - Sum probabilities of outcomes times values
 - Want max EV
- In our Example
 - Failure state F
 \[EV_F = p_F V_{IF} + (1 - p_F) V_{IN} \]
 - Normal state N
 \[EV_N = p_N V_{IF} + (1 - p_N) V_{IN} \]
- The warning system isn't perfect
 - Just changes the probability of being in F or N

Compliance/Reliance

- Compliance
 - Taking action due to an alarm
 - Turning on heat when carburetor ice alarm
- Reliance
 - Taking no action when there is no alarm
 - Not turning on heat when no alarm
- (These are separate)
Correct Responses/Errors

- Correct Response
 - Following the EV calculation
 - Not always optimal

- Omission
 - Don't act because there's no alarm (but needed to act)

- Commission
 - Act on alarm (but didn't need to act)

How to determine responses?

- How to choose reliance or compliance?

- Assume: warnings noticed and understood
 - Warnings occur during an activity
 - Responses are in operators' normal set of actions

- Factors
 - Normative
 - Task
 - Operator

Normative Factors

- Situational factors
 - Probabilities of failures
 - Payoff structure - benefits/costs

- Diagnostic factors
 - Warning sensitivities
 - Extra info given (or not given, i.e. "Check Engine" Light)

Task Factors

- Task Structure
 - Number of variables to monitor/control
 - Stressors
 - Other people

- Interface Factors
 - Task related info on interface
 - controls/displays

- Warning display and diagnostic info proximity
Operator Factors

- General Characteristics
 - Abilities
 - Training
 - Skills
 - Riskiness
 - Cognitive strategies
- System Specific Characteristics
 - System image
 - System experience
 - “Cry Wolf Syndrome”
 - Rely on invalid warnings

Factors’ interaction

Conclusions

- Researching warnings and decision aids = researching decision making
 - Economic analysis
 - Don’t expect error-free performance
 - Compare to benchmarks (payoff structure known?)
- Warning systems’ behavior effects = complex
 - New emergent behavior
- Warnings are part of complex systems
 - Need to be studied in context
- This framework limited
 - Warnings = decision aids

Questions?