Attentional Models of Multitask Pilot Performance Using Advanced Display Technology

Presentation by George Sewell

New Features in Aircraft

- Cockpit Display of Traffic Information (CDTI)
 - To enhance a pilot’s awareness of nearby traffic and give visual representation of what they are avoiding
- Digital Air Traffic Control Communication (ATC)
 - To support the audio communication with a digital line of text

Goals

- Determine the ramifications on the pilot and his limited visual attentional resources by adding more visual information to replace audio
- Determine the role, or priority, of audio/visual information to the pilot based on their divided attention
- Develop a method to increase the efficiency of a pilot’s selective attention through optimal visual scanning

Tasks of Importance

- Aviating
 - Maintain stability and keep the aircraft flying
- Navigating
 - Processing visual information to avoid obstacles and achieve a destination
- Side Tasks
 - Reading checklists etc.
 - Listening to the ATC
Attentional Effects

- Instrument Panel (IP)
 - Aviating
- Outside World (OW)
 - Navigating
- CDTI
 - Navigating (Obstacle Avoidance)
- Data Link Display
 - Communication (redundant to ATC audio)

Part 1: Experimental Simulation

Methods

- Participants
 - 12 men, 2 women, ages 21 to 60
 - 200 to 3700 hours of flight experience
- Equipment
 - Flight Simulator
 - Data Displays (with CDTI)
 - Head-Mounted eye and head tracker

Methods (cont’d)

- Task
 - 6 flights, 30 minutes each, 11 legs
 - Communication Legs (6/11)
 - ATC commands given visually/audially/both and pilots need to speak them back
 - Traffic Legs (5/11)
 - Pilots encounter 1 to 4 unpredictable obstacle aircraft and need to act accordingly

Methods (cont’d 2)

- Procedure
 - Pilots were allowed to do all tasks at once, with break, or over 2 days
 - Pilots given a test-flight to familiarize themselves with controls and situation
- Experimental Design
 - Study display format and traffic load during traffic legs
 - Study display format and communication load during communications legs
Example Route

Traffic Leg Results

- Without CDTI, the safest correction was chosen 50% of the time
- With CDTI, the safest correction was chosen 83% of the time

Visual Scanning Analysis

Results of Communication Leg
Discussion of Part 1

- Viewing the CDTI obscured the horizon, increasing navigational variance
- Redundant Display information (A & V) did not provide an advantage to the pilot
- Increasing availability of information did not yield positive results, however with sufficient training it may be possible

Part 2: Computational Model of Attention Allocation

- Goal: To develop a “gold standard” toward which training can be focused to improve accuracy of visual scanning
 - Salience (S): Chance that events might gain attention
 - Effort (E): Requirement for redirecting attention from one location to another
 - Expectancy (E): Probability that a given location will provide useful information
 - Value (V): The benefit of the information to be gathered with respect to task
Basic Graphical Overview (Communications)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IP</th>
<th>OW</th>
<th>Com DL</th>
<th>Com Clip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (B), visualized</td>
<td>4</td>
<td>4</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>Com Load 2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Com Load 3</td>
<td>4</td>
<td>2</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>Com Load 4</td>
<td>4</td>
<td>2</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Com Load 5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Com Load 6</td>
<td>4</td>
<td>2</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>Bandwidth (B), auditory</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Com Load 2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Com Load 3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Com Load 4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Com Load 5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Com Load 6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Reference (R)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Navigate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Communicate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Com DL = direct communications, Com clip = clipboard communications

Conclusions

- Part 1 suggests that visual in-cockpit technology should be adopted with caution for single-pilot operations
 - Training should be used to mitigate any detrimental effects due to increased information
- Part 2 suggests that an optimal scanning solution could be developed, but does not actually provide one in lieu of testing
- Pilot Attention is a limited resource and must be rationed wisely in the face of new technology