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Abstract: The classical decentralized detection problem of finding the optimal decision

rules at the sensor and fusion center, as well as variants that introduce physical channel

impairments have been studied extensively in the literature. The deployment of WSNs

in decentralized detection applications brings new challenges to the field. Protocols

for different communication layers have to be co-designed to optimize the detection

performance. In this paper, we consider the communication network design problem for

a tree WSN. We pursue a system-level approach where a complete model for the system

is developed that captures the interactions between different layers, as well as different

sensor quality measures. For network optimization, we propose a hierarchical optimization

algorithm that lends itself to the tree structure, requiring only local network information.

The proposed design approach shows superior performance over several contentionless and

contention-based network design approaches.
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1. Introduction

The deployment of wireless sensor networks (WSNs) in decentralized detection applications is

motivated by the availability of low cost sensors, combined with the advances in communication network

technologies. In decentralized detection (DD), multiple sensors collaborate to distinguish between two

or more hypotheses. In many practical applications, sensors are distributed geographically and connected

in a tree configuration for energy efficiency. Each sensor task is to sample the environment, pre-process

the data, and communicate the information to the fusion center for final decision-making.

The recent use of WSNs in decentralized detection applications brings new challenges to the design

of sensor networks. Protocols for communication layers have to be co-designed to optimize the

detection performance. The layered approach commonly adopted to design wireless networks may

not be appropriate for detection applications, as it neither provides the optimal resource allocation nor

exploits the application domain knowledge. A cross-layer design approach is desired for an efficient

implementation of WSNs in decentralized detection applications.

In this paper, we pursue a cross-layer approach to design a tree WSN for detection applications.

We attempt to strike a balance between theoretical decentralized detection work and practical sensor

networks. To achieve this goal, we make the following design assumptions: (1) The minimal movement

of sensor nodes: This assumption allows us to consider the large-scale fading component only for the

physical channel, hence simplifying the analysis. (2) Slotted ALOHA MAC: The traditional assumption

of a dedicated orthogonal channel between each sensor node and its parent node may not be feasible in

practice. The Slotted ALOHA multiaccess scheme, on the other hand, has been successfully deployed in

practice. We use a simplified version of the slotted ALOHA protocol, ignoring the protocol specifics, to

keep the analysis tractable. (3) Synchronization: We assume that sensors are synchronized, which allows

us to model the network as a discrete time system, hence simplifying the analysis. (4) Transmission

scheme: We assume two transmission schemes, direct transmission where raw observations are sent

directly to the fusion center without local processing and in-network processing where information

is compressed and quantized locally before transmission. (5) Suboptimal solution: Practical WSNs

require solutions for optimization problems that could be executed in real time, while being scalable

with network size. We resort to a suboptimal, yet efficient solution as opposed to integer programming

problems that arise when trying to use a deterministic transmission scheme.

The rest of the paper is organized as follows: Section 2 summarizes the related work. Section 3

presents the problem formulation. Section 4 explains the system model. Section 5 presents the

solution of the optimization problem to obtain the optimal network design parameters. Section 6

presents the performance evaluation for the proposed design, in comparison to several contentionless

and contention-based network design schemes, using a numerical example. The work is concluded in

Section 7.
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2. Related Work

The classical problem for decentralized detection that has been extensively addressed is the design

of signal processing algorithms at the application layer for different network topologies [1]. Several

variations have been introduced to the original problem to account for various network resource

constraints [2–4]. Such variations are still recently addressed. For example, the value of feedback

messages from the fusion center to sensor nodes for single hop networks is studied in [5]. The distributed

detection problem for balanced binary relay trees, where nodes and links fail with certain probabilities,

is considered in [6].

The cross-layer design approach has been recently explored for the design of media access control

(MAC) protocols for parallel topology (direct transmission) sensor networks in detection applications.

Decision fusion over slotted ALOHA MAC employing a collision resolution algorithm is studied in [7].

A thorough investigation of the design of MAC transmission policies to minimize the error probability

has been considered in [8], where sensors are assumed non-identical and the MAC policy is assumed

stochastic. The cross-layer approach is also considered in [9], where an integrated model for the physical

channel and the queuing behavior for sensors is developed.

For tree networks, energy-efficient routing for signal detection in WSNs is considered in [10], where

the objective is to find the optimal route for local data from a target location to the fusion center, in order

to maximize the detection performance or to minimize the energy consumption. Cooperative routing for

distributed detection in large sensor networks is studied in [11] using a link metric that characterizes the

detection error exponent. Optimal communication rate allocation for multihop sensor networks deployed

for DD is studied in [12], where no medium access contention is assumed. For a survey on the interplay

between signal processing and networking in sensor networks, see [13] and the references therein.

Our work is different in three main aspects: (1) we integrate the physical layer, MAC layer and the

detection application layer in one unified system model; (2) we include the three quality measures that

were previously treated separately, namely the quality of information (QoI), channel state information

(CSI) and residual energy information (REI) for each sensor; and (3) we assume sensor networks with

a finite number of sensors, in contrast to the infinite number of sensors assumption typically used in

asymptotic analysis. We design the optimal transmission control policy (XCP) that coordinates the

communication between sensor nodes connected in a tree configuration. Our approach formulates

the detection performance measure as a function of the parameters of the integrated system model.

We then solve a constrained optimization problem to obtain the XCP variables that maximize the

detection performance.

We summarize the contributions of our work, as compared to existing literature, in the following main

points: (1) Integrated model for the detection system: The model captures the physical channel, MAC

protocol and the detection application models and their interactions. The model also incorporates the

QoI, CSI and REI measures for each sensor. (2) The design of a complete transmission control policy:

We design the XCP for the tree topology for a finite number of sensors, rather than asymptotically.

The XCP variables include retransmission probabilities and communication rates for all sensor nodes.

(3) Enhanced detection performance: We show that the proposed design approach has a significant

improvement in the detection performance over several contentionless and contention-based network
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design approaches. (4) Comparison between direct transmission and in-network processing schemes:

We study the design problem when local observations are quantized and show the conditions under

which the in-network processing scheme outperforms the direct transmission scheme.

The work presented in this paper represents a generalization of our work in [14] in two main aspects:

(1) the single-hop network is generalized to the tree network, and consequently, the optimization problem

of the single hop network is a special case of the optimization problem presented in this paper; and

(2) in-network processing of information at sensor nodes, which becomes much more important for tree

networks, is considered along with the direct transmission scheme considered in [14].

3. Problem Formulation

We consider a detection application where a set of sensors are randomly placed to detect the presence

of a target, e.g., an intruder or vehicle, in a surveillance area, under the control of a fusion center denoted

by FC. The surveillance area is divided into a number of resolution cells that are probed by the local

sensors on demand from the fusion center, as depicted in Figure 1. Upon receiving a command from the

fusion center to probe a specific resolution cell, local sensors illuminate the resolution cell and sample

the reflected signal. The sampled observations are transmitted back to the fusion center for decision

making about the presence of a target in the designated resolution cell. The fusion center solves the

binary hypothesis testing problem by performing a statistical test on the received observations.

Figure 1. Decentralized detection for a surveillance area with randomly-placed

radar-like sensors.

We assume fixed local sensors and the fusion center, arranged in a tree structure, as depicted in

Figure 2, where the tree is assumed pre-specified, possibly based on sensor locations. Given this

detection architecture, it may not be efficient for each local sensor to participate in the surveillance



Sensors 2015, 15 20612

of each resolution cell, as requested by the fusion center. This may be due to one or more of several

reasons: (1) the sensor may be far from the resolution cell, making its observations less reliable; (2) the

communication channel between the sensor and the fusion center may be unreliable at the time of

detection, making information loss more probable; and (3) the sensor may not have enough stored energy

to illuminate the designated resolution cell or to send the information to the fusion center. Accordingly,

in order to optimize the detection performance without wasting network resources, an XCP needs to

be developed. For each resolution cell, the XCP defines the specific sensors, the energy resources, and

the network parameters that should be used in each surveillance task. These calculations are based on

several factors: (1) the sensor location with respect to the resolution cell; (2) the communication channel

state between the sensor and the fusion center; and (3) the energy reserve for the sensor. This information

could be sent to the fusion center either periodically or on-demand to recalculate the XCP. The calculated

XCP remains valid as long as the sensor attributes previously submitted did not change. We denote that

by handshaking overhead, since it does not contribute to the detection task. In this paper, we ignore the

handshaking overhead in the development of the system model. However, this overhead may become

significant if the environment dynamics are fast. In Section 5.3, we develop an upper bound on the

environment dynamics, such that ignoring the handshaking overhead does not affect the model accuracy.

H0/H1

FC

13 14
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1 2 . . . 3 4 5 . . . 6 . . . 7 8 . . . 9

Slotted ALOHA Slotted ALOHA Slotted ALOHA

Slotted ALOHA
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Figure 2. Detection architecture for tree-topology WSN.

Two approaches are possible to calculate the optimal transmission control policy: (1) the global

approach, where the fusion center receives the information from all sensors (through their respective

parents), calculates the optimal transmission control policy for each sensor by solving a constrained

nonlinear optimization problem and transmits the values of the XCP variables back to the relevant

sensors; and (2) the local approach, where each parent node solves a smaller local optimization problem

to specify the locally-optimal XCP variables for its child nodes.The global approach may not be feasible

in large sensor networks, as it is not scalable with the network size. In addition, the design parameters

have to be propagated back from the fusion center to all network nodes. For large sensor networks, the

local approach is more practical.

After each sensor receives the optimal values of its XCP variables, the detection process proceeds

as follows: The fusion center broadcasts a message to initiate a detection cycle at the local wireless

sensors. Each local sensor samples the environment by collecting a number of observations and then
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forms a data packet and communicates its message to the parent node over a shared wireless link using

the slotted ALOHA multiaccess control scheme. Parent nodes relay the information of the child nodes,

in addition to their own information, through the tree network until reaching the fusion center. Finally,

the fusion center makes a final decision after a fixed amount of time representing the maximum allowed

delay for detection.

In this paper, we consider two transmission schemes. (1) In direct transmission, each sensor transmits

its raw observations without quantization to the fusion center. Obviously, quantization is necessary

for digital communication, but the number of quantization bits is assumed large in this case so that

the quantization effect is negligible. Transmission of raw observations guarantees no loss of detection

performance at the fusion center. On the down side, observations build-up and accumulate through the

tree network. Therefore, the communication rate at relay nodes up in the tree hierarchy has to increase to

cope with the volume of data coming from child nodes. This causes a higher probability of information

loss due to the high communication rate. (2) In in-network processing, information is compressed by

calculating its log likelihood ratio (LLR), then the LLR is quantized before transmission using a limited

number of quantization bits. This scheme reduces the communication rate and increases the probability

of successful transmission, but suffers from irrecoverable loss of information caused by the in-network

processing. We assume uniform quantization to simplify the analysis, as the problem of finding the

optimal quantization thresholds for detection applications have proven to be very difficult, even with

small network sizes [15].

4. System Model

In this section, we develop a mathematical model for the detection system depicted in Figures 1

and 2. Our main objective is to relate the detection performance measure to the system design variables.

Mathematically, our objective is to obtain an optimization problem of the form:

max
x

J(x)

subject to gi(x) ≥ 0 for i = 1, . . . , m
(1)

where J represents the performance measure we seek to maximize, x is a vector of decision variables,

i.e., the XCP variables in our design problem, and gi(.) are a set of constraints on the design variables. We

follow a layered approach to model the detection system, building the model from the ground up. In each

of the subsequent subsections, we model one layer at a time, trying to relate the system variables in this

specific layer to the variables in other layers, with the goal of reaching the formulation in Equation (1).

Specifically, we follow the layered architecture representation for the system depicted in Figure 3. The

physical layer represents the wireless channel model. The MAC layer represents the slotted ALOHA

protocol model. Finally, the application layer represents the sensing model and defines the model of the

observations obtained by local sensors.
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Figure 3. A layered approach to detection system modeling.

4.1. Wireless Channel Model

We present a model for the wireless channel between each parent-child pair in the tree detection

network. We derive an expression for the probabilistic channel state in terms of channel, as well as

communication parameters. We focus on the case where the sensor nodes and the fusion center have

minimal movement and the environment changes slowly. Accordingly, only the slow fading component

of the wireless channel is considered. Figure 4 shows the fading channel model, where w(t) is an AWGN

with PSDN0/2, and m(dc) is the mean path attenuation for a sensor node at a distance dc from the fusion

center. Using the Hata path-loss model, the total dB power loss is given by [16]:

PL = 20 log (4πd0/λp) + 10ρc log(dc/d0)
︸ ︷︷ ︸

µc

+Xσc
dB (2)

where d0 is a reference distance corresponding to a point located in the far field of the transmit antenna,

λp is the wavelength of the propagating signal, ρc is the path loss exponent and Xσc
∼ N (0,σ2

c).

The power loss (in dB) is therefore a Gaussian random variable with mean µc and variance σ2
c , i.e.,

PL ∼ N (µc,σ
2
c).

Sensor node × + Fusion center
x(t) y(t) z(t)

m(dc) w(t)

Figure 4. Block diagram for the wireless communication channel.

The wireless channel represents an unreliable bit pipe for the data link layer, with instantaneous

Shannon capacity C = W log2 (1 + Pr/N0W ) bps, where W is the channel bandwidth and Pr is

the signal power received by the fusion center. Using Shannon’s coding theorem and given the

state-of-the-art coding schemes that approach the Shannon capacity, we can approximately assume that

the fusion center can perform error-free decoding for any transmission with bit rate R < C, i.e., the

channel is considered “ON” when R < C and “OFF” otherwise, giving rise to the two-state channel

model akin to [9]. This condition is equivalent to Pr
ON
≷

OFF
N0W

(

2
R
W − 1

)

. Using Equation (2), noting that

Pr = Pt10
−PL/10, where Pt is the average signal power transmitted by the local sensor, and using

the result that PL ∼ N (µc,σ
2
c), we get the probability of the channel being “ON” during sensor

i transmission:

P [channel is ON] = λc = Φ

[

1

σc

(

10 log
Pt

N0W (2
R
W − 1)

− µc

)]

(3)
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where Φ(.) is the cumulative distribution function for the standard normal PDF. We note that the CSI

relevant to our model is represented by the statistics σc,µc and N0. These statistics are required to be

estimated by each sensor, and no instantaneous channel state information is required for the XCP design.

Since we assume fixed nodes and a slowly-varying channel, the estimation process could be executed

less frequently to save sensor node resources. This is particularly important in wireless sensor networks,

since the estimation of the channel state is both time and power consuming.

It should be highlighted that the large-scale fading model presented here allows us to obtain the closed

form solution in Equation (3). More complex fading models, e.g., small-scale fading, can be integrated

similarly, but they may allow only numerical solutions.

Equation (3) represents our model for the wireless channel in terms of our first system design variable;

the communication rate for each sensor R. In the following subsections, where other layers are modeled,

the design variable R will be coupled to other system parameters and design variables.

4.2. Media Access Control Protocol Model

In this section, we extend the probabilistic channel model to include the collision phenomenon of

the MAC protocol. We assume a slotted ALOHA multi-access communication protocol between each

parent node and its child nodes, where each packet requires one time slot for the transmission, all time

slots have the same length, and all transmitters are synchronized. We consider a simplified version of the

MAC protocol, where there is no retransmission of data in case of a collision or physical channel drops,

since outdated information is not useful for real-time detection and estimation applications. In the rest of

the paper, we refer to the simplified version of slotted ALOHA with no retransmission as S-ALOHA-NR.

Furthermore, we assume that the sub-trees composed of each parent and its immediate child nodes do

not interfere with each other. This could be achieved in practice by using different wireless channels

for transmission, or it may be as a result of the physical separation between sub-trees, such that sub-tree

transmissions get attenuated before interfering with other transmissions.

The detection cycle, demonstrated in Figure 5, has length τ , which defines the delay for detection.

The detection cycle is divided into a number of transmission slots Li, for nodes at the same depth i of the

tree, and sharing a common parent. The relationship between the number of slots for consecutive depths

is given by Li+1 = miLi, where mi is a positive integer. In the following discussion, we designate the

set of all child nodes for sensor k by Ck and the set of all siblings (excluding sensor k) by Bk.

qk, Rk, Pk

Decision

. . . . . .L1

Transmission slots

. . . . . .L2

. . . . . .L3

τ

. . . . . .

Figure 5. Detection cycle for the tree network.
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4.2.1. Direct Transmission

At the beginning of every time slot, each local sensor k collects a number of observations nk and

forms an information packet for transmission over the wireless channel. The sensor then attempts to

transmit to its parent with probability qk, transmission power Pk and communication rate Rk. The sensor

attempts transmission at each time slot, despite the status of its previous transmission attempts. The

final decision is taken at the fusion center using the information received during the detection cycle. The

process repeats for every detection request initiated by the fusion center.

The communication rate for sensor k at tree depth i could be expressed with the aid of Figure 6

as follows:

Rk =
bLink

τ
+

1

mi

∑

v∈Ck

ZvRv,
∑

v∈Ck

Zv = mi (4)

where b is the number of encoding bits for each observation, which is fixed, and Zv is the number of times

the child sensor v successfully transmitted during the mi time slots associated with one time slot at level

i. The first term in Equation (4) represents the information collected by the sensor node and vanishes

if the node functions as a relay node for its child nodes. The second term represents the information

received from the child nodes and vanishes for leaf nodes. We note here that the design variable is nk,

the number of observations collected at each time slot by sensor k.

j

k
Rk nk

k k k

Rv nv

. . . . . .
mi transmission slots

depth i

Figure 6. Communication rate calculation for node k at tree depth i.

Now, we calculate the overall probability of a successful packet transmission, including the wireless

channel effect. We note from Equation (4) that the communication rate of intermediate nodes is a random

variable, being dependent on the information received from its child nodes. Accordingly, accurate

formulation for the problem requires modification of Equation (3) to include the randomness of the

communication rate. Unfortunately, no closed form solution could be obtained for the channel ON

probability in this case. Even if we approximated the sum in the second term of Equation (4) by a

Gaussian random variable using the central limit theorem and used the approximation of R to derive

the new probability of success, we would obtain, after some manipulations, a sum of two log normal

random variables, which does not have a closed-form probability distribution. Therefore, to keep the

analysis tractable, we resort to a suboptimal solution, where the communication rate for each node is

represented by its expected value. Accordingly, Equation (3) is still applicable, where R represents the

average communication rate. Now, at any given time slot, the probability of a single packet transmission

by sensor k is given by qk
∏

v∈Bk
(1− qv). Further, this packet will be successfully received by the parent
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node if the state of the physical channel between the child node k and the parent node is “ON” during

this time slot. Therefore, using Equation (3), the total probability of a successful packet transmission by

sensor k is given by:

λk = qk

[
∏

v∈Bk

(1− qv)

]

Φ

[

10

σk
c

log
P k
t

N0W (2
R̄k
W − 1)

− µk
c

σk
c

]

(5)

where R̄k is obtained by taking the expected value for Equation (4), noting that Zv is a

binomially-distributed random variable with E[Zv] = miλv and assuming that the random variables

Z for channels at different levels of the tree network are independent:

R̄k =
bLink

τ
+
∑

v∈Ck

λvR̄v (6)

Equation (5) represents our extended model for the communication channel, where the second design

variable, the retransmission probability for each sensor, q, is introduced.

4.2.2. In-Network Processing

After each sensor k collects its nk observations in slot i, it calculates its LLR:

zk =
µk

σk2
s

nk∑

j=1

x[j, i] (7)

where x is a Gaussian random variable (as explained in Section 4.4). There is no loss of optimality

in this process, since the LLR is optimal at the fusion center as observations are independent across

sensors [17]. The LLR is then quantized using bk bits, to obtain the discrete random variable yk:

yk = Q(zk; bk) (8)

This quantized version is transmitted to the parent node. Each sensor node forwards the quantized

LLR of its descendants without further quantization, in addition to its own quantized LLR, to the next

parent node. The process repeats until all observations arrive at the fusion center. Similar to Equation (6),

the communication rate for each sensor is given by:

R̄k =
bkLi

τ
+
∑

v∈Ck

λvR̄v (9)

We note here that the number of quantization bits is the design variable, and it may vary for each

sensor. The decision on how many quantization bits will be used is dependent on the sensor quality

measures. A large number of quantization bits reduces the loss in the signal to noise ratio, but increases

the probability of packet loss.
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4.3. Energy Model

In this section, we develop an energy model that enables us to replace the transmission power, Pt,

in Equation (5) by the sensor energy and other network parameters. To formulate the energy model for

each sensor, we first introduce the definition for the network lifetime. The network lifetime L could be

defined as the average time span from the deployment to the instant when the network can no longer

perform the task [13]. The network lifetime could be expressed as:

L =
E0 − Ew

frEr
(10)

where E0 =
∑N

i=1 e
0
i is the total initial energy in all sensors at the time of deployment, Ew =

∑N
i=1 e

w
i

is the total energy remaining in sensor nodes when the network cannot perform the assigned task, fr

is the average sensor reporting rate defined here as the number of detection cycles per unit time and

Er =
∑N

i=1 e
r
i is the expected energy consumed by all sensors in one detection cycle. The total energy

remaining is defined for our detection problem as the energy required to achieve a minimum pre-specified

value for the detection performance measure.

In this work, we resort to a simple energy formulation. First, we assume that ewi is the energy

remaining in the sensor battery when the sensor is not capable of operating its electronic circuits for

computations and communication, which is fixed and known for each sensor. Second, we assume that

the reporting energy for each sensor eri is a fixed percentage of its net useful energy at the time of sensor

deployment. Using these two assumptions, we get the following expression for the energy consumed by

each sensor k in one detection cycle:

erk =
e0k − ewk
frL

(11)

which could be calculated for any desired network lifetime L. The total energy consumed by each

sensor is divided between transmission and reception (except for leaf nodes). By assuming that the

energy consumed in the reception process is proportional to the detection cycle time with proportionality

constant α and by noting that the expected number of transmissions by sensor k during a detection cycle

is Liqk, we get:

P k
t =

(erk/τ)− α

qk
=

1

qk
(pk − α) (12)

where pk is the average transmission power over one detection cycle, which summarizes the residual

energy information (REI) for each sensor. Using Equation (12) in Equation (5), we get:

λk = qk

[
∏

v∈Bk

(1− qv)

]

Φ

[

ak −
(
10

σk
c

)

log qk

(

2
R̄k
W − 1

)]

(13)

where ak = 1
σk
c

(

10 log pk−α
N0W

− µk
c

)

. We note that α < pk = erk/τ for the sensor to be able to transmit

the information. In addition, α = 0 for leaf nodes.

This energy formulation simplifies the analysis, as the reporting energy er for each sensor is

preallocated. In general, however, we can include the energy allocation problem in our formulation, i.e.,

finding optimal er values for all sensors that maximize the detection performance while guaranteeing a

minimum network lifetime.



Sensors 2015, 15 20619

4.4. Sensing Model

In the previous sections, the physical and network layer models are developed. Intuitively, this model

captures the probability that the transmitted sensor information will be received successfully at the

parent node. Now, we turn our attention to develop the model for the sensor information itself. In

Section 4.5, the detection performance measure will bring the two models together, defining our target

optimization problem. We focus our work on detection using radar-like sensors, where ultra-wideband

technology is employed for target detection [18]. These sensors use micro-power impulses rather than

continuous narrow-band transmissions used in conventional radars. After front-end signal processing,

signal amplitude is used for detection. Therefore, the observation at sensor k, located at dk distance from

the target located in a specific resolution cell, could be expressed as:

xk = ζ
ǫtr

(2dk)η/2
+ wk (14)

where ζ is a known reflection coefficient at the target, ǫtr is the amplitude of the signal transmitted by

the active sensor (illuminating signal), 2di is the round trip distance traveled by the signal, η is a known

attenuation coefficient, typically between two and four, and wk is an additive white Gaussian noise with

zero mean and variance (σk
s)

2. This information is shown in Figure 1 for one sensor.

The detection problem could be defined as the following binary hypothesis testing problem, for each

time slot i:

H0 : xk[j, i] = wk[j, i] j = 1, 2, . . . , nk

H1 : xk[j, i] = µk + wk[j, i] j = 1, 2, . . . , nk (15)

where µk = ǫ/d
η/2
k and nk is the number of observations obtained by sensor k at each time slot. We note

that noise samples are independent across sensors, i.e., the observations at local sensors are independent

across time and space, but not necessarily identically distributed, since some sensors may be closer to

the measured phenomenon, and noise variances are assumed unequal.

Based on the given sensing model, we next derive the detection performance measure for the two

transmission schemes, which represents the objective function to be optimized.

4.5. Measurement of Detection Performance

Intuitively, the detection performance measure should depend both on the quality of information, as

well as the quality of the communication channel. In this section, we present a measure for the detection

performance and express it in terms of the other system parameters, using the models developed in

the previous sections. One of the widely-used performance measures for detection applications is the

receiver operating characteristics (ROC) curve [19]. The curve relates the probability of detection PD to

the probability of false alarm PFA for different threshold values γ of the detector. For example, for the

centralized shift-in-mean Gaussian detection problem, where all observations are available at the fusion

center, the ROC curve is expressed as:

PD = Q

(

Q−1(PFA)−
(
µ1 − µ0

σ

))

(16)
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where Q[.] = 1 − Φ[.] is the complementary cumulative distribution function for the standard normal

PDF, µ1 − µ0 is the shift-in-mean value and σ2 is the measurement variance. For our detection problem,

the ROC curve cannot be expressed by one equation as in Equation (16), due to the complexity of the

equations. Furthermore, optimization with respect to the ROC is computationally prohibitive. Therefore,

we adopt the deflection coefficient, a closely-related performance measure that leads to a computationally

less-intensive problem, defined as [19]:

D2 =
(E[V ;H1]− E[V ;H0])

2

var[V ;H0]
(17)

The deflection coefficient is a measure of the separation between the two probability density functions

under the two hypotheses. Under Gaussian assumptions, it is known that maximizing the deflection

coefficient leads to maximization of the detection performance in terms of the ROC curve [20]. In fact,

it can be shown that for the centralized shift-in-mean Gaussian detection problem, the ROC curve in

Equation (16) could be expressed as [19]:

PD = Q
(

Q−1(PFA)−
√
D2
)

(18)

Under non-Gaussian assumptions, there is no general result that enhancement of the deflection

coefficient will lead to a better performance in terms of the ROC curve. However, it is likely that more

separation between the two density functions will lead to a better detection performance.

4.5.1. Direct Transmission

The following proposition defines the optimal test statistic at the fusion center for the tree sensor

network. The detailed proof is listed in Appendix A.

Proposition 1. The optimal test statistic at the fusion center for the slotted ALOHA tree network with

depth l and direct transmission scheme is given by the recursive formula:

Vk =

mk∑

ik=1

∑

v∈Ck

nv∑

j=1

rv[iFC . . . ik]

[(
µv

σv2
s

)

xv[j, iFC . . . ik] + Vv

]

, k = 1, 2, . . .FC

Vv = 0 if k is a leaf node

(19)

where mk is the number of communication slots at the tree depth corresponding to sensor k, rv[iFC . . . ik]

is a Bernoulli random variable representing the success (rv = 1) or failure (rv = 0) of receiving a packet

from sensor v in the communication slot sequence iFC . . . ik. The sample space and probability measure

of rv are defined as Ωrv = {0, 1} and P [rv = 1] = λv, respectively, where λv is given by Equation (5).

Complete nomenclature for the system model is shown in Table 1.

The expression in Equation (19) is simply a weighted sum of the observations received at the fusion

center. The complexity of the equation comes from the fact that successful reception of the observations

of child nodes at the fusion center depends on the success of the transmission of all parent nodes up to

the fusion center.
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Table 1. Nomenclature for the ALOHA tree sensor network.

Param. Description

µi
c Mean path loss for sensor i

σi
c Path loss standard deviation for sensor i

W Communication channel bandwidth

P i
t Transmission power for sensor i

pi Average transmission power for sensor i over one detection cycle

N0 Noise power spectral density

R̄i Average communication rate for sensor i

b Number of encoding bits/observation

Li Number of transmission slots at tree depth i

mi Number of sub-slots at tree depth i+ 1 for each slot at tree depth i

ni Number of observations sampled by sensor i

l Tree depth

τ Delay for detection

λi Successful packet transmission probability for sensor i

qi Retransmission probability for sensor i

L Sensor network lifetime

Li Sensor i lifetime

e0i Initial energy in sensor i battery

ewi Wasted energy remaining in sensor i battery

eri Reporting energy for sensor i

fr Reporting frequency for the sensor network

αe Percentage of net useful energy used in reporting

α Proportionality constant for receiving energy

ǫ Amplitude of emitted signal at the detected object

di Distance between sensor i and the object

η Attenuation coefficient for object signal

xi[j, k] Observation number j at time slot k for sensor i

ci = (µi/σi
s)

2 Detected object signal to noise ratio at sensor i

V Test statistic at the fusion center

N Total number of wireless sensors

ri[k] Success or failure of sensor i transmission in slot k

D2 Deflection coefficient

Ck Set of all child nodes for sensor k

Bk Set of all sibling nodes for sensor k
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Proposition 2. The deflection coefficient for the detector in Equation (19) is given by the

recursive formula:

D2 = L1GFC

Gk =
∑

v∈Ck

λv [nvcv +mvGv] , k = 1, 2, . . .FC

Gv = 0 if k is a leaf node

(20)

where cv = (µv/σv
s )

2.

The proof is found in Appendix B. We note that the quantity nvcv is a measure of the QoI for each

sensor. Using Equation (6) in Equation (20), we obtain our objective function:

D2 =
τ

b
JFC

Jk =
∑

v∈Ck

λv [Rv (cv − ck) + Jv] , k = 1, 2, . . .FC

Jv = 0 if k is a leaf node, cFC = 0

(21)

4.5.2. In-Network Processing

To obtain the optimal test statistic, we need to take the LLR for the discrete random variables Yi in

Equation (8) at the fusion center. Unfortunately, this problem does not have a closed form solution, and

the detector performance is usually approximated using different statistical techniques [21]. We resort

to the following suboptimal statistic, as it is similar to the one in Equation (19) for the direct observation

system, which facilitates the performance comparison:

Vk =

mk∑

ik=1

∑

v∈Ck

rv[iFC . . . ik] [yv[iFC . . . ik] + Vv] , k = 1, 2, . . .FC

Vv = 0 if k is a leaf node

(22)

Now, to find the deflection coefficient for the statistic in Equation (22), we need to calculate the

expectation of V under both H0 and H1, in addition to its variance under H0. We first need to define the

quantization function in Equation (8). We adopt the following quantizer:

Q(z) = ∆

(⌊ z

∆

⌋

+
1

2

)

(23)

where ∆ is the quantizer step size. We have the following proposition.



Sensors 2015, 15 20623

Proposition 3. The deflection coefficient of the test statistic in Equation (22), with the quantizer in

Equation (23), is given by:

D2 = L1
G2

FC

G′
FC

Gk =
∑

v∈Ck

λv [nvcv + δv +mvGv] , k = 1, 2, . . .FC

G′

k =
∑

v∈Ck

λv [nvcv + δ′v +mvGv]

Gv = G′

v = 0 if k is a leaf node

(24)

where:

δ =
∆

π

∞∑

k=1

1

k
sin

[

2πkn

∆

(
µ

σs

)2
]

e−2( πk
∆ )

2
n( µ

σs
)
2

(25)

δ′ =

(
∆

π

)2
[

∞∑

k1=1

∞∑

k2=1

1

2k1k2

(

cos

[

2π(k1 − k2)n

∆

(
µ

σs

)2
]

e
−2

(

π(k1−k2)
∆

)2
n( µ

σs
)
2

−

cos

[

2π(k1 + k2)n

∆

(
µ

σs

)2
]

e
−2

(

π(k1+k2)
∆

)2
n( µ

σs
)
2

)]

(26)

The proof is listed in Appendix C. The expression for the deflection coefficient in Equation (24) is

not amenable to optimization. However, we note that both the mean and variance degrade exponentially

with the quantizer step size ∆. Since ∆ is inversely proportional to the number of quantization bits, bk,

we can approximate the degradation in the signal to noise ratio for each sensor k by:

S = nk

(
µk

σk2

)2
(
1− 2−βbk

)
(27)

where β specifies the decay rate and depends on the range of the quantizer, as well as the quantizer

design. Now, we use the degraded SNR in Equation (27) to define our approximate deflection

coefficient as:
D2 = L1GFC

Gk =
∑

v∈Ck

λv [nvc
′

v +mvGv] , k = 1, 2, . . .FC

Gv = 0 if k is a leaf node

(28)

where c′v = (µv/σv
s)

2 (1− 2−βbv
)
.

For comparison purposes with the direct transmission approach, we use the same number of

observations for each sensor and the same number of slots as in the direct transmission case. From

Equation (6), we obtain:

Linvi =
τ

b



R̄vi −
∑

vj∈Cvi

λvj R̄vj



 =
τ

b

(
R̄vi − rvi

)
=

τ

b
uvi (29)
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where R̄vi is the average communication rate for sensor vi, rvi is the average communication rate for

Cvi and b is the number of quantization bits in the direct transmission case. The values of these three

quantities are obtained from the solution of the optimization problem in the direct transmission case.

The objective function could then be expressed as:

D2 =
τ

b
JFC

Jk =
∑

v∈Ck

λv [uvc
′

v + Jv] , k = 1, 2, . . .FC

Jv = 0 if k is a leaf node

(30)

5. System Design for Optimal Detection

In Section 4, we developed an integrated model for the detection system, obtained an expression

for the detection performance measure (the deflection coefficient), and defined the design constraints.

Now, we need to solve the optimization problem to obtain the system design variables (retransmission

probability q and communication rate R) for each sensor for both direct transmission and in-network

processing designs.

5.1. Direct Transmission

From Equation (21), the optimization problem could be expressed as follows:

max
q,R̄

τ

b

∑

v1∈Cf

λv1



R̄v1cv1 +
∑

v2∈Cv1

λv2



R̄v2(cv2 − cv1) + . . .+
∑

vl∈Cvl−1

λvlR̄vl(cvl − cvl−1
)



 . . .





s.t. 0 ≤ qi ≤ 1, R̄i ≥
∑

v∈Ci

λvR̄v i = 1 : N (31)

where:

λv = qv

[
∏

k∈Bv

(1− qk)

]

Φ

[

av −
(
10

σv
c

)

log qv

(

2
R̄v
W − 1

)]

(32)

av =
1

σv
c

(

10 log
pv − α

N0W
− µv

c

)

, cv =

(
µv

σv
s

)2

(33)

The last constraint guarantees that intermediate nodes can at least relay the observations of their

child nodes. This constraint reduces to R̄i ≥ 0 for leaf nodes. Although this problem could be solved by

existing algorithms (e.g., interior point methods) for a local maximum, we note that the objective function

in Equation (31) gets more complicated as the tree depth increases. Adding the fact that all design

variables have to be propagated back to tree nodes, a more practical approach is clearly needed. If we

look at the objective function expression in Equation (21), we note that it reflects the tree hierarchy, i.e.,

the last term in the expression represents the contribution of the leaf nodes, preceded by the contribution

of the parents of the leaf nodes, and so on, until reaching the sensor nodes at the top level of the tree

(depth = 1). This structure of the objective function suggests a local optimization approach for the

problem, where we start by optimizing Jv for sensors at depth l − 1 and continue the local optimization
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recursively using Equation (21), until reaching the fusion center. This approach is practical since the

solution of each local optimization problem could be carried out locally at each parent node. The solution

approach is illustrated in Figure 7.

J10 J11 J12

JFC

J14J13

FC

13 14

10 11 12

1 2 . . . 3 4 5 . . . 6 . . . 7 8 . . . 9

Figure 7. Hierarchical optimization for the transmission control policy (XCP) design

problem.

By substituting Equation (13) in Equation (21), we can express the local optimization problem at

parent node k as follows:

max
q,R̄

∑

v∈Ck

qv

[
∏

i∈Bv

(1− qi)

]

[
R̄v(cv − ck) + Jv

]
Φ

[

av −
(
10

σv
c

)

log qv

(

2
R̄v
W − 1

)]

s.t. 0 ≤ qv ≤ 1, R̄v ≥
∑

u∈Cv

λuR̄u = rv (34)

We note that Jv and rv are fixed values, obtained from solving the local optimization problems at

lower levels in the hierarchy. The notation for the local optimization problem is illustrated in Figure 8.

k

v v . . . v

u u . . . u

Jk
Rv, qv [bv, qv]

Jv, rv [Jv, gv]

Figure 8. Notation for the local optimization problem. In-network processing parameters

are shown between brackets.

Let the number of child nodes for sensor k be Nk, and denote the decision variables by:

x =
[

q1 q2 . . . qNk
R̄1 R̄2 . . . R̄Nk

]

(35)

where x ∈ R
2Nk , and the objective function by J(x), then the optimization problem could be

rewritten as:

min
x

−J(x) subject to Ax ≥ b (36)
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where:

A =

[

I −I 0

0 0 I

]T

, b =
[

0 −1 r

]T

(37)

I is the identity matrix, 0(1) is the vector/matrix of all zeros (ones) with appropriate dimensions and

r =
[

r1 r2 . . . rNk

]T

. Although the objective function is not convex, we note that the inequality

constraints are linear. Therefore, the Karush–Kuhn–Tucker (KKT) conditions are necessary conditions

for a local maximizer of the objective function [22]. We first form the Lagrangian:

L(x,ν) = −J(x)− νT (Ax− b) (38)

where ν is the vector of Lagrange multipliers, defined as:

νT = [ νq01 . . . νq0
Nk

νq11 . . . νq1
Nk

νR̄1
. . . νR̄Nk

] (39)

νq0i and νq1i are the Lagrange multipliers for the retransmission probability constraint, and νR̄i
is the

Lagrange multiplier for the communication rate constraint in Equation (34). We denote the primal and

dual optimal points by x∗ and ν∗, respectively. The KKT conditions are thus given by:

−∇J(x∗)− ATν∗ = 0 (Stationarity) (40)

ν∗T (Ax∗ − b) = 0 (Comp. slackness) (41)

(Ax∗ − b) � 0 (Primal feasibility) (42)

ν∗ � 0 (Dual feasibility) (43)

−ZT∇2J(x∗)Z � 0 (44)

where Z is a null-space matrix for the matrix of active constraints at x∗ and � represents componentwise

inequality for vectors and positive-semidefiniteness for matrices. We present the following proposition

without proof, since the result could be obtained by straightforward manipulation of the KKT conditions.

Proposition 4. The maximum value of the objective function in Equation (34) occurs either when one

sensor transmits with probability one and all of other sensors remain silent or at a stationary point of

the objective function, i.e., at x∗ where ∇J(x∗) = 0.

Since we may have multiple stationary points in the interior of the objective function domain, the

proposition does not guarantee obtaining the global maximum. However, the proposition is still useful

for the following reasons: (1) it avoids the case where the optimization algorithm may terminate at the

local maximum qi = 1, qj = 0, while a better local maximum may be at one of the stationary points and;

(2) it provides information about the choice of the initial point for the optimization algorithm, where

initial points near the corner points qi = 1, qj = 0 have to be avoided.

The solution of the optimization problem for the tree network with direct transmission scheme is

summarized in Algorithm 1, where Proposition 4 is used, and the called optimization algorithm is any

appropriate optimization method, e.g., the interior point method. The algorithm for the tree network with

in-network processing could be developed similarly.
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Algorithm 1 Optimization problem solution for the tree network.

Create tree object T with system parameter values

for (k = T .BreadthTrav)! = null do {traverses T, returns a pointer to current node}

if k is a Leaf node then

Jk = 0, rk = 0

continue

end if

for (V =Tk.ChildTrav)!= null do {traverses child nodes, breadth-first, returns a pointer to current

node}

C = [C Cv], J = [J Jv], r = [r rv]

end for

OptFunc(k,J,C, r,q,R, Jk, rk) {call optimization algorithm for Equation (34)}

end for

5.2. In-Network Processing

We note that the objective function in Equation (30) has the same recursive structure as the

direct transmission design. Accordingly, we adopt the same local approach presented for the direct

transmission scheme to solve for the optimal design variables. It can be shown that the local optimization

problem at parent node k could be expressed as:

max
q,b

∑

v∈Ck

qv

[
∏

i∈Bv

(1− qi)

]

Φ

[

av −
(
10

σv
c

)

log qv
(
2[bv(L/τ)+gv ]/W − 1

)
] [

uv

(
µv

σv
s

)2
(
1− 2−βbv

)
+ Jv

]

s.t. 0 ≤ qv ≤ 1, bv ∈ N (45)

We note that Jv and gv are fixed values, obtained from solving the local optimization problems at lower

levels in the hierarchy. The notation for the local optimization problem with in-network processing is

illustrated in Figure 8.

5.3. Handshaking Overhead

In order to run the optimization algorithm at each parent node to calculate the optimal communication

parameters for child nodes, information has to be communicated from child nodes to each parent node.

This communication overhead is ignored while developing the system model and the optimization

algorithm. Ignoring the handshaking overhead is a valid assumption as long as the dynamics of the

environment are slow, such that sensors’ information does not need to be communicated frequently to

the relevant parent nodes. In this section, we derive an upper bound on the environment dynamics that

enables us to ignore the handshaking overhead without affecting the model accuracy.

We measure the handshaking overhead by: (1) the total delay time taken by each parent sensor to

collect the quality measures and optimization data from all child sensors in one handshaking cycle, τh

and; (2) the total energy spent in the handshaking cycle, eh. We designate the communication rate and

transmission power used by all child sensors during the handshaking process by Rh and Ph, respectively.

We further designate the rate at which the environment changes by fh (handshaking cycles per day).
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Our objective is to derive an upper bound on fh for a given network. The delay condition could be

expressed as:

τhfh < α(τfr) (46)

where α represents the allowed percentage of resources to be consumed in the handshaking process, such

that the handshaking overhead could be ignored. To calculate τh, we assume IEEE 754 half-precision

binary floating-point format (two bytes) to represent the quality measures and optimization data for each

sensor [23]. According to Table 1 and the optimization algorithm in 1, we have seven values representing

the sensor information to be communicated; CSI (N0,µc,σc), QoI (µ/σs), REI, and optimization data J

and r. Therefore, each sensor requires 14 bytes of payload. Assuming nine bytes of overhead, the total

handshaking delay is given by:

τh =
23× 8×Nc

Rh
=

184Nc

Rh
(47)

where Nc is the number of child nodes for a specific parent node. Combining Equations (46) and (47):

fh < α

(
τfr

184Nc

)

Rh (48)

The energy condition could be expressed as:

ehfhl < αe0 (49)

where e0 is the initial energy in each sensor battery, which is assumed the same for all sensors. The

energy spent in the handshaking process by each sensor could be expressed as:

eh = Ph

(
23× 8

Rh

)

= 184

(
Ph

Rh

)

(50)

Combining Equations (49) and (50):

fh < α

(
e0

184l

)(
Rh

Ph

)

(51)

Equations (48) and (51) represent the two conditions that need to be satisfied to ensure that the derived

model accuracy will not be affected by ignoring the handshaking overhead. These two conditions could

be verified for any values of the design parameters Rh and Ph. However, since we ignored the channel

drop probability during the handshaking process in the analysis, one more constraint is required to

guarantee the minimum probability of successful transmission, λ, and, hence, reliable communication

during the handshaking cycle. Since all sensors need to transmit during the handshaking process, we

assume that TDMA is the protocol used during handshaking. Accordingly, we can use Equation (3)

to get:

Ph = N0W100.1(µc+σcΦ−1[λ]) (2Rh/W − 1
)

(52)

and substituting in Equation (51):

fh < α

(

e010−0.1(µc+σcΦ−1[λ])

184N0Wl

)

Rh

2Rh/W − 1
(53)
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We note that fh needs to satisfy Equations (48) and (53) simultaneously. Since the right-hand side

of Equation (48) is a monotonically-increasing function of Rh and the right-hand side of Equation (53)

is a monotonically-decreasing function of Rh, the upper bound on fh is at the intersection of the two

functions. Hence:

Rh = W log2

[

1 +
e0Nc10

−0.1(µc+σcΦ−1[λ])

N0Wlτfr

]

(54)

Ph =
e0Nc

lτfr
(55)

and finally, the upper bound on fh is given by:

fh < α

(
τfrW

184Nc

)

log2

[

1 +
e0Nc10

−0.1(µc+σcΦ−1[λ])

N0Wlτfr

]

(56)

Accordingly, for any given sensor network, the analysis and the developed model could be used with

sufficient accuracy as long as the environment dynamics do not require more than fh cycles/day, as

calculated by Equation (56), to update each parent node. If the environment dynamics are much faster,

then the handshaking overhead has to be included in the model development.

5.4. Optimization Problem Variants

The general optimization problem for decentralized detection with wireless sensor networks as

presented here could be formulated as [24]:

max
P⊂P

Q(P ;G, T,R, C) (57)

where Q represents the quality of information for the detection task, P is the network protocol parameter

set, G is the detection strategy, i.e., the signal processing algorithm for the observations, T is the

network topology, R is the network reliability, and C is the network deployment cost, in terms of energy

consumption and number of sensors. In this paper, P = [q R] represents the decision variables,

Q = D2 is the deflection coefficient, G is the detection strategy defined by the likelihood ratio test at

the fusion center or the parent node, T is the tree network structure, R is the physical channel reliability,

which is incorporated in the model, and C is the energy consumption as formulated in Section 4.3

Different variants of the general optimization problem could be expressed similarly. For example, if

the lifetime is the main constraint in the problem, then the optimization problem could be expressed as:

min
P

C(P ;G, T,R) (58)

To put the system model in this form for the given problem, the energy model in Section 4.3 has to

be reformulated to express the network lifetime, L, as a function of network parameters. To do that, the

relaxing assumption of pre-allocation of sensor energy has to be dropped.

The detection time is considered as a quality of information metric for the detection task. Therefore,

the formulation in Equation (57) is applicable provided that Q represents the negative of the detection
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time (equivalently, minimization of the detection time). Expressing the system model for the given

detection problem in terms of the detection time, τ , is straightforward. From Equation (31):

τ = bD2/
∑

v1∈Cf

λv1



R̄v1cv1 +
∑

v2∈Cv1

λv2



R̄v2(cv2 − cv1) + . . .+
∑

vl∈Cvl−1

λvlR̄vl(cvl − cvl−1
)



 . . .





(59)

For a given detection performance measure D2, minimization of τ is equivalent to maximization of

the denominator in Equation (59); hence, this problem is equivalent to the one presented in the paper.

6. Performance Evaluation

We compare the cross-layer design approach to the design schemes presented in Figure 9. We use the

tree network in Figure 10, with system parameters as indicated on the tree edges. We use W = 2× 103 Hz,

N0 = 10−10 W/Hz, and b = 16 bits. The comparison is performed using numerical optimization and

Monte Carlo simulations (MCS) as follows:

Optimization: For each design scheme, the analytical expression for the deflection coefficient is used

to form the optimization problem. The optimization problem is solved numerically for the presented

example network and specific values for the delay for detection τ and network lifetime L to obtain the

optimal design variables. The deflection coefficient curves in Figure 13 are obtained with numerical

optimization using MATLAB Optimization Toolbox fmincon function along with the interior-point

algorithm [25].

Monte Carlo simulations (MCS): MCS is used to simulate the statistical behavior of the wireless

network example in Figure 10 for different design schemes. The MCS is used to: (1) verify the analytical

and numerical results in the paper and; (2) obtain the ROC curves for the presented design approaches,

which are hard to obtain using analytical techniques.. The simulation is set up as follows:

1. Network parameters: The optimal design variables obtained from the numerical optimization are

used for each design approach.

2. Hypothesis: MCS is performed for both H0 and H1, to evaluate the deflection coefficient and

ROC curve.

3. Sensors: Observations are generated locally at each sensor for each communication slot. Each

sensor attempts transmission according to the network transmission scheme.

4. Communication channel: The channel state for each sensor is simulated for each detection cycle.

5. Fusion center: The fusion center calculates the test statistic V and the final decision for each

simulation run.

6. Performance evaluation:

(a) Simulation runs: The number of MCS runs is 1500 for each design case.

(b) Deflection coefficient: This is evaluated using the basic definition in Equation (17) and the

simulation data.

(c) ROC curve: This is evaluated by varying the detector threshold between ]−∞,∞[, for each

delay value.
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The ROC curves in Figure 14 are obtained using MCS running in the MATLAB

computing environment.

Figure 9. Transmission schemes for performance comparison.
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Figure 10. Tree detection network for the example problem. Labels on each edge represent

µc,σc, e (in mJ), and the signal to noise ratio, respectively, for each source sensor.

6.1. Cross-Layer Design Performance Surface

Figure 11 shows the performance surface for the S-ALOHA-NR tree network in Figure 10, using the

proposed cross-layer design approach. The surface plots the deflection coefficient for different delay and

network lifetime values. For a fixed network lifetime, the deflection coefficient increases with the delay
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for detection, as more observations are expected at the fusion center. For a fixed delay for detection, the

deflection coefficient decreases with network lifetime, as the energy budget allocated for each detection

cycle decreases to prolong the network lifetime. Decreasing the energy budget reduces the probability

of successful packet transmission, hence causing less observations at the fusion center.
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Figure 11. Deflection coefficient as it varies with the network lifetime and delay

for detection for the slotted ALOHA with no retransmission (S-ALOHA-NR) tree

sensor network.

Figure 12 shows a contour plot for the deflection coefficient, where each curve corresponds to the

set of pair values (delay for detection τ , network lifetime L) that gives rise to the indicated value of the

deflection coefficient. To keep the deflection coefficient constant while increasing the network lifetime,

the delay for detection has to increase also, so that more observations could be received in each detection

cycle. This compensates for the energy decrease as a result of a prolonged network lifetime.

In the following discussion, we resort to one-dimensional plots to compare between the different

design approaches.

6.2. Frequency Division Multiple Access Design

In this design, each sensor has its own communication channel to the relay node or the fusion center.

The communication channels are allocated to different frequency ranges and therefore orthogonal to each

other. The orthogonal channels assumption has been used in the early development of decentralized

detection algorithms, as it abstracts away the complexity of the communication network [1]. The

orthogonal channel assumption is not always practical due to either the availability of different frequency

bands or the resulting complexity in the sensor design.
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Figure 12. Contour plot for the deflection coefficient for the S-ALOHA-NR tree

sensor network.

The deflection coefficient and optimization problem are identical to the cross-layer case, except that

the MAC contention terms in the total probability of successful packet transmission are omitted:

λk = Φ





(
1

σk
c

)


10 log
pk − α

N0W
(

2
R̄k
W − 1

) − µk
c







 (60)

The orthogonal channel assumption eliminates the contention problem in the MAC network. In

addition, it allows each sensor to transmit in each time slot during the detection cycle, leaving the

physical channel impairment as the only source of imperfect communication. Therefore, this design

scheme represents an upper bound for the given network performance. Figures 13 and 14 show the

deflection coefficient and the ROC curve, respectively, for the FDMA design for the example network in

Figure 10.

6.3. Time Division Multiple Access, Equal Priority Design

In this scheme, transmissions are scheduled a priori in a round-robin fashion, where only one sensor

transmits during any time slot for each shared communication channel. This scheme eliminates collisions

between sensor nodes, and sensor transmissions are subject to channel impairments only. The deflection

coefficient could be expressed as:
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D2 =
τ

b
JFC

Jk =
∑

v∈Ck

λv [Rv (cv − ck) + Jv] , k = 1, 2, . . .FC

Jv = 0 if k is a leaf node, cFC = 0

λk = Φ





(
1

σk
c

)


10 log
|ck|erk/τ − α

N0W
(

2
R̄k
W − 1

) − µk
c









(61)

We note that the reporting energy for each sensor is multiplied by the number of sensors sharing the

communication channel, as the sensor is transmitting for only a fraction of the detection cycle.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Delay for Detection τ (s)

D
ef

le
ct

io
n 

C
oe

ffi
ci

en
t D

2

 

 

FDMA
S−ALOHA−NR−Decoupled
S−ALOHA−NR−Max Throughput
S−ALOHA−NR−One Hop
S−ALOHA−NR−Cross Layer
TDMA−Single Sensor
TDMA−Equal Priority

Network Lifetime = 500 days

Figure 13. Deflection coefficient for various network designs.

This scheme has a degraded performance from the cross-layer design, as illustrated in Figures 13 and

14, mainly because it is not selective, i.e., each sensor has equal priority of transmission regardless of

its QoI or CSI. This selectivity property is built in the cross-layer design approach, as the solution of the

optimization algorithm selects the best sensors to transmit. The performance gap is network-dependent,

and TDMA global optimization could outperform for specific network configurations. In addition, non

equal-priority TDMA, where scheduling could be made between a subset of sensors that may transmit an

unequal number of times, is of particular interest for further research. Non equal priority TDMA is hard

to optimize, though, as the resulting problem is an integer programming problem that may be difficult to

solve in real time.
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Figure 14. ROC curve for various network designs, Monte Carlo simulation (MCS) generated.

6.4. Time Division Multiple Access, Single Sensor Transmission

Under this scheme, collisions are eliminated by selecting one branch only of the tree to transmit.

The choice could be based on the leaf node QoI, i.e., the sensor with the best QoI, or the leaf node

CSI, i.e., the sensor with the best channel. This scheme considers a single attribute only of the tree

network, while the proposed cross-layer approach integrates the three sensor attributes in a formal way.

Therefore, it can be shown that this scheme is always upper-bounded by the cross-layer design. The

upper bound is achieved when the combined QoI, CSI and REI of the selected sensor outperforms all

other combinations of sensor transmissions. In such a case, the proposed optimization algorithm will

result in this transmission scheme by setting the transmission probability of all nodes connected to the

selected branch to q = 1 and to q = 0 for all other nodes.

The deflection coefficient and optimization problem are identical to the cross-layer case, with all terms

for non-transmitting sensors omitted and contention terms in the transmission probability removed. As

an example, for the S5− > S8− > FC transmission:

D2 =
(τ

b

)

λ8

[
R̄8c8 + λ2R̄2 (c2 − c8)

]
(62)

The main advantage of this scheme is its simplicity, as the resulting optimization problem is much

simpler with very few decision variables. Therefore, the optimization problem could be solved in real

time and more frequently as the environment changes. Figures 13 and 14 show the deflection coefficient

and the ROC curve, respectively, for the best QoI scheme for the example network in Figure 10, where

the branch S5− > S8− > FC is selected. For the given network, S5 has the best QoI, while suffering

from the highest mean path loss. In addition, the energy per detection cycle is not the highest among all

other sensors. This results in a degraded performance from the proposed cross-layer design.



Sensors 2015, 15 20636

6.5. S-ALOHA-NR, Single-Hop Network

Under this transmission scheme, all sensors transmit directly to the fusion center, contending on one

MAC channel using the S-ALOHA-NR protocol [14]. As leaf and intermediate sensor nodes transmit a

longer distance, the communication drop rate is higher. Figure 13 shows the deflection coefficient for this

transmission scheme. Compared to the cross-layer tree network, the single-hop network outperforms for

large delay values. The reason is that as the delay increases, the energy allocated for each transmission

decreases and the channel drop rate increases. As the tree network has more than one hop, transmissions

suffer from more drops than the single hop network.

The deflection coefficient for the single-hop network could be expressed as a special case of the tree

network with depth = 1:

D2 =
τ

b

∑

v∈CFC

λvR̄vcv (63)

Several factors affect the cut-off delay value, including the number of sensors, the transmission

distances (affecting mean path loss), the number of hops in the tree network, and the energy allocated

for transmission. For the given example network, doubling the transmission energy moves the cut-off

delay value from 7 to 15 s. A separate comparative study between the single-hop and tree networks that

investigates the impact of all design parameters is of particular interest. Figure 14 shows the ROC curve

for the single-hop network for τ = 5 s, where the tree network design outperforms.

6.6. Decoupled Design

In this approach, each layer is designed separately. In the conventional slotted ALOHA, the MAC

sublayer is designed to minimize the probability of collision, without regard to the QoI and CSI for each

node [26]. For the sub-tree composed of node k and the set of its immediate child nodes, Ck, the minimum

probability of collision occurs at qv = 1/Nk, where Nk = |Ck| and, consequently, P k
t = (pk − α)/Nk.

The physical layer is designed to guarantee a minimum probability of successful packet transmission,

λv [27]. Using Equation (3), we obtain:

R̄i = W log2

(

1 + 10[0.1σ
i
c(ai−Φ−1[λv])+logNk]

)

(64)

and using Equation (20), the deflection coefficient is given by:

D2 =
τ

b
JFC

Jk =
λv

Nk

(

1− 1

Nk

)Nk−1 ∑

v∈Ck

[
Jv + (cv − ck)R̄i

]
(65)
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To make a fair comparison, we do not assume a pre-set value of λk. Rather, we optimize λk values to

yield the maximum deflection coefficient. Therefore, the local optimization problem could be written in

the form:

max
λv

λv

Nk

(

1− 1

Nk

)Nk−1 ∑

v∈Ck

[
R̄v(cv − ck) + Jv

]

s.t. R̄v ≥
∑

u∈Cv

λuR̄u = rv (66)

where R̄v is given by Equation (64).

Figures 13 and 14 show the deflection coefficient and ROC curve, respectively. The decoupled design

approach has a significantly degraded performance when compared to the cross-layer approach, as it

does not take into account the application layer, in addition to the decoupling between the physical and

MAC layers.

6.7. Max Throughput Design

In this approach, the performance metric of interest in designing the communication network is the

throughput [28,29]. For any relay node k for the given tree network, the throughput could be defined

as [9]:

Tk =
∑

v∈Ck

λvR̄v =
∑

v∈Ck

R̄vqv
∏

i∈Bv

(1− qi)Φ

[

av −
(
10

σv
c

)

log qv

(

2
R̄v
W − 1

)]

(67)

The objective is to choose the design variables qv and Rv to locally maximize the throughput. The

constraint on the communication rate of node v could be expressed in terms of its throughput as R̄v ≥ Tv,

where Tv = 0 for leaf nodes. The optimization problem could be formulated as:

max
qv,R̄v

Tk

s.t. 0 ≤ qv ≤ 1, R̄v ≥
∑

u∈Cv

λuR̄u (68)

where λu and R̄u are obtained from solving the local optimization problems at the lower level for

each node v, as indicated in Figure 8. The optimal design variables could then be substituted back

in Equation (20) to evaluate the deflection coefficient.

Figures 13 and 14 show the deflection coefficient and ROC curve, respectively. The cross-layer design

outperforms the max throughput by integrating the QoI into the design process.

6.8. Discussion

The cross-layer design approach for the tree network with the S-ALOHA-NR MAC protocol

outperforms the TDMA with equal priority, TDMA with a single sensor, max throughput, decoupled,

and a single-hop S-ALOHA-NR network (for small delay values). For non-real-time applications that

could support large delay values, the single hop network may perform better depending on the network

setup. The FDMA transmission scheme outperforms all other schemes, including the cross-layer
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approach, provided that the network resources are available and the sensor nodes have the frequency

tuning capability.

It should be highlighted that the performance enhancement for the cross-layer approach comes with

no additional hardware complexity in the network. However, the computational intensity to obtain the

optimization problem solution grows with the network size. The local optimization solution presented is

a suboptimal solution. However, for some sensor networks, simplicity with other schemes, e.g., TDMA

with a single sensor, may be preferred despite the partial loss of detection performance.

6.9. Direct Transmission versus In-Network Processing

Figure 15 compares the deflection coefficient for the direct transmission and in-network processing

designs for different delays for detection values for the example network in Figure 10. We note that

the direct transmission design outperforms the design with local quantization for all delay for detection

values below a threshold value τth. Increasing the delay for detection further causes the in-network

processing design to outperform. The first region, i.e., τ < τth is where the signal processing aspect of

the system dominates. In this region, the loss due to quantization cannot be compensated, since the delay

allowed is small and not enough measurements can be collected to compensate for the quantization loss.

The direct transmission scheme outperforms, since information is transmitted without prior processing.

In addition, a shorter delay allows the reporting energy to be concentrated over a smaller duration,

resulting in higher power for each sensor. The high power mitigates the channel impairments, and

therefore, the communication network aspect is not dominant. The situation is reversed when τ > τth.

In this region, energy is distributed over a longer period, which results in low sensor transmission power,

and hence, the channel impairment is dominant in determining the system performance. The in-network

processing design requires a lower communication rate, thereby mitigating the channel impairment.

On the other hand, the direct transmission design requires a higher communication rate, resulting in

packet loss and degraded system performance.
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Figure 15. Deflection coefficient for direct transmission and in-network processing designs.
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The delay threshold depends mainly on the quantizer design, summarized by the parameter β,

in addition to the signal to noise ratio for each sensor and the energy allocated for the detection

process. Figure 16 shows the variation in the delay threshold with the quantizer design parameter β.

As β increases, the exponential decay rate for the quantization effect is much faster; hence, the threshold

is lower.
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Figure 16. Variation of the detection threshold with quantizer design parameter β.

7. Conclusions

In this paper, we used a model-based approach to design a tree-structured, slotted ALOHA with

no retransmission sensor network, for detection applications. We developed an integrated model

for the detection system and integrated the QoI, REI and CSI quality measures into the design

process. We designed the communication rate and transmission probability for each tree node. The

proposed model-based approach shows a performance gain over decoupled and maximum throughput

contention-based networks, as well as equal priority and single-sensor TDMA contentionless networks.

This performance enhancement comes with no additional network sources.

The choice between single-hop and tree networks depends on several factors, including the number of

sensors, the distance between sensors and the fusion center, the tree formation and the number of hops,

as well as the energy allocated for transmission. For the presented example network, the tree network

outperforms for small delay values, while the single-hop network results in better detection performance

for large delay values. A more in-depth comparative analysis between the two networks and the effect

of various network parameters is of particular interest.

For applications with stringent delay requirements, we show that system design with direct

transmission of sensor observations results in better performance since the channel impairment is

unlikely to play a major role. If the application can tolerate longer delays, then the design with in-network
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processing results in better detection performance, as the communication network becomes a dominant

factor in determining the system performance.

Despite the fact that the cross-layer design approach results in a no-cost performance increase,

this approach has its own pitfalls. First, the mathematical model that captures the inter-relationships

between different layers is in general complex, as evidenced by the model in this paper. Because of this

complexity, several iterations through the design process have to be made in order to obtain a tractable

model. Often times, simplifying assumptions are required, and it is not always straightforward to check

the validity of such assumptions. Second, the optimization problem obtained has to be solvable in real

time with existing optimization algorithms. This is not always possible, as the optimization problem

complexity is closely coupled to the model complexity. Despite these pitfalls, the cross-layer design

complexity is justified when it is desired to optimize the performance with limited system resources that

cannot be replenished (e.g., remote WSN in a battlefield). The decoupled and TDMA schemes, on the

other hand, may be justified for systems with enough resources, such that the performance loss could be

compensated by additional resource allocation.

We assumed that the energy is pre-allocated to each sensor based on its energy reserve. Optimal

energy allocation to maximize the detection performance is one possible extension to the presented work.

In this case, care should be taken that the energy of relay nodes is not depleted before its descendants.

Finally, we assumed fixed allocation schemes in this paper, where the transmission pattern and network

parameters are calculated a priori. Dynamic allocation schemes that cope with environmental changes

are expected to outperform despite their complexity. The non-equal priority TDMA transmission scheme

is one example that needs to be investigated.
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Appendix

A. Proof of Proposition 1

Proof. At the fusion center, the LLR is an optimal test. Using the independence assumption of sensor

observations, the LLR could be expressed as a sum of the individual sensor LLRs provided that the

information is transmitted successfully to the fusion center. The information transmitted by sensor vl at

tree depth l and time slot il will be received at the fusion center if all transmissions in the slot sequence

i1 . . . il were successful, i.e., rv1 [i1]rv2 [i1i2] . . . rvl [i1 . . . il] = 1. Using this fact, the LLR test could be

expressed as:

L1∑

i1=1

∑

v1∈Cf

rv1 [i1]L (xv1 [i1]) +

L1∑

i1=1

∑

v1∈Cf

m1∑

i2=1

∑

v2∈Cv1

rv1 [i1]rv2 [i1i2]L (xv2[i1i2]) +

. . .+

L1∑

i1=1

∑

v1∈Cf

. . .

ml−1∑

il=1

∑

vl∈Cvl−1

rv1 [i1] . . . rvl[i1 . . . il]L (xvl [i1 . . . il])
H1
≷
H0

ln γ (69)

where the LLR could be expressed as:

L (xvl[i1 . . . il]) =
µvl

σvl2
s

nvl∑

jl=1

xvl [jl, i1 . . . il]−
1

2
nvl

(
µvl

σvl
s

)2

(70)

Using Equation (70) in Equation (69) and factoring out, the LLR test is then given by:

V =

L1∑

i1=1

∑

v1∈Cf

nv1∑

j1=1

rv1 [i1]





(
µv1

σv12
s

)

xv1 [j1, i1] +

m1∑

i2=1

∑

v2∈Cv1

nv2∑

j2=1

rv2 [i1i2]

[(
µv2

σv22
s

)

xv2 [j2, i1i2]+

. . .+

ml−1∑

il=1

∑

vl∈Cvl−1

nvl∑

jl=1

rvl[i1 . . . il]

(
µvl

σ
vl2
s

)

xvl [jl, ili2 . . . il]



 . . .




H1
≷
H0

1

2

L1∑

i1=1

∑

v1∈Cf

rv1 [i1]



nv1

(
µv1

σv1
s

)2

+

m1∑

i2=1

∑

v2∈Cv1

rv2 [i1i2]

[

nv2

(
µv2

σv2
s

)2

+

. . .+

ml−1∑

il=1

∑

vl∈Cvl−1

rvl [i1 . . . il]nvl

(
µvl

σ
vl
s

)2


 . . .



+ ln γ (71)
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B. Proof of Proposition 2

Proof. We use the definition of the deflection coefficient in Equation (17). We use the fact that ri[k]

and xi[j, k] are both i.i.d. and independent. In addition, rvi and rvj are independent for i 6= j and

E[rvi ] = λvi:

E[V ;H0] =

L1∑

i1=1

∑

v1∈Cf

nv1∑

j1=1

E [rv1 [i1]]

[(
µv1

σv12
s

)

E [xv1 [j1, i1];H0] +

. . .+

ml−1∑

il=1

∑

vl∈Cvl−1

nvl∑

jl=1

E [rvl [i1 . . . il]]

(
µvl

σ
vl2
s

)

E [xvl [jl, ili2 . . . il];H0]



 = 0 (72)

E[V ;H1] =

L1∑

i1=1

∑

v1∈Cf

nv1∑

j1=1

E [rv1 [i1]]

[(
µv1

σv12
s

)

E [xv1 [j1, i1];H1] +

. . .+

ml−1∑

il=1

∑

vl∈Cvl−1

nvl∑

jl=1

E [rvl [i1 . . . il]]

(
µvl

σ
vl2
s

)

E [xvl [jl, ili2 . . . il];H1]





= L1

∑

v1∈Cf

λv1



nv1

(
µv1

σv1
s

)2

+m1

∑

v2∈Cv1

λv2



nv2

(
µv2

σv2
s

)2

+ . . .ml

∑

vl∈Cvl

λvlnvl

(
µvl

σ
vl
s

)2


 . . .





(73)

To find var[V ;H0], we expand the test statistic, noting that transmissions in different slots are i.i.d.:

var[V ;H0] = L1var




∑

v1∈Cf

nv1∑

j1=1

rv1 [i1]

(
µv1

σv12
s

)

xv1 [j1, i1]

+ L1m1

∑

v1∈Cf

∑

v2∈Cv1

nv1∑

j1=1

nv2∑

j2=1

rv1 [i1]rv2 [i1i2]

(
µv2

σv22
s

)

xv2 [j2, i1i2] + . . .

+

L1∑

i1=1

∑

v1∈Cf

. . .

ml−1∑

il=1

∑

vl∈Cvl−1

rv1 [i1] . . . rvl [i1 . . . il]

(
µvl

σ
vl2
s

)

xvl [jl, i1 . . . il]



 (74)

We use the identity:

var

(
N∑

i=1

Xi

)

=
N∑

i=1

N∑

j=1

COV(Xi, Xj) =
N∑

i=1

N∑

j=1

E[XiXj ]−E[Xi]E[Xj] (75)
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The second term in Equation (75) vanishes for all terms in Equation (74) since the observations have

zero mean under H0. In addition, the first term vanishes except when i = j. Accordingly:

var[V ;H0] = L1

∑

v1∈Cf

nv1E[(rv1)
2]E[(xv1)

2;H0]

(
µv1

σv12
s

)2

+ L1m1

∑

v1∈Cf

∑

v2∈Cv1

nv2E[(rv1)
2]E[(rv2)

2]E[(xv2)
2;H0]

(
µv2

σv22
s

)2

+ . . .

+ L1m1 . . .ml

∑

v1∈Cf

. . .
∑

vl∈Cvl−1

E[(rv1)
2] . . . E[(rvl)

2]E[(xvl)
2;H0]

(
µvl

σ
vl2
s

)2

(76)

We note that E[(rv)
2] = λv and E[(xv)

2] = σv2

s . Accordingly:

var[V ;H0] = L1

∑

v1∈Cf

nv1λv1

(
µv1

σv1
s

)2

+ L1m1

∑

v1∈Cf

∑

v2∈Cv1

nv2λv1λv2

(
µv2

σv2
s

)2

+ . . .

+ L1m1 . . .ml

∑

v1∈Cf

. . .
∑

vl∈Cvl−1

λv1 . . . λv1

(
µvl

σ
vl
s

)2

(77)

and factoring out, we get:

var[V ;H0] = L1

∑

v1∈Cf

λv1



nv1

(
µv1

σv1
s

)2

+m1

∑

v2∈Cv1

λv2



nv2

(
µv2

σv2
s

)2
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∑

vl∈Cvl

λvlnvl

(
µvl

σ
vl
s

)2


 . . .





(78)

From Equations (17), (72), (73) and (78) and by defining cv = (µv/σv
s)

2, we obtain Equation (20)

C. Proof of Proposition 3

Proof. First we obtain the statistics of the quantized random variable Y . From Equations (8) and (23):

E[Y ] = ∆

(

E

[⌊
Z

∆

⌋]

+
1

2

)

(79)

and using the series expansion of the floor function:

⌊x⌋ = x− 1

2
+

1

π

∞∑

k=1

sin(2πkx)

k
(80)

we get:

E[Y ] = E[Z] +
∆

π

∞∑

k=1

1

k
E

[

sin

(
2πk

∆
Z

)]

(81)

Denote θk = 2πk/∆, and using the expansion sin(x) = (ejx − e−jx)/2 to find the expectation for the

second term:

E[Y ] = µZ +
∆

π

∞∑

k=1

1

k

1

2j

(
E
[
ejθkZ

]
− E

[
e−jθkZ

])

= µZ +
∆

π

∞∑

k=1

1

k

1

2j

(
ejθkµzE

[
ejθk(Z−µz)

]
− e−jθkµzE

[
e−jθk(Z−µz)

])
(82)
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Using the exponential function expansion and noting that the odd central moments for the Gaussian

distribution are equal to zero, we obtain:

E[Y ] = µZ +
∆

π

∞∑

k=1

1

k
sin (θkµZ) e

−θ2
k
σ2
Z

= µZ +
∆

π

∞∑

k=1

∆

k
sin

(
2πk

∆
µZ

)

e−2(πk
∆ )

2
σ2
Z (83)

and using the distribution of Z in Equation (7), we obtain:

E[Y ;H0] = 0 (84)

E[Y ;H1] = n

(
µ

σs

)2

+
∆

π

∞∑

k=1

1

k
sin

[
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(
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σs
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2
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)
2
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(
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σs
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+ δ (85)

For the variance:

var[Y ;H0] = E[Y 2;H0]

= ∆2E

[(⌊ z

∆

⌋

+
1

2
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∆
Z

)]

(86)

Similar to the derivation for the expected value, the last term vanishes, since all moments are

odd. Therefore:

var[Y ;H0] = σ2
Z +

(
∆

π

)2
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[
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(87)

Similar to the expected value derivation, we use cosx = (ejx − e−jx)/2, and after some algebraic

manipulations, we obtain:

var[Y ;H0] = n
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σs
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∆
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+ δ′ (88)
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Similar to the derivation of Proposition (2), we take the expectation and variance of Equation (22),

and using Equations (84), (85) and (88), we obtain:
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σ
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s

)2
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+ δv2 . . .ml

∑

vl∈Cvl

λvl
nvl

(
µ

vl

σ
vl
s

)2

+ δvl

]

. . .
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λvl

nvl
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µ
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σ
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+ δ′vl
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. . .
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(89)

D. Proof of Proposition 4

Proof. Single sensor transmission solution: From the stationarity condition in Equation (40), it could

be easily shown by direct substitution, that for silent sensors, qi = Ri = 0 satisfies all KKT conditions.

Therefore, this point is a candidate for a local maximizer. For the only active sensor that transmits with

probability one, i.e., qν = 1, if qi 6= 0 for any other sensor i 6= ν, then a collision is guaranteed when

sensor i attempts transmission. Therefore, the parent node will not receive any information from sensor

i. Clearly, qi should be set to zero ∀i 6= ν, i.e., all other sensors have to be silent. The same result could

also be obtained by direct inspection of the objective function, when qν = 1, where any value of qi 6= 0

will cause the objective function value to decrease. Therefore, qi = 0. We conclude that we have a set

of |Ck| candidate points, (qν = 1, qi = 0, i 6= ν), for a local maximum.

Stationary point solution: For the active sensors, 0 < qi < 1, and therefore, all constraints are

inactive. Accordingly, all Lagrange multipliers are = 0, i.e., ν = 0, and from the stationarity condition,

the optimal values for q and R are equal to the stationary point x∗, where ∇J(x∗) = 0.

References

1. Tsitsiklis, J.N. Decentralized Detection. Adv. Signal Process. 1993, 2, 297–344.

2. Aldosari, S.A.; Moura, J.M.F. Fusion in sensor networks with communication constraints. In

Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks,

IPSN ’04, Berkeley, CA, USA , 26–27 April 2004; pp. 108–115.

3. Chen, B.; Tong, L.; Varshney, P.K. Channel-Aware Distributed Detection in Wireless Sensor

Networks. IEEE Signal Process. Mag. 2006, 23, 16–26.

4. Chamberland, J.F.; Veeravalli, V. Asymptotic results for decentralized detection in power

constrained wireless sensor networks. IEEE J. Sel. Areas Commun. 2004, 22, 1007–1015.

5. Tay, W.P. The Value of Feedback in Decentralized Detection. IEEE Trans. Inf. Theory 2012,

58, 7226–7239.

6. Zhang, Z.; Chong, E.; Pezeshki, A.; Moran, W.; Howard, S. Detection Performance in Balanced

Binary Relay Trees With Node and Link Failures. IEEE Trans. Signal Process. 2013,

61, 2165–2177.

7. Yuan, Y.; Kam, M. Distributed decision fusion with a random-access channel for sensor network

applications. IEEE Trans. Instrum. Meas. 2004, 53, 1339–1344.



Sensors 2015, 15 20646

8. Chang, T.Y.; Hsu, T.C.; Hong, P.W. Exploiting Data-Dependent Transmission Control and MAC

Timing Information for Distributed Detection in Sensor Networks. IEEE Trans. Signal Process.

2010, 58, 1369–1382.

9. Liu, L.; Chamberland, J.F. Cross-Layer Optimization and Information Assurance in Decentralized

Detection over Wireless Sensor Networks. In Proceedings of the Fortieth Asilomar Conference

on Signals, Systems and Computers, Pacific Grove, CA, USA, 29 October–1 November 2006;

pp. 271–275.

10. Yang, Y.; Blum, R.; Sadler, B. Energy-Efficient Routing for Signal Detection in Wireless Sensor

Networks. IEEE Trans. Signal Process. 2009, 57, 2050–2063.

11. Sung, Y.; Misra, S.; Tong, L.; Ephremides, A. Cooperative routing for distributed detection in large

sensor networks. IEEE J. Sel. Areas Commun. 2007, 25, 471–483.

12. Charbiwala, Z.M.; Zahedi, S.; Kim, Y.; Cho, Y.H.; Srivastava, M.B. Toward Quality of

Information Aware Rate Control for Sensor Networks. In Proceedings of the Fourth International

Workshop on Feedback Control Implementation and Design in Computing Systems and Networks,

San Francisco, CA, USA, 16 April 2009.

13. Zhao, Q.; Swami, A.; Tong, L. The interplay between signal processing and networking in sensor

networks. IEEE Signal Process. Mag. 2006, 23, 84–93.

14. Tantawy, A.; Koutsoukos, X.; Biswas, G. Cross-layer design for decentralized detection in WSNs.

EURASIP J. Adv. Signal Process. 2014, 2014, 43.

15. Varshney, P.K. Distributed Detection and Data Fusion; Springer: Berlin/Heidelberg,

Germany, 1996.

16. Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans.

Veh. Technol. 1980, 29, 317–325.

17. Viswanathan, R.; Varshney, P. Distributed detection with multiple sensors I. Fundamentals.

IEEE Proc. 1997, 85, 54–63.

18. Dutta, P.; Arora, A.; Bibyk, S. Towards radar-enabled sensor networks. In Proceedings of the Fifth

International Conference on Information Processing in Sensor Networks, IPSN ’06, Nashville, TN,

USA , 19–21 April 2006; pp. 467–474.

19. Kay, S.M. Detection Theory. Detection Theory. In Fundamentals of Statistical Signal Processing,

Prentice Hall Signal Processing Series; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998;

Volume 2.

20. Picinbono, B. On deflection as a performance criterion in detection. IEEE Trans. Aerosp.

Electron. Syst. 1995, 31, 1072–1081.

21. Chen, B.; Jiang, R.; Kasetkasem, T.; Varshney, P.K. Channel aware decision fusion in wireless

sensor networks. IEEE Trans. Signal Process. 2004, 52, 3454–3458.

22. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge,

UK, 2004.

23. IEEE Std 754-2008, IEEE Standard for Floating-Point Arithmetic; IEEE, 29 Aug 2008; pp. 1–70,

doi:10.1109/IEEESTD.2008.4610935.

24. Tantawy, A. Model-Based Detection in Cyber Physical Systems. Ph.D. Thesis, Vanderbilt

University, Nashville, TE, USA, December 2011.



Sensors 2015, 15 20647

25. The MathWorks, Inc. Optimization Toolbox 7 User’s Guide; The MathWorks, Inc.: Natick, MA,

USA, 2014.

26. Bertsekas, D.; Gallager, R. Data Networks; Prentice Hall: Englewood Cliffs, NJ, USA, 1992.

27. Gallager, R. Principles of Digital Communication; Cambridge University Press: Cambridge,

UK, 2008.

28. Ni, J.; Tan, B.; Srikant, R. Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving

maximum throughput and low delay in wireless networks. IEEE/ACM Trans. Netw. 2012,

20, 825–836.

29. Tang, J.; Xue, G.; Zhang, W. Maximum Throughput and Fair Bandwidth Allocation in

Multi-Channel Wireless Mesh Networks. In Proceedings of the 25th IEEE International Conference

on Computer Communications, NFOCOM 2006, Barcelona, Spain, 23–29 April 2006; pp. 1–10.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Problem Formulation
	System Model
	Wireless Channel Model
	Media Access Control Protocol Model
	Direct Transmission
	In-Network Processing

	Energy Model
	Sensing Model
	Measurement of Detection Performance
	Direct Transmission
	In-Network Processing


	System Design for Optimal Detection
	Direct Transmission
	In-Network Processing
	Handshaking Overhead
	Optimization Problem Variants

	Performance Evaluation
	Cross-Layer Design Performance Surface
	Frequency Division Multiple Access Design
	Time Division Multiple Access, Equal Priority Design
	Time Division Multiple Access, Single Sensor Transmission
	S-ALOHA-NR, Single-Hop Network
	Decoupled Design
	Max Throughput Design
	Discussion
	Direct Transmission versus In-Network Processing

	Conclusions
	Appendix
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??

