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Abstract

The concept of causality presents a problem for
component-based modeling of bond graphs, the uncertainty
of the causality of each interaction bond. As a result we use
generalized bond graphs instead, which is mathematically
represented by its Dirac structure. Through the use of gen-
eralized bond graphs we can represent each component as
a causal computational model (hybrid-input-output represen-
tation) or as an acausal computational model (kernel repre-
sentation). Our contribution consists of developing a method
which exploits the Dirac structure of a generalized bond
graph component, and generates both a causal and acausal
computational model for that component. A case study, with
subsequent simulation results, is used to showcase both meth-
ods and help compare and contrast both computational mod-
els.

1. INTRODUCTION
Bond graph is a useful tool for modeling physical sys-

tems, especially when multiple domains are involved. One
of its major distinctions from other tools such as signal-flow
graphs is that every arc in a bond graph represents an ex-
change of power, rather than an exchange of signal. A bond
graph can generate equations and block diagrams using the
idea of causality [5].

Our paper was motivated by an idea of hierarchy: a (global)
bond graph model broken down into interacting components,
where each component is also bond graph and each interac-
tion is a bond connecting two components. A causality as-
signment on the bond graph requires strokes to be assigned to
every bond in the model, which includes the interaction bonds
between components.

The causality of interaction bonds can be easily determined
when looking at the global model, but if we only look at a par-
ticular component there is no way of determining the causal-
ity of an interaction bond; like a resistor, its causality can go
either way and still be valid. Without determining the causal-

ity of interaction bonds, the bond graph model cannot be sim-
ulated using a causal simulation tool.

In order to circumvent the causality problem, we modify
our motivation by defining components as generalized bond
graphs. Each component contains a Dirac structure, a set of
power ports, and a set of interaction ports; power ports are
attached to traditional bond graph elements such as resistive
elements, storage elements, and source elements while inter-
action ports connect the components to each other. In this pa-
per, components are defined in terms of their physical world
counterparts (motors, loads, etc).

Using generalized bond graphs, we can represent a com-
ponent as either a causal computational model or an acausal
computational model. The causal computational model re-
quires all equations to have an inherent cause and effect re-
lationship between variables, whereas the acausal computa-
tional model does not have this stringent requirement. In this
paper we will compare and contrast the processes in which
we derive causal or acausal computational models from gen-
eralized bond graphs.

Our contributions include an approach that uses general-
ized bond graph techniques to model of systems in a composi-
tional way. A system can be fully described by its components
and their interactions with each other. We exploit the Dirac
structure of each component; component Dirac structures can
generate component block diagram subsystems, which can
connect together to form the full system. Due to the com-
positional nature of the Dirac structure, components are hier-
archical, that is composition of components can also be char-
acterized by a Dirac structure. In this paper we present the
derivations of causal and acausal computational models from
the generalized bond graph of components. Our method uses
two Dirac structure forms, the kernel representation and the
hybrid-input-output representation [10].

In causal modeling, the causality of an interaction port
must be determined. For acausal modeling, the causality of
an interaction port can be ignored. Therefore, we can see that
causal modeling of a component will require a knowledge of
its neighboring components, while for acausal modeling, each
component can be modeled separately.

Given a generalized bond graph model, we can break
its Dirac structure down into interacting components. Every



Figure 1. Flow chart of the simulation method in this paper

component will have a Dirac structure, which will directly
lead to a kernel representation; the kernel representationis
an acausal computational model for the component. Using
the kernel representation of each component we are able to
also derive their respective hybrid-input-output representa-
tions, which is a causal computational model. A simple flow
chart of the entire process is illustrated in Figure 1.

This paper is organized as follows. In Section 2., short
background information on bond graph and generalized bond
graph modeling is provided. Section 3. describes component-
based acausal simulation method of systems. Section 4. ex-
tends the acausal method to a causal component-based sim-
ulation method. A case study which showcases our methods
is presented in Section 5.. Finally, analysis and discussion of
the algorithm is given in Section 6..

2. BACKGROUND
Bond graphs were introduced in 1961 by Dr. Henry Payn-

ter as a means to model physical systems, using the notion
of power flow, rather than signal flow. One of the major con-
cepts in bond graph theory is causality, which determines the
signal direction of a particular bond. Causality is described in
bond graphs using causal strokes, where the placement of the
causal stroke determines the direction of effort [4]. A bond
graph with no causal conflicts can be transformed into state
space equations and block diagrams for simulation [7]. We
will use the elastic hoist device featured in Broenink’s pa-
per [7] as an example to illustrate concepts. Figure 2 shows
the schematic of the elastic hoist device, and Figure 3 con-
tains its corresponding bond graph model.

The Sequential Causal Assignment Procedure(SCAP) is
an algorithm that assigns causality to every bond in a bond
graph model [11]; an application to hybrid bond graphs al-
lows for the derivation of state equations [13]. Methods like
SCAP do not allow for the analysis of a system by compo-
nents; just like any other bond graph algorithms, it requires
knowledge of the global model. Therefore, our goal is to gen-
erate computational models for each component of a system,

Figure 2. Schematic of the elastic hoist device [7]

Figure 3. Bond graph model for the hoist device

which we can then put together in order for simulations.
Generalized bond graph modeling is different from bond

graph modeling in two ways, absence of causality and use
of symplectic gyrators [10]. A symplectic gyrator is a unit
gyrator that inverts the roles of the effort and flow [6]. In gen-
eralized bond graphs, symplectic gyrators are attached to I-
storage elements, which allows C and I storage elements to be
treated in a unified way. The generalized bond graph model
of the elastic hoist device is shown in Figure 4, where we par-
tition the model into four components (power supply, motor,
cable drum, and load).

Central to every generalized bond graph model is a Dirac
structure, which is a representation of its power conserving
interconnection structure [10]. This power conserving inter-
connection structure contains all non-single-port elements,
such as transformers, gyrators, 1 junctions, and 0 junctions.
The Dirac structure is commonly represented by a kernel rep-
resentation [10] as seen in equation (1):

D (x) = {(e, f ) ∈ TzZ×Tz∗Z : E(x)e+F(x) f = 0}, (1)

Figure 4. Generalized bond graph model for the elastic hoist
device with components



where the dimensions ofF(x) andE(x) are bothn×n, where
n is the total number of non-power conserving elements. The
F(x) andE(x) matrix must satisfy the following two condi-
tions:

1. rank
[

F(x) | E(x)
]

= n

2. E(x)FT(x)+F(x)ET(x) = 0

Looking at the power supply in Figure 4, an automated
method will provide the following kernel representation
shown in equation (2), witheα and fα as the effort and flow
of the interaction port, respectively. The Dirac structureof a
model can be derived from its generalized bond graph in an
automated fashion, which we will describe in detail in Sec-
tion 3..
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Using the kernel representation of a Dirac structure, we can
also derive an input-output form. There are two square matri-
ces in a kernel representation, and one of them must be full
rank in order for an input-output form to be derived. In this
paper we define it so that we want to manipulate the kernel
representation so to make theF(x) matrix full rank. Using
equation (2) we can see that itsF(x) matrix is full rank, which
allows for:
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(3)

Equation (3) is called the hybrid-input-output representa-
tion [10] of the power supply. This representation implies a
causal relationship between its inputs and outputs, which con-
trasts with the acausal kernel representation in equation (2).

The Dirac structure is central to component-based analysis,
because the composition of any number of Dirac structures is
again a Dirac structure [14]. Composition of Dirac structures
is defined as the power-conserving interconnections between
the Dirac structures [8]. In this paper we describe each com-
ponent of a system by its Dirac structure; their interactions
become the composition of their Dirac structures.

3. ACAUSAL MODELING AND SIMULA-
TION

In this section, we present a component-based method for
transforming generalized bond graph components to acausal
compuational models. We begin by deriving the kernel repre-
sentation of each Dirac structure component from its general-
ized bond graph model. Using the kernel representations, we
can perform acausal simulation.

The most common way of forming the kernel representa-
tion of a Dirac structure is by writing down junction equations
and combining/eliminating the equations. This method is not
ideal for systems with thousands of junction equations. An-
other way uses input-output generalized junction structures
(IOGJS) to calculate the Dirac structure [10]; this method ne-
cessitates the conversion of a regular generalized bond graph
model into an IOGJS model, which will introduce additional
power-conserving elements and source elements.

In this subsection, we formulate a method of deriving the
Dirac structure of a component by examining the structural
properties of its power conserving elements. Our method se-
quentially combines all power-conserving elements of a com-
ponent to generate its kernel representation equations. The
main idea in this method is recognizing that there is a pattern
to the Dirac structure of every power conserving element. A
transformer or a gyrator has only one possible kernel repre-
sentation due to its SISO (one bond in, one bond out) nature.
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Equations (4) and (5) describe the kernel representations of
a transformer and a gyrator, repectively, wherer is the trans-
former turning ratioa andk is the gyrator ratio. Notice how
the first columns of theE andF matrices are negative, this is
due to the fact that the first columns corresponds to the input
ports. In this paper we have chosen the convention that input
columns are negative.

A zero or one junction, on the other hand, can have an in-
finite number of kernel representations due to its MIMO na-
ture (multiple bonds in, multiple bonds out). However, there
is a pattern to the matrices; for a zero and one junction with
n bonds, their kernel representations are shown in equations
(6) and (7). Note that in these two equations we only show
the structural formats of their kernel representations, columns
will be assigned as negative or positive depending on direc-
tion of bonds:
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Our algorithm takes a component’s generalized bond graph
model and constructs its kernel representation. First it con-
structs the kernel representation of every power-conserving
element inside the component using equations (4)− (7). Then
it combines all individual kernel representations together us-
ing equation substitution methods to form the full kernel rep-
resentation of the component. Note that the algorithm only
takes into account power conserving elements, because they
form the Dirac structure equations. A summary of the algo-
rithm is listed in Algorithm 1.

Algorithm 1 GBG2DS
-for all Components
- for all Power-conserving elements
- Find E and F based on pattern;

- while Interconnections left
- Substitute Dirac structure equations to form combined
Dirac structure;

Modelica is a multi-domain modeling language for
component-based modeling of systems developed by the

Modelica Association [2]. One of Modelica’s major distinc-
tions from other modeling languages is that equations in
Modelica describes an equality rather than an assignment;
therefore, there is no inherent causality in the Modelica lan-
guage [2]. Its acausal nature makes Modelica an appealing
language to use for simulating the kernel representation ofa
Dirac structure.

Having the kernel representation of components, we can
simulate them acausally using s Modelica tool/software. We
need to write out equations of the kernel representation of
each component and the constituent equations of bond graph
elements (such as source, storage, and resistive) on the power
ports of each component. One of the advantages of using
acausal methods is independent analysis; the kernel repre-
sentation of each component can be derived without knowl-
edge of its neighboring components or the global model. The
acausal method can be automated into Modelica code, which
a Modelica software can simulate. A summary of the algo-
rithm is listed in Algorithm 2.

Algorithm 2 DS2Modelica
-for all Components
- Set parameters of power ports, gyrators, and transformers;
- Define power port variables;
- Define interaction port variables;
- Write out Dirac structure equations;

- for all Power ports
- Write out constitutive bond graph element equations;

4. CAUSAL MODELING AND SIMULA-
TION

In addition to acausal computational models from the
kernel representation of components, we can also derive
their respective hybrid-input-output representations, which
are causal computational models. In causal analysis, therecan
be no causal conflict, and the causality of every bond must
be determined. These extra steps make deriving causal com-
putational models more complicated than deriving acausal
computation models. At the heart of the causal computation
model is the hybrid-input-output representation of the Dirac
structure. In this section, we propose a method based on ele-
mentary column operations ofE(x) andF(x) in order obtain
the hybrid-input-output representation.

We illustrate the elementary column operations with a sim-
ple example. Consider the following kernel representationof
a system with only two power ports:

[

E1 E2
]

[

e1

e2

]

+
[

F1 F2
]

[

f1
f2

]

= 0. (8)



Figure 5. Simple diagram of two interacting Dirac struc-
tures [8]

Mathematically, it is equivalent to the following represen-
tation:

[

E1 F2
]

[

e1

f2

]

+
[

F1 E2
]

[

f1
e2

]

= 0. (9)

The difference lies in the fact that the positions ofE2 andF2

are swapped. This elementary column operation interchanges
a column inE(x) with a corresponding column inF(x). This
technique is important in the derivation of the hybrid-input-
output representation of a component.

From bond graph theory we know that source elements
have fixed causality; sources of effort have effort-out-flow-
in causality, while sources of flow have flow-out-effort-in
causality. As a result, the Dirac structure must solve the flow
of a source of effort given its effort (backwards for sources
of flow). In order to do so we need to apply the elementary
column operation to all source of flow power ports.

Although storage elements have preferred causality, we
still want to fix their causality to integral causality, due to
the issues that arises with implementing differentiators.As a
result of this constraint, we do not need to apply the elemen-
tary column operation to storage power ports. The difficult
part of this process lies in determining column swap for re-
sistive and interaction power ports. Resistive power portscan
be either effort-out-flow-in or effort-in-flow-out; there is noa
priori way of determining how each resistor will behave. The
main focus of this algorithm is on the behavior of interaction
power ports.

Consider the two Dirac structures in Figure 5,DA andDB,
connected through an interaction. From a structural perspec-
tive, if the interaction power port ofDA is effort-out-flow-in,
the interaction power port ofDB has to be flow-out-effort-
in, and vice versa. Therefore, we can declare that for two
Dirac structures that share the same interaction, the causal-
ity of their interaction ports is opposite.

Similar to resistive power ports, there are two possible
causality configurations for interaction power ports. In order
to determine the causality of an interaction power port on a
component, we must examine the component along with all
neighboring components. In this section we propose an inter-
action port propagation assignment (IPPA) algorithm which

iterates through each component sequentially and determines
the causality of every interaction power port.

Our IPPA algorithm takes advantage of the indifferent
causality nature of resistors. Because of its indifferent causal-
ity, a resistor can never be the source of a causal conflict,
which allows for the analysis of each component with its re-
sistive columns intentionally left out. With resistive power
ports ignored for the time being, the only power ports with
questionable causality are interaction power ports.

Similar to assigning causal strokes to a bond graph model,
we select a component with the least number of interaction
ports and most number of constraint ports (source and stor-
age) with which to begin propgation of interaction port as-
signments. We analyze the ranks of theF(x) matrix of the
starting component and perform combinations of elementary
column operations until it has full rank; additionally, do the
same thing for the neighboring components. The process gets
repeated until every interaction port is assigned. A summary
of the algorithm is listed in Algorithm 3:

Algorithm 3 IPPA
-for all Components
- Swap all source of flow columns;
- Remove all resistive columns;

- while There are still unassigned interactions
- Find component with greatest interaction to constraint
ratio;
- Propagate interaction assignment;

- Put back all resistive columns;

Now that all interaction ports are assigned, we must deter-
mine the causality of every resistive power port. In order todo
so we analyze the rank ofF(x) of individual components; we
then apply the elementary column operation to the appropri-
ate resistive power ports. Note that for components with mul-
tiple resistors, there can be more than one unique solution of
column swapped resistive ports, but any of the solutions will
work in simulation. A summary is listed in Algorithm 4:

Algorithm 4 Kernel2Hybrid
-for all Components
- Determine which resistive columns to swap;
- Swap said resistive columns to obtain full rankedF ;
- J←−F−1E;

In Simulink, every block has a clearly defined input-output
relationship. With each component’s hybrid-input-outputrep-
resentation, we can derive their corresponding block dia-
grams and simulate them inside Simulink. Our software uses
Simulink to create the block diagrams, where each com-
ponent is modeled with the subsystem block. Inside each



component subsystem, there is another subsystem (the Dirac
structure of the component) along with its attached ports; the
Dirac structure subsystem consists of a series of sums and
gains, depicting the dynamics of the Dirac structure equa-
tions. Power ports are modeled as follows:

1. Source of effort: effort modeled as a step input (i.e. a
constant voltage source); flow sunk to a scope

2. Source of flow: flow modeled as a step input (i.e. a con-
stant current source); effort sunk to a scope

3. Storage port: flow goes into an integrator and a gain (in-
verse of the storage value) to obtain effort

4. Resistive port: effort and flow have a linear relationship,
which can be represented by a gain, whose value de-
pends on the orientation of the resistive element

5. Interaction port: effort and flow modeled as Inport and
Outport

Algorithm 5 creates block diagrams from hybrid-input-
output representations.

Algorithm 5 DS2BD
-for all Components
- for all Power ports
- if Non-interaction port
- Model according to rules;
- if Interaction port
- Model as Simulink inports/outports;

-Connect all components;

5. CASE STUDY: ELASTIC HOIST DEVICE
The generalized bond graph model of the elastic hoist de-

vice is built in GME [1], which is a modeling tool developed
by the Institute for Software-Integrated Systems at Vander-
bilt University. Inside GME we defined a generalized bond
graph meta model, which allows for a simple generalized
bond graph model to be created. In addition to typical bond
graph elements, we also introduce an interaction element,
which models the interaction between components.

The meta model has an interpreter attached to it, written in
C++, that generates structural data from the generalized bond
graph model. Structural data then gets passed through Algo-
rithm 1, written in MATLAB [12], is used to calculate the
E and F matrices of every component. We chose MATLAB
as an essential component in the software package due to its
abilities in handling matrices.

5.1. SIMULATION OF ACAUSAL MODELS
The kernel representation of the power supply is presented

in Section 2.. For the motor, we obtain the following kernel
representation:
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for the cable drum, we obtain the following kernel represen-
tation:
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for the load, we obtain the following kernel representation:
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(12)
The system contains eight power ports, and their con-

stituent differential equations are as follows:

1. Power port 1 (voltage source):e1 =Vs

2. Power port 2 (inductor):de2
dt = f2

L

3. Power port 3 (resistor):e3 = R f3

4. Power port 4 (moment of inertia):de4
dt = f4

J

5. Power port 5 (bearing friction):e5 = Rb f5

6. Power port 6 (elasticity):de6
dt = f6

C

7. Power port 7 (gravitational force):e7 = mg

8. Power port 8 (mass of load):de8
dt = f8

M

With the kernel form for each component and the con-
stituent differential equations of the eight power ports es-
tablished, we can simulate the dynamics of the system us-
ing the Modelica language. We implemented our Modelica
code in OpenModelica [3], which is an open-source Model-
ica modeling and simulation environment supported by the
Open Source Modelica Consortium (OSMC).

For simulation we choseVs = 1, L = 2, R= 5, J = 4, Rb =
3, C = 0.001,mg= 100,M = 10, transformer turns ratio of
2, and gyrator turns ratio of 2.5. We ran the simulation with a
time of two seconds. In our results we show the four states of
the system: inductor state (x1 = Le2), moment of inertia state
(x2 = Je4), elasticity state (x3 =Ce6), and mass of load state
(x4 = Me8). Our simulation plots (Figure 6) the four states of
the system (as shown below), running 2 seconds.



Figure 6. Simulation of the 4 states using Modelica

5.2. SIMULATION OF CAUSAL MODELS
The causal method requires a causality assignment to each

interaction power port. First, all resistive columns of the
kernel representation of each component are hidden, which
yields the following four expressions.
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We can see that the power supply contains 2 constraints,
the motor contains no constraints, the cable drum contains 1
constraint, and the load constains 3 constraints, thus going
by the method derived in Section 4., we will begin analysis
with the load. TheF(x) matrix of the load has a rank of 3 but
a dimension of 4, which means that the elementary column
operation needs to be applied to one column; the only option
is the interaction port(Eγ,Fγ), which results in the following
expression:
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(13)

We can then propagate to the cable drum, which is attached
via interaction port(Eγ,Fγ). The interaction port(Eγ,Fγ) in
the cable drum then becomes a fixed constraint, which allows
us to look at interaction port(Eβ,Fβ). We see that theF(x)
matrix of the cable drum has full rank, so interaction port
(Eβ,Fβ) is fine the way it is:
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The interaction port(Eβ,Fβ) in the motor, on the other
hand, needs the elementary column operation, which leads
to theF(x) matrix of the motor to no longer be full rank. We
then apply the elementray column operation to its interaction
port (Eα,Fα):
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(15)

Finally propagation reaches the final Dirac structure, power
supply, which requires no elementary column operation:
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With the causality of all interaction ports determined, we
can unhide all resistive columns, transforming equations 2
through 12 into:
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(20)
We can see that all fourF(x) matrices are full rank, which

means elementary column operations are unnecessary for any



Figure 7. Block diagram for the power supply

Figure 8. Block diagram for the motor

of the resistive power ports. Therefore, we can formulate
the hybrid-input-output representations of each component as
follows (power supply’s hybrid input output representation
was already formulated in equation (3)):
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. (21)
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The consituent differential equations of each power port
are implemented as described at the end of Section 4.. Each of
these hybrid-input output forms, along with constitutive dif-
ferential equations of power ports, can then be converted into
block diagrams, Figures 7 through 10. The combined form
for the whole system is shown in Figure 11.

Simulation results of the states of the system are shown in
Figure 12, using the same simulation parameters as the Mod-
elica simulations.

Figure 9. Block diagram for the cable drum

Figure 10. Block diagram for the hoist device load

Figure 11. Block diagram for the elastic hoist device

Figure 12. Simulation of the 4 states using Simulink



6. DISCUSSION AND FUTURE WORK
The most important point of this paper is the distinction

between acausal and causal component-based simulation of
systems. In Section 3. we have seen that acausal simulation is
generated from the kernel representations of each component,
which are derived independently of each other. Causal simu-
lation of a component, on the other hand, requires knowledge
of its interacting neighbor components in order to determine
the causality of each interaction port. This difference makes
causal computational models of components more difficult to
generate as compared to acausal computational models.

However, the causal method does have one significant ad-
vantage over the acausal method: identification of causality
conflicts. Any conflicts in causality will result in an under-
rankedF(x) matrix, which will result in the inability to derive
the hybrid-input-output representation. The acausal method,
on the other hand, has no way of identifying causal conflicts;
kernel representations of every component will not give any
indication of causal conflicts.

Another major difference between the causal and acausal
method occurs during simulation time. The acausal method
(Modelica) uses a Differential Algebraic System Solver
(DASSL) engine which symbolically manipulates the equa-
tions in order to solve for all the variables. The causal method
uses an Ordinary Differential Equation (ODE) solver, which
uses numerical integration techniques to solve for all vari-
ables. DAE’s are generalizations of ODE’s, and includes fun-
damental mathematical properties that makes them computa-
tionally more expensive to solve compared to ODE’s.

In simulations such as this, algebraic loops can become a
concern. In the method presented in this paper, we simulate
systems and components using the hybrid-input-output rep-
resentation of the Dirac structure; one of the key properties
of that representation is that theJ(x) matrix is skew symmet-
ric [10], which means that the entire diagonal line is zeros.We
also constrained the modeling to only allow integral causality
for storage elements. For these reasons our simulation tech-
nique does not generate any algebraic loops.

Our method does pose a few limitations that must be ad-
dressed. In this paper, we constrained the sources elementsto
be constant sources modeled by step inputs; this can be easily
extended to include all kinds of non-constant sources. This
limitation can be addressed in the metamodeling step where
we add additional attributes to source elements and set those
attributes accordingly. The purpose of our paper was to show
methods in modeling interacting components, so we did not
consider modifying the metamodel yet.

The methods introduced in this paper applies to linear sys-
tems only; future work can extend these methods to nonlin-
ear systems. We assumed that all resistive elements are linear,
which leads to its indifferent causality; we understand that in
a physical system sometime there can be nonlinear resistive

elements for which an inversion of its constitutive equations
is difficult or even impossible. A possible way to address this
problem is to define various types of resistive elements (lin-
ear vs. nonlinear) and setting causality constraints, or lack of
causality constraints, appropriately.

Other future work can include comparing the total compu-
tational cost of the causal method and acausal method. The
derivation of computational models for the causal method
will take longer because of the extra steps, but its ODE solver
will be less computationally expensive than the DAE solver
of the acausal method. But due to the size of the system in this
paper, there is really no obvious indication of which method
is faster.

More importantly, we can analyze certain properties of a
system in a component-based way. For example, controllabil-
ity of a system is determined by the controllability indicators
of its bond graph model [9]; however, the controllability indi-
cator comes from the global model. Future work can be done
to determine the controllabilty, and other system properties
such as stability and verification, of a system by examining
its components and how they interact. Additionally, we can
create a library in Modelica with components that use Dirac
structures.
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