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Abstract. In this paper, a class of timed Petri nets named programmable
timed Petri nets is used for supervisory control of hybrid systems. In par-
ticular, the transfer of the continuous state to a region of the state space
under safety speci�cations on the discrete and continuous dynamics is ad-
dressed. The switching policy is embedded in the dynamics of the under-
lying Petri net structure and the supervisors are described by Petri nets.
The discrete speci�cations are expressed in terms of linear constraints on
the marking vector and are satis�ed by applying supervisory control of
Petri nets based on place invariants. The hybrid system switches from a
subsystem to another, in a way that the state gradually progresses from
one equilibrium to another towards the desired target equilibrium. The
supervisory control algorithm is designed to allow switchings to occur
only on the intersection of the invariant manifolds. Finally, in the case
when the continuous dynamics are described by �rst order integrators,
the design algorithm is formulated as a linear programming problem.

1 Introduction

In hybrid systems the behavior of interest is governed by interacting continuous
and discrete dynamic processes. Hybrid control systems typically arise from the
interaction of discrete planning algorithms and continuous processes, and their
study is essential in designing discrete event supervisory controllers for contin-
uous systems, and central in designing intelligent control systems with a high
degree of autonomy. The investigation of hybrid systems is creating a new and
fascinating discipline bridging control engineering, mathematics and computer
science; further information on hybrid systems may be found in references [1{6];
see also the survey paper [7].

This paper considers systems that arise when computers are used to super-
vise or synchronize the actions of subsystems described by continuous dynamics
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(that involve continuous variables). Examples of such systems arise in chemical
process control, command and control networks, power distribution networks, as
well as distributed manufacturing systems. The size and complexity of such sys-
tems often requires that the system use a number of distinct operational modes.
Consequently, these systems can be viewed as supervised systems, in which a
high-level discrete (-event) supervisor is used to coordinate the actions of vari-
ous subsystems so that overall system safety is guaranteed. By safety, we mean
that pre-speci�ed limits or tolerances on the subsystem states are not violated.
In the paper, the sets of safe states are characterized by Lyapunov functionals
and are related to stability properties of the subsystems. So, these systems can
be viewed as a hybrid mixture of systems with continuous dynamics (contin-
uous variables) supervised by a switching law generated by a (discrete-event)
supervisor described by discrete dynamics (discrete variables).

Petri nets have been used extensively as a tool for modeling, analysis and
synthesis for discrete event systems. For DES control, Petri nets modeling for-
malism o�ers some advantages over �nite automata, and it is also useful for
hybrid systems control. Peleties and DeCarlo [8] presented a model based on
the work in [9] on the periodicity of symbolic observations of piecewise smooth
discrete-time systems. This hybrid model is suitable for Petri net based symbolic
analysis of hybrid systems; the continuous plant is approximated by a Petri net
and a supervisor consisting of two communicating Petri nets controls the behav-
ior of the open plant. Lunze et al. [10] proposed a model where Petri nets are
used as a discrete event representation of the continuous variable system; the
system and the interface are represented by a Petri net and the supervisor rep-
resents a mapping of the output event sequence into the input event sequence.
Several other approaches to modeling of hybrid systems that use Petri nets have
also been reported in the literature [11{16].

In this paper, a class of timed Petri nets named programmable timed Petri
nets [17] is used to model hybrid systems. In particular, it is assumed that the
switching policy is embedded in an underlying Petri net structure and that the
supervisors are described also by Petri nets. Petri nets are used instead of �nite
automata because of the following two reasons. The �rst is the expressiveness
of Petri nets. Petri net languages include regular languages described by �nite
automata and further, they can model switching policies that describe con
ict,
concurrency, synchronization, and bu�er sizes. The second reason is that recent
results in the supervisory control of discrete-event systems using ordinary Petri
nets [18] have made possible to design supervisors in an e�cient and transparent
manner; and this methodology is used in this paper.

In the nonlinear control literature, switching has been used to expand the
domain of attraction of a control system [19, 20]. Here, it is assumed that the
continuous subsystems admit a family of equilibria and each equilibrium has
a domain of attraction associated with it. The hybrid system switches from a
subsystem to another, in a way that the state gradually progresses from one
equilibrium to another towards the desired target equilibrium. For the hybrid
systems of interest in this paper, this idea can be formalized using an invariant



based approach to the design of hybrid systems [21, 22]. This approach introduces
the notion of a common 
ow region , which is de�ned as the set of states which
can be driven to the target region with the same control policy, and gives su�-
cient conditions for a set of invariant manifolds to bound common 
ow regions.
In this paper, such invariant manifolds are determined by appropriate Lyapunov
functions. The switchings are allowed to occur only if the continuous state lies
on the intersection of those invariant manifolds. Since the switching logic is de-
scribed by a Petri net, only sequences of invariant manifolds that satisfy the
discrete speci�cations have to be considered.

The paper is organized as follows. Section 2 presents programmable timed
Petri nets which are used in section 3 to model hybrid control systems. In Section
4 we discuss in detail a Petri net approach to hybrid control which emphasizes
supervisory control of hybrid systems and we give a simple illustrative example.
Note that related work has appeared in [23, 24].

2 Programmable Timed Petri Nets

Programmable timed Petri nets were introduced in [17] and are used to generate
the switching logic of the hybrid system. In particular, a programmable timed
Petri net (PTPN) is a timed Petri net whose places, transitions, and arcs are
all labeled with formulae representing constraints and reset conditions on the
rates and times generated by a set of continuous-time systems called clocks. The
model can seen as an extension of the Alur-Dill hybrid automaton model [25,
26].

An ordinary Petri net structure [27{29] is the 4-tuple N = (P; T; I; O) where
P is a �nite set of places, T is a �nite set of transitions, I � P � T is a set
of input arcs (from places to transitions), and O � T � P is a set of output
arcs (from transitions to places). The preset and postset of a place p are de�nes
by �p = ft j (t; p)g 2 O and p� = ft j (p; t) 2 Ig. The preset and postset of a
transition t are de�ned similarly as �t = fp j (p; t) 2 Ig and t� = fp j (t; p) 2 Og.

The marking of a Petri net is a mapping � : P ! Z
+ from the set of

places onto the nonnegative integers which assigns to each place p a number of
tokens �(p). The marking can be represented also by an np-dimensional vector
� = (�1; : : : ; �p), where np = jP j. The vector � gives for each place pi, the
number of tokens in that place, �i = �(pi). To avoid confusion, the marking
� is interpreted as a mapping when it is appeared with an argument and as a
vector of nonnegative integers otherwise. The dynamics of ordinary Petri nets
are characterized by the evolution of the marking vector which is referred to as
the state of the net.

The transition t is enabled when each one of its input places is marked with
at least one token, �(p) > 0 for all p 2 �t. An enabled transition may �re. The
transition t �res by removing one token from each one of its input places and
by placing one token to each one of its output places. If �(p) and �0(p) denote



the marking of place p before and after the �ring of enabled transition t, then

�0(p) =

8<
:
�(p) + 1 if p 2 t � n � t
�(p)� 1 if p 2 �t n t�
�(p) otherwise

(1)

The �ring of the transition t is described by the �ring function q : T ! f0; 1g
such that q(t) = 1 if t is �ring and q(t) = 0 otherwise. In untimed Petri nets one
can prohibit controlled transitions from �ring, but cannot force the �ring of a
transition at a particular instant. In a timed Petri net controlled transitions are
forced to �re, as this can be accomplished by considering the �ring functions to be
functions of a global time. For the timed Petri net, the �ring of a transition occurs
over a time interval [�0; �f ]. The length of this interval is called the transition's
holding time. A transition t which starts to �re at time �0 is said to be committed.
During the time that the transition is committed, the network's marking vector
is not changed. It is only when the �ring is completed at time �f that the marking
vector is changed according to equation (1) given above.

The holding times can be seen as control variables. They can be controlled
by specifying conditions which cause transitions to �re. The conditions that
characterize the holding times are represented by logical propositions de�ned
over a set of vector dynamical equations, which can be seen as a set of local
clocks.

Consider the set, X , of N local clocks where the ith clock Xi is denoted by the
triple ( _xi; xi0; �i0). xi0 2 <n is a real vector representing the clock's o�set. �i0 is
an initial time (measured with respect to the global clock) indicating when the
local clock was started. _xi : <n ! <n is a Lipschitz continuous automorphism
over <n characterizing the local clock's rate. It is assumed that the clock rate
_xi is denoted by the automorphism f . The local time generated by the ith clock
will be denoted as xi which is a continuous function over <n that is the solution
to the following initial value problem for � > �i0,

dxi

dt
= f(xi) (2)

xi(�i0) = xi0: (3)

The state of the ith timer is the ordered pair zi(�) = (xi(�); _xi(t)). The ensemble
of all the local clock states will denoted by z(�).

The interval [�0; �f ] over which a transition t will be �ring is characterized
by conditions on the \local time" xi(�) and the \clock rate" _xi(t) of the ith
timer. These conditions are described by formulae in a propositional logic whose
atomic formulas are equations over the local times or clock rates of X . In the
next section, the local clocks are used to describe the continuous dynamics of
the hybrid systems at each operational mode. The hybrid system switches modes
based on constraints on the continuous states. The atomic and the propositional
formulas which will be used to describe the conditions on the states of the vector
dynamical equations are de�ned next. Their form is general enough to describe
a variety of constraints which will be used to characterize the evolution of the
hybrid system in the next section.



De�nition 1. An atomic formula, p, takes one of the following forms;

1. It can be a time constraint of the form h(xi) = 0 or h(xi) < 0 where h :
<n ! < is a real valued function. This formula means that the clock time xi
satis�es the equation.

2. The atomic formula p can be a rate constraint of the form _xi = f which
means that the ith clock's rate _xi is equal to the vector �eld f : <n ! <n.

3. Finally, p can be a reset equation of the form xi(�) = �x0 which says that
the ith clock's local time at global time � is set to the vector �x0.

De�nition 2. A well-formed formula or WFF is de�ned as any expression gen-
erated by a �nite number of application of the following rules;

1. Any atomic formula is a WFF,
2. If p and q are WFFs, then p ^ q is a WFF.
3. If p is a WFF, then~p is a WFF.

The set of all WFFs formed in this manner will be denoted as P . Con-
sider an ordinary Petri net, N = (P; T; I; O) and a set of logical timers, X .
A programmable timed Petri net (PTPN) is denoted by the ordered tuple,
(N ;X ; `P ; `T ; `I ; `O) where the functions `P : P ! P , `T : T ! P , `I : I ! P ,
and `O : O ! P label the places, transition, input arcs, and output arcs (respec-
tively) of the Petri net N with WFFs in P .

The syntax for well formed formulas is de�ned with respect to the underlying
Petri net structure of the form N = (P; T; I; O) and the set of local clocks X .
The local clock state z at time � is said to satisfy a formula p 2 P if p is \true"
for the given clock state, z(�). The truth of the well-formed formed formulas is
understood in the usual sense.

3 Hybrid Control Systems

In this section, programmable timed Petri nets are used to model hybrid systems.
The hybrid control systems of interest in this paper are described by the following
equations

_x = fi(t)(x(t)) (4)

i(t) = q(x(t); i(t�)) (5)

where x(t) : < ! <n and i : < ! Z
+ denote the continuous and discrete states

of the system, respectively. The continuous dynamics are controlled by a �nite
collection of N control strategies

D = ff1; f2; � � � fNg (6)

where fi : <n � <m ! <n for i 2 f1; : : : ; Ng are locally Lipschitz continuous
functions. The discrete state of the system is controlled by a successor function



q : <n�Z+! Z
+ which determines the next possible discrete state i(t) at time

t given the current continuous state and the \previous" discrete state i(t�).
We introduce now some additional notation that will be useful in formulating

the control algorithms later in the section. The �ring times of transition t are
described by �t(n); n 2 Z

+, where �t(k) 2 < represents the duration of the
kth �ring of transition t. During the time interval �t(k) the tokens of the input
places of transition t do not change. These tokens are put into the output places
of t upon the completion of �ring of the transition, according to the enabling
condition of the untimed Petri net. We assume that at each time instant exactly
one transition is �ring. In addition, we assume that 0 < � � �t(n) <1; for some
� 2 <, for all �rings n and transitions t. We may easily incorporate in our model
instantaneous transitions, but these correspond to jumps in the continuous state
and will not be considered here. The assumption 0 < � � �t(n) eliminates the
possibility of in�nitely many switchings in a �nite time interval.

The control algorithm for the mode selection problem will be based on struc-
tural information associated with the places of the Petri net. Routing policies for
timed Petri nets are used usually for resolution of con
icts and were introduced
in [30]. In our case, we de�ne a mapping �p(n) : Z+! T for each place p 2 P ,
where �p(k) identi�es the particular transition t 2 p� to which the kth token to
enter place p is to be routed. Note that more than one transition is enabled but
only one is allowed to actually �re. If the kth token is routed to t 2 p�, then the
transition t wins the token, which after a �ring time of �t(k) is routed to t�, the
output places of the transition.

Next, a �ring event is de�ned as the pair (t; �) which denotes that the tran-
sition t starts �ring at time � . Consider the sequence of �ring events

s = (ti0 ; �0); (ti1 ; �1); : : : ; ij 2 f1; : : : ; Ng; for j = 0; 1; 2; : : : (7)

where j denotes the ordering of the transitions that �re. For example s =
(t1; �0); (t3; �1); : : : denotes that t1 �res at �0, next t3 �res at �1 and so on. The
�ring time intervals are de�ned by the equation

�ti(k) = �k+1 � �k (8)

At the kth �ring of the network, the transition ti starts �ring (at time �k) for
�ti(k) time units (until �k+1). The continuous state of the system during this
interval evolves according to

_x(�) = fi(x(�)); for �k � � < �k+1: (9)

The event projection and the timed projection of the sequence s are de�ned
as

�1(s) = i0; i1; i2; : : : (10)

�2(s) = �ti0 (k0); �
ti1 (k1); : : : (11)

These are used later in this section.



4 Supervisor

The supervisor has two main tasks. The �rst task is to allow only sequences of
events that satisfy speci�cations imposed on the discrete-event part of the hybrid
plant. In particular, consider the net N of the hybrid system. The objective here
is to restrict the possible mode switches of the systems to satisfy additional log-
ical constraints (for example mutual exclusion constraints) that have not been
taken into consideration in the modeling phase of the hybrid plant. This can
be accomplished without any information about the continuous dynamics. The
di�erential equations of the continuous subsystems associated with the transi-
tions are used to label these transitions. The second task of the supervisor is
to enforce �ring times that satisfy speci�cations on the continuous state of the
plant. In untimed Petri nets one can prohibit transitions from �ring, but cannot
force the �ring of a transition at a particular instant. In a timed Petri net con-
trolled transitions are forced to �re, as this can be accomplished by considering
the �ring vectors to be functions of the global time � . We will show that for a
special class of problems, we can �rst determine the routing policy and then the
�ring times that will not violate certain conditions imposed on the continuous
dynamics. These conditions will be expressed as well formed formulas labeling
the input and output arcs of the Petri net.

4.1 Supervisor Control of Petri Nets Based on Place Invariants

The �rst step is to satisfy the discrete speci�cations of the hybrid plant by ap-
plying DES control methods. We assume that the discrete speci�cations are de-
scribed by linear inequalities on the marking vector of the Petri net. A methodol-
ogy for DES control based on Petri net place invariants has been proposed in [18].
A feedback controller based on place invariants is implemented by adding con-
trol places and arcs to existing transitions in the Petri net structure. Although
the method was developed for ordinary Petri nets, the introduction of time de-
lays associated to each transition will not a�ect the controlled behavior of the
Petri net with respect to the discrete speci�cations. The supervisor is used to
enforce a set of linear constraints on the discrete state of the hybrid plant. These
constraints can describe a broad variety of problems including forbidden state
problems, mutual exclusion problems, a class of logical predicates on plant be-
havior [31], conditions involving the concurrence of events, and the modeling of
shared resources.

The system to be controlled is the untimed Petri net N = (P; T; I; O), which
is called the plant net. We assume that the plant net has n places and m tran-
sitions and its incidence matrix is Dp. The controller net is a Petri net with
incidence matrix Dc made up of the transitions of the plant net and a separate
set of places. The controlled net is the Petri net with incidence matrix D made
up of both the plant and the controller net. The control objective is to enforce
the discrete state to satisfy constraints of the form

L�p � b (12)



where �p is the marking vector of the plant net, L is an nc � n integer matrix,
b is an nc � 1 integer vector, and nc is the number of 1-dimensional constraints
of the type

Pnp
i=1 li�i � �.

This inequality constraint can be transformed to an equality by introducing
an external Petri net controller that contains places representing nonnegative
slack variables. Then

L�p + �c = b (13)

where �c is an nc integer vector which represents the marking of the controller
places. The structure of the controller net will be computed by observing that the
introduction of the slack variables forces a set of place invariants on the controlled
system. A place invariant is de�ned by an integer vector x that satis�es

xT� = xT�0 (14)

where �0 is the initial marking and � any reachable subsequent marking. The
place invariants of a net are elements of the kernel of the net's incidence matrix,
and they can be computed by �nding integer solutions to

xTD = 0 (15)

where D is an n �m incidence matrix. The matrix Dc contains the arcs that
connect the controller places to the transitions of the plant net. The incidence
matrix D of the closed loop system is given by

D =

�
Dp

Dc

�
(16)

and the marking vector � and the initial marking �0 are given by

� =

�
�p
�c

�
�0 =

�
�p0
�c0

�
(17)

Note that equation (13) is in the form of (14), thus the invariants de�ned by
equation (13) on the system (16),(17) must satisfy equation (15).

XTD = [L; I ]

�
Dp

Dc

�
= 0 (18)

LDp +Dc = 0 (19)

If Dc is chosen as the solution of equation (19), then the rows of [L; I ] are
elements of the kernel of the net's incidence matrix. Therefore, they represent
place invariants of the closed loop systems and equation (13) is satis�ed. Since
�(p) > 0 for all p 2 P , inequality (12) holds componentwise. The above analysis
leads to the following proposition presented in [32].

Proposition 1. The Petri net controller with incidence matrix Dc and initial
marking �c0 , which enforces the constraints L�p � b when included in the closed
loop system (16) with marking (17) is de�ned by

Dc = �LDp (20)



with initial marking
�c0 = b� L�p0 (21)

assuming that the transitions with arcs from Dc are controllable, observable, and
that �c0 � 0.

This proposition designs a controller that enforces the linear constraints
L� � b under the assumption that the controller will enable or inhibit only
controllable and observable transitions. These results have been extended for
handling uncontrollable and unobservable transitions in [33]. In the hybrid sys-
tems case, we have associated transitions to continuous subsystems described by
di�erential equations. It is assumed that the supervisor can force and observe
the �ring of the transitions. This is accomplished by imposing conditions de-
scribed by well-formed formulas on the input and output arcs of the transitions,
as described in the next section.

4.2 Hybrid Strategy based on Equilibria

In the nonlinear control literature, switching has been used to expand the domain
of attraction of control systems [19, 20]. In the hybrid systems case, we assume
that the continuous part admits a family of equilibria corresponding to di�erent
symbolic inputs generated by the discrete event part. Each equilibrium has a
domain of attraction associated with it. The idea is to switch at discrete time
instants from one symbolic input to another in a way that the system gradually
progresses from one equilibrium to another towards the �nal equilibrium.

This idea can be formalized using an invariant based approach for hybrid
systems proposed in [21, 22]. A common 
ow region for a given target region, is
de�ned as a set of states which can be driven to the target region with the same
control policy. The approach as described by Stiver et al. considers common 
ow
regions which are bounded by invariant hypersurfaces, cap boundaries and an
exit boundary. Invariant hypersurfaces and cap boundaries which are described
next in the section, form manifolds to bound a region so that the state trajectory
can leave the region only through the exit boundary. In [21] su�cient conditions
for a set of hypersurfaces to form a common 
ow region were established. Here,
a Lyapunov approach is followed to e�ciently compute hypersurfaces that form
common 
ow regions for each control policy. Each common 
ow region is identi-
�ed as a subset of an invariant manifold de�ned by a Lyapunov functional and
is associated with a control policy. Since the switching function is generated by
the underlying Petri net only sequences of invariant manifolds that correspond
to control policies which satisfy the discrete speci�cations have to be examined.

De�nition 3. For the continuous part of the hybrid plant, the set B is a com-
mon 
ow region for a given region R if

8x(t0) 2 B; 9t1; t2; t0 < t1 < t2

such that
x(t) 2 B; t � t1



and
x(t) 2 R; t1 < t < t2

subject to
_x(t) = fi(x(t))

In [21] two proposition are given which provide su�cient conditions for a set
of hypersurfaces to form a common 
ow region. These hypersurfaces can be either
invariant under the vector �eld of the given control policy or cap boundaries for
the given vector �eld. Invariant hypersurfaces and cap boundaries form manifolds
to bound a common 
ow region, so that the state trajectories cannot cross those
manifolds.

De�nition 4. A set M � X is said to be invariant with respect to the system
_x = f(x) if x(t0) 2M ) x(t) 2M; 8t 2 <.

Consider the set of smooth hypersurfaces, fhi; i 2 IB � 2Ig. The hypersur-
faces is a set of smooth functionals fhi : <n ! <; i 2 IBg, de�ned on the state
space of the plant. Each functional must satisfy the condition

rxhi(�) 6= 0; 8� 2 N (hi) (22)

which ensures that the null space of the functionalN (hi) = f� 2 <n : hi(�) = 0g
forms an n� 1 dimensional manifold separating the state space.
Invariant hypersurfaces For a hypersurface hi to be invariant under the vector
�eld f of the given control policy, the following condition must be satis�ed

r�hi(�) � f(�) = 0 (23)

The set of all invariant hypersurfaces can be found in terms of n�1 functionally
independent mappings which form the basis for the desired set of functionals,
fhig. This basis is obtained by solving the characteristic equation

dx1

f1(x)
=

dx2

f2(x)
= : : :

dxn

fn(x)
(24)

where fj(x) is the jth element of f(x) (f(x) is used rather than fi(x) to avoid
subscript confusion).

Cap boundaries For a hypersurface hc to form a cap boundary for a given
vector �eld f and common 
ow region B, the following condition must be satis-
�ed

r�hc(�) � f(�) < 0; 8� 2 B \N (hc) (25)

Consider the hypersurface hc(x) that forms a cap boundary for the common 
ow
region B. Assume that there exists an appropriate Lyapunov function V (x) for
the vector �elds f such that

V (x) > 0; 8x 2 B

V (x)!1 as kxk ! 1 (26)
_V (x) < 0; 8x 2 B



then 
c = fx 2 <nj V (x) � cg is bounded and the hypersurface hc(x) =
V (x)� c is a cap boundary candidate. The constant parameter c can be selected
appropriately so that the hypersurface hc(x) which bounds the common 
ow
region B satis�es certain safety constraints.

As it was recognized in [21], the task of determining suitable invariant hy-
persurfaces is very di�cult in general; for special cases (e.g. integrator systems),
the di�erential equation (24) was solved analytically, otherwise an algorithm
which was computationally ine�cient was used. Here, we introduce a Lyapunov
approach to determine cap boundaries. This approach is more e�cient and can
be applied to a larger class of systems; furthermore, the design based on Lya-
punov functions exhibits desirable robustness properties. However, by assuming
that the common 
ow regions are bounded by manifolds de�ned by Lyapunov
functionals, we impose restrictive conditions on the dynamics of the continuous
subsystems. In most of the cases, these conditions are quite restrictive but they
suggest a systematic way to compute common 
ow regions. For example, we re-
quire stability (in the region of interest) for the continuous subsystems because
then we can systematically approximate the region of attraction of an equilib-
rium. The next proposition gives su�cient conditions for the state to progress
from one equilibrium to another.

Proposition 2. Let fi1 ; fi2 2 � satisfy the following assumptions

1. Each fi is globally Lipschitz and admits an isolated equilibrium point �xi, and
�xi is asymptotically stable w.r.t. fi.

2. For each fi there exists an appropriate Lyapunov function Vi : <n ! < and

i = fx 2 <nj Vi(x) � cig such that

V (x) > 0; 8x 2 
i

V (x)!1 as kxk ! 1 (27)

_V (x) < 0; 8x 2 
i

In addition, assume that 
i1 \
i2 6= ; and �xi1 2 R0 = int(
i1 \
i2), then for
every x0 2 
i1 there exists a switching sequence

s(x0; t0) = (i1; �
ti1 (k0)); (i2; �

ti2 (k1))

which drives the state to a region R of the equilibrium point �xi2 .

Proof. Let 
 = 
i1 n 
i2 and de�ne the hypersurface hc(x) = @
 \ @
i1 and
he(x) = @
 \ @
i2 . Since �xi1 2 R0 is an asymptotically equilibrium point for
fi1 , 
 is a common 
ow region for R0 = int(
i1 \ 
i2). Let 


0 = 
i2 n R and
de�ne the hypersurface hc(x) = @
i2 and he(x) = @R, then 
0 is a common

ow region for the target region R.

If we assume that the switching logic of the hybrid system is described by
a DES (here a programmable timed Petri net), only sequences of vector �elds
that correspond to control policies that satisfy the discrete speci�cations have



to be considered. The control policies that satisfy the discrete speci�cations are
exactly those that are accepted by the controlled Petri net which includes also
the supervisor designed using the methodology based on place invariants (see
above). They can be determined by identifying the periodic behavior of the Petri
net. Several methods have been proposed to determine the periodic behavior of
Petri nets (reachability tree, transition invariants, unfolding). For this problem,
the size of the Petri net depends on the number of available symbolic inputs,
hence we can e�ciently identify all the periodic behaviors by computing the
fundamental cycles of the reachability tree.

The underlying Petri net structure, which generates the switching policy
o�ers two important advantages. First, it makes possible to e�ciently design the
supervisor that satisfy speci�cations that frequently appear in complex systems
such as generalized mutual exclusion constraints. Second, it reduces considerably
the search for common 
ow regions, since only desirable switching strategies
generated by the controlled Petri net have to be examined.

The following corollary gives su�cient conditions for a switching sequence
generated by the controlled Petri net to drive the continuous state x0 to a target
region of the state space. It is assumed that the initial conditions belong to the
region of attraction 
i0 of the �rst control policy and that it progresses towards
�xim 2 
im by allowing switchings to occur on the intersection 
ij \ 
ij+1 of
consecutive invariant manifolds. In the case when all the pairs of control policies
satisfy Proposition 2, the set 
ij \ 
ij+1 will be nonempty and the proof is
clear.

Corollary 1. Suppose there exists a switching sequence with event projection
�1(s) = i0; i1; : : : ; im accepted by the controlled Petri net such that every pair
(fij ; fij+1) satis�es Proposition 1 . Given a target region R such that �xim 2
int(R), there exists routing policy �p(n) to drive the continuous state from any
initial condition x0 2 
i0 to the region R in �nite time. The �ring time intervals
�t(n) will be chosen so that the switchings occur while x 2 int(
ij \
ij+1 ).

Remark The condition that every pair (fij ; fij+1) satis�es Proposition 2 can be
relaxed by allowing intermediate transitions which will keep the continuous state
in the domain of attraction of �xij+1 .

The supervisor is implemented by assigning well-formed formulas to the
places, transitions, input and output arcs of the controlled Petri net. Let fhig; i =
1; : : : ; n be the set of hypersurfaces that bound a regionM of the state space X .
We can use the following well-formed formulas to describe that x 2M .

` = p1 ^ p2 ^ : : : ^ pn (28)

where pi is a constraint of the form hi(x) < 0. Consider a pair of vector �elds
(fij ; fij+1) that satisfy Proposition 2 and let Bij ; Rij and Bij+1 ; Rij+1 be the
corresponding common 
ow and target regions. From Proposition 2 we have
that the target region Rij coincides with the common 
ow region Bij+1 . The
switching algorithm is implemented by the following labeling functions, where
p 2 P is the place to connect the output arc of tij to the input arc of tij+1



1. `P (p) is chosen to be a tautology.
2. `T (tij ); `T (tij+1 ) are chosen to be the atomic rate formulas _x = fij (x) and

_x = fij+1 (x) respectively.
3. `O((tij ; p)) is chosen to be a WFF of the form (28) representing that x 2 Rij .
4. `I((p; tij+1 )) is chosen to be a WFF of the form (28) representing that x 2

Bij+1

Assuming that transition tij is �ring, the next transition to �re, tij+1 is deter-
mined by the routing policy �p(n) so that the pair (fij ; fij+1) satis�es Proposi-
tion 2. Transition tij+1 will �re only when the �ring time intervals �t(n) assign
true values to the logic formulas `O((tij ; p)) and `I((p; tij+1 )). For the initializa-
tion of the hybrid system we assume that `I((p; ti0 )) is a tautology.

Remark In the case when the Petri net is live and the event projection generated
by the controlled Petri net �1(s) is an in�nite sequence that satis�es Corollary 1,
the hybrid system exhibits a periodic behavior in the sense that the continuous
state is visiting periodically neighborhoods of the equilibria.

A�ne Systems A class of systems that satisfy the conditions for supervisory
control design of the previous section is the a�ne systems. They represent phys-
ical systems that are described by linear ordinary di�erential equations with
one additional assumption. The input is allowed to take a �nite number of pre-
speci�ed constant values.

Consider the case the continuous dynamics are described by

_x = Ax+ ci; Tk � t < Tk+1

where ci 2 W � <n a �nite set of control vectors and the matrix A 2 <n�n is
Hurwitz.

Let fi(x) = Ax + ci, then �xi = �A�1ci is a globally asymptotically stable
equilibrium point for _x = fi(x). In view of the global asymptotic stability of each
equilibrium point, it is clear that Proposition 2 holds for every pair of control
inputs. The values for the control input can be selected so that the continuous
state can be driven to prescribed regions of the state space.

Example: Hybrid System Describing Resource Contention Consider
the case of two di�erent processes that use the same resource to carry out their
operations. This is a con
ict situation which stems from the resource contention.
More speci�cally, assume that each process consists of two di�erent operations
which are described by ordinary di�erential equations and the switching policy
is represented by the Petri net in Fig. 1. This situation arises frequently in
physical systems when di�erent processes share the same resources. We will use
this Petri net to describe the switching policy for two examples that follow. The
�rst example is a temperature control system where the continuous dynamics
are described by a�ne systems. In the second example, we consider a hybrid
system with continuous dynamics described by �rst order integrators.
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Fig. 1. Petri net describing the switching policy of the hybrid plant.

The incidence matrix of the plant net is

Dp =

2
664
�1 1 0 0
1 �1 0 0
0 0 �1 1
0 0 1 �1

3
775 (29)

and the initial condition of the marking vector �p0 = [1; 0; 1; 0]T . We consider
the mutual exclusion constraint L�p � b, where L = [0; 1; 0; 1] and b = 1. Using
Proposition 1 the closed loop system has the incidence matrix

D =

2
66664

�1 1 0 0
1 �1 0 0
0 0 �1 1
0 0 1 �1

�1 1 �1 1

3
77775 (30)

and initial condition �0 = [1; 0; 1; 0; 1]. The last row of the incidence matrix D

represents the Petri net supervisor.
The controlled Petri net is shown in Fig. 2 and describes the switching policy

for the hybrid system which satis�es the mutual exclusion constraint.

Temperature Control System Let a temperature control system be described
by the electrical circuit shown in �gure 3. Here, an electrical analog of the tem-
perature control system is used by considering the temperature being analogous
to electric voltage, heat quantity to current, heat capacity to capacitance, and
thermal resistance to electrical resistance. The control objective is to control the
temperature at a point at the system by applying the heat input at a di�erent
point. The temperature control example is used in [34] to illustrate PID control
design. Here, we assume that only discrete levels are available for the current
(heat) input (u).

Let x1 and x2 denote the voltages across the capacitors C1 and C2 respec-
tively. Suppose that the (voltages) temperatures x1 and x2 are to be controlled



 t  t 
 1  2  p  p 

 1  2 

 t  t  3  4 
 p  p 
 4  5 

•

•

•

 p 
 c 

x = f (x)
1 x = f (x)

2

x = f (x)
3 x = f (x)

4

. .

. .

Fig. 2. The controlled Petri net of the resource contention example
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Fig. 3. The temperature control system

by changing the (current) heat input u, which is allowed to take �nitely many
discrete values. Consider that the numerical values of the electrical elements are

R1 = R2 = 1
C1 = C2 = 1

Then (using Kirchho�'s laws) the system is described by the state-space equation

�
_x1
_x2

�
=

�
�1 1
1 �2

� �
x1
x2

�
+

�
1
0

�
u (31)

Assume that qi; i = 1; : : : ; N are the available discrete levels for the input that
correspond to the available control policies. It is easily veri�ed that the matrix
A is Hurwitz and therefore �xi = �A�1ci where

A =

�
�1 1
1 �2

�
; ci =

�
qi
0

�

is a globally asymptotically stable equilibrium point for the system _x = Ax+ ci.
We assume that the discrete levels of the heat input are q1 = �10; q2 =

10; q3 = �20; and q4 = 20 and that the switching policy is described by the Petri
net in Fig. 2 representing resource contention, where transition ti corresponds
to the control input ci. In this case, the supervisor will determine the routing
policy and the �ring time intervals so that the continuous state of the hybrid



−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

x1

x0

x2

x3

x4

x1

x2

•

•

•

•

Fig. 4. Periodic behavior of the hybrid system

system visits periodically neighborhoods of the equilibria (Fig. 4). We consider a
ball Bi(�xi; r) of radius r centered at �xi; i = 1; 2; 3; 4 and we label the input and
output arcs of the transitions with the WFFs `O((ti; p)) = `I((p; ti+1)) = x 2
Bi(�xi; r). Then the supervisor allows switchings to occur only when the above
logical propositions are true.

5 Supervisory Control Design for First Order Integrators

Recently, attention has been focused on a particular class of hybrid systems in
which the continuous dynamics are governed by the di�erential equation _x(t) =
c, where c 2 <n [35{38]. In [36] hybrid systems with continuous dynamics
described by �rst order integrators are used for the control of batch processes. In
the case when the continuous dynamics are described by �rst order integrators,
the previous algorithm cannot be applied since the continuous part does not
admit any isolated equilibria. In the following, we present an algorithm based on
a similar idea as in the case of multiple equilibria. For each symbolic input there
exist a family of invariant sets. The switching from a symbolic input to another
occur at discrete time instants in a way that the system gradually progresses
towards the target region. We determine a sequence of events that drive the
state to the prescribed target region by solving a linear programming problem
as in [38].



5.1 Hybrid Plant

The continuous state of the hybrid plant evolves in X 2 <n and is described by
�rst order integrators

_x(t) = ci; Tk � �i � Tk+1

where ci 2 W � <n a �nite set of control vectors and T denotes the global time.

It is assumed as in the section 3 that the switching strategy is embedded in
a programmable timed Petri net. Each transition is associated with a control
policy. This assignment is de�ned by the labeling function `T (t) : T ! � which
is chosen to be an atomic rate formula of the form _x = ci.

De�nition 5. A set C is said to be a �nitely generated cone if it has the form

C =

8<
:x : x =

rX
j=1

�jcj ; �j � 0; cj 2 <
n; j = 1; : : : ; r

9=
;

In the following, we assume that the �nitely generated cone by the set W
coincides with the continuous state space X . This assumption guarantees that
continuous speci�cations such as state targeting can be satis�ed everywhere in
the state space X .

The system _x = c admits a family of invariant sets described by the equation
x = ct + x0, which represents a family of parallel lines parameterized in t. The
path from the initial state to the target region will be found by solving a linear
programming problem to determine the time interval the state of the system
evolves in each particular invariant set.

Supervisor The procedure for the design of the supervisor is similar to that
of the previous section. First, applying DES control methods we construct a
controlled Petri net which satis�es the discrete speci�cations. Assume now that
the control objective is to drive the state to the target region T � X . The task of
the supervisor is to select at time Tk a control policy accepted by the Petri net,
and to decide for how long it should be active. A systematic way to determine
the temporal and routing data is �rst to identify all the periodic behaviors the
controlled Petri net can generate and then assign temporal constraints to the
switching times.

Proposition 3. Consider the switching sequence

s(t0; x0) =
�
(i; �ti(k))

	
i=1;:::;N ; k=0;1;:::;m

; k0 = t0

such that

1. The event projection �1(s) = i0; i1; i2; : : : ; im consists of the transitions
which form all the fundamental cycles.



2. The timed projection �2(s) = �ti0 (k0); �
ti1 (k1); : : : ; �

tim (km) satis�es the
following conditions

P
k �

ti(k) = �i and 0 < � � �t(n) < 1 for all tran-
sitions and �rings; � = [�1; : : : ; �N ] is the solution of the following linear
programming problem

min aT �

subject to :

�
xf = x0 +

PN

i=1 �ici 2 T
�i � �; i = 1; : : : ; N

where � is the vector of operation times to be determined, a is a weighting
vector, xf is the response of the continuous part at the time instant when
the switching sequence s(t0; x0) is completed.

Then, the continuous state x 2 < is driven to the target region in �nite time
t =

PN
i=1 �i.

Proof. By integrating the state equation (5.1) all the reachable states xf from
initial state x0 are given by

xf = x0 +

NX
i=1

�ici (32)

where �i represents the total time the corresponding control policy ci is active.
Although there is no unique switching policy to satisfy the convex constrain
xf 2 T , the solution of the linear programming problem is unique and gives the
control law that drives the state to the target region in minimum time.

Additionally, the necessary number of switches can be minimized by con-
sidering one �ring of each transition. Additional safety conditions expressed as
convex constraints can be incorporated in the linear programming problem. The
supervisor solves the above linear programming problem and labels the places,
transitions, input and output arcs of the controlled Petri net as follows

1. `P (p) is chosen to be a tautology.
2. `T (ti) is chosen to be the atomic rate formulas _x = ci.
3. `I((p; ti)) and `O((ti; p)) are chosen to be time constraints implement by a

local timer so that
P

k �
ti(k) = �i.

Example: First Order Integrators We assume now that the continuous part
of the hybrid plant consists of a set of �rst order integrators

_x = ci 2 <
2; i = 1; 2; 3; 4:

C = [c1; c2; c3; c4] =

�
0:5 �1 1 �1
1 1 1 �0:4

�

and we associate the di�erential equation _x = ci with the transition ti of the
Petri net in Fig. 1. The control objective is to drive the state from the initial
condition x0 = [1;�1]T to the convex region T of the state space where

T =

�
x 2 <2 :

�
1
1

�
� x �

�
1:1
1:1

��
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Fig. 5. The trajectory of the continuous state.

According to Proposition 3 we formulate the following linear programming
problem

min (�1 + �2 + �3 + �4)

subject to :

�
xf = x0 + �1c1 + �2c2 + �3c3 + �4c4 2 T
�i � �

where � = 0:1. The solution of the linear programming problem gives

�1 = 0:6585; �2 = 0:7554; �3 = 0:6261; �4 = 0:1

and we can drive the state from x0 to T with one �ring of each transition by
setting �ti = �i; i = 1; 2; 3; 4. The trajectory of the continuous state is shown in
Fig. 5.

6 Conclusions

In this paper, supervisory control of hybrid systems was addressed using a class
of timed Petri nets named programmable timed Petri nets. New methodologies
were introduced and algorithms were derived to address these issues. Su�cient
conditions for supervisory control design were presented. For the case when the
plant is a collection of a�ne systems or �rst order integrators with switching
logic generated by a programmable timed Petri net, e�cient algorithms for su-
pervisory control synthesis were developed.
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