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Abstract

This paper presents an efficient online mode estima-
tion algorithm for a class of sensor-rich, distributed
embedded systems, the so-called hybrid systems.
A central problem in distributed diagnosis of hy-
brid systems is efficiently monitoring and tracking
mode transitions. Brute-force tracking algorithms
incur cost exponential in the numbers of sensors
and measurements over time and are impractical for
sensor-rich systems. Our algorithm uses a model
of system’s temporal discrete-event behavior such
as a timed Petri net to generate a prior so as to fo-
cus distributed signal analysis on when and where
to look for mode transition signatures of interest,
drastically constraining the search for event combi-
nations. The algorithm has been demonstrated for
the online diagnosis of a hybrid system, the Xerox
DC265 printer.

1 Introduction
Many man-made electro-mechanical systems such as automo-
biles or high-speed printers are best described as hybrid sys-
tems. The dynamics of a hybrid system comprises contin-
uous state evolution within a mode and discrete transitions
from one mode to another, either controlled or autonomous.
A mode of an automobile could be an acceleration phase or a
cruising phase. A printer may have a paper feeding phase fol-
lowed by a registration phase. Within each mode, the dynam-
ics of a system is governed by a continuous behavioral model.
Under a control signal, such as gear shift, the system may tran-
sition to a different operating mode. Certain transitionsare au-
tonomous due to system state reaching a threshold value. For
example, when a paper feed roll contacts a sheet of paper, the
paper starts to move.

Diagnosis of a hybrid system requires the ability to moni-
tor and predict system behaviors and detect and isolate faults.

The monitoring task involves estimating and tracking sys-
tem state and is at the heart of hybrid system diagnosis. In a
sensor-rich environment, the monitoring task is significantly
complicated by the need to associate data from multiple sen-
sors with multiple hypotheses of states, modes, or faults. This
is particularly true for distributed detection and diagnosis in
large complex systems such as highway traffic monitoring or
large print shop fault diagnosis where the numbers of sen-
sors and system components can potentially be very large
(1,000 – 10,000 or more). Recent advances in micro-electro-
mechanical systems (MEMS) and wireless networking have
enabled a new generation of tiny, inexpensive, wirelessly con-
nected MEMS sensors. As shown in Section 2, the complexity
of brute-force monitoring schemes is exponential in the num-
bers of sensors and measurements over time and is clearly not
scalable. Our algorithm addresses this computational prob-
lem.

Monitoring of hybrid systems has two components, mode
estimation and (continuous) state tracking. Once a system is
estimated to be in a particular mode, a continuous state esti-
mator such as Kalman filter could be used to track the continu-
ous state. This paper focuses on the more difficult problem of
mode estimation and its application to sensor-rich, distributed
hybrid system monitoring and diagnosis.

Example. Consider the problem of workflow identifica-
tion and fault diagnosis in a document processing factory (or
print shop), where multiple printing, collating, and binding
machines may be placed in proximity of each other. The ob-
jective is to identify critical printing job and machine operat-
ing parameters for online workflow scheduling and fault di-
agnosis. An example of the printing equipment is the Xe-
rox Document Center DC265 printer, a multifunction system
that prints at 65 pages per minute (Fig. 1). The system is
made of a large number of moving components such as mo-
tors, solenoids, clutches, rolls, gears, belts and so on. A fault
of “no paper at output” may be caused by abrupt failures such
as a broken transfer belt. Paper jams are often caused by sub-
tler component degradation such as roll slippage or timing



variations of clutch, motor or solenoid due to wear, some of
which is not directly observable with the system’s built-insen-
sors and must be estimated using system behavioral model
and additional sensor information. The printer is an example
of a hybrid system as is illustrated here using its paper feed
subsystem. A component such as the feed motor may be in
any one of the ramp-up, rotating with constant speed, ramp-
down, stationary states, each of which is governed by continu-
ous dynamics. Mode transitions are induced by either control
events or evolution of the continuous dynamics. For exam-
ple, the transition from stationary to ramp-up for the motor is
caused by “turn motor on” control event and can be estimated
using the control event and sensor signal. However, a transi-
tion such as acquisition roll contacting a paper is autonomous
and must be estimated using model and sensor data.
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Figure 1: Print shop with multiple machines such as a Xerox
DC265 printer.
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Figure 2: Acoustic signal for a one-page printing operation of
DC265 printer.

In this example, estimating the timing of the roll contact-
ing paper requires to single out the solenoid pull-inevent from
incoming sensor data streams. The paper path system of the
printer has 3 motors, 10 solenoids, 2 clutches, and a large
number of gears connecting the motors to different rolls and
belts. The testbed to be detailed in Section 4 uses 18 sensors,
each sampled at 40,000 times per second. Many of the system
components may be active around the time of solenoid pull-
in – the so-called cocktail party phenomenon in speech pro-
cessing (Fig. 2). Moreover, other machines may be active in

an environment such as a print shop. As the number of event
hypotheses scales exponentially with the numbers of sensors,
system components, and measurements (Section 2), pulling
the relevant events out of a large number of high-bandwidth
data streams from a multitude of simultaneous sources is a
tremendous computational challenge – the main computa-
tional problem this paper addresses. Signature analysis tech-
niques such as [Hung and Zhao, 1999] could not immediately
be applied to mode estimation without using a model to focus
on when to acquire data and where to look for events.

This paper describes an efficient mode estimation algorithm
for hybrid systems. The algorithm integrates model-based
prediction with distributed signature analysis techniques. A
timed Petri net model represents the temporal discrete-event
behavior of a hybrid system. The model generates event pre-
dictions that focus distributed signal processing on when and
where to look for signatures of interest, and estimation of sig-
nature in turn refines and updates model parameters and states.
The algorithm is novel in its use of model knowledge to dras-
tically shrink the range of a time-domain search for events
of interest, and has been experimentally validated on a multi-
sensor diagnostic testbed.

Monitoring and diagnosis of hybrid systems are an active
research area. Existing approaches to hybrid system monitor-
ing and diagnosis do not address the computational data asso-
ciation problem associated with distributed multi-sensor sys-
tems [Bar-Shalom and Fortmann, 1999] and assume sensor
outputhas already been properly assembled to form likelihood
functions of system output. Moreover, they assume either no
autonomous mode transition or autonomous transition with-
out signal mixing. [Lerner et al., 2000] described a Bayesian
network approach to tracking trajectories of hybrid systems.
They introduced a method of smoothing that backward prop-
agates evidence to re-weigh earlier beliefs so as to retain weak
but otherwise important belief states without explicitly track-
ing all the branches over time. [Kurien and Nayak, 2000] ad-
dressed the temporal branching problem in tracking using a
consistency-based generation and revision of belief states in
a partially observable Markov decision process formulation.
[McIlraith, 2000] described a particle filter approach to track-
ing multiple models of behaviors. Qualitative diagnosis tech-
niques such as [McIlraith et al., 2000] are used to provide a
temporal prior to focus the sampling of particle filter on part of
the distribution consistent with the model prediction. In con-
trast, our approach exploits model knowledge of control and
discrete-event behaviors of hybrid systems to address the ex-
ponentialblow-up in data association of multi-sensorobserva-
tion, as well as the complexity due to multiple measurements
over time.

The rest of the paper describes three main contributions
of this work: Section 2 presents a formulation of the mode
estimation problem for distributed monitoring of hybrid sys-
tems and its computational challenges. Section 3 describes
the mode estimation algorithm for both controlled and au-
tonomous mode transitions. The algorithm has been demon-
strated as part of a diagnosis system for the Xerox DC265
multifunction printer and experimental results are presented
in Section 4.



2 Hybrid System Mode Estimation Problem

In the mode estimation problem we consider, a hybrid system
is described by a 6-tuple: (X;Q;�; Y; f; g), where X is the
continuous state space of the system, Q is the mode space (set
of discrete states), Y is the space of sensor signals, � is the set
of possible control inputs to the system, f : X � Q � � !

X �Q is the transition function, and g : X �Q��! Y is
the observation function.

The mode space Q can be understood as the product of in-
dividual component modes of an n-component system, with
each mode vector denoted as q = [q1; : : : ; qn]T 2 Q.
For an l-sensor system, the sensor output vector is y =
[y1; : : : ; yl]

T 2 Y , where yi is the output of sensor i. Each
yi could be a measure of a signal from component mode qj
alone or a composite signal of multiple components.

The problem of mode estimation in a multi-sensor environ-
ment can be stated as follows. At each time step t, given the
previous mode estimate at t�1 and current observation, mode
estimation is a mapping:

E : Qt�1
� Y t

! Qt (1)

Equivalently, the mode estimation problem is to estimate �
such that q�+1 = E(q� ;y�+1), and q�+1 6= q

� , i.e., the time
instance when one or more component modes have changed.

Mode transitions induced by external control events can be
estimated using the control events and sensor signals. Au-
tonomous transitions must be estimated using a combination
of system model, control event sequence, and sensor signals.

To estimate q
t 2 Qt, components of yi contributed by

mode components qj’s must be associated with the qj’s in or-
der to determine if there is a transition for qj, and if so, what
the parameters (such as transition time) are. We illustrate the
computational difficulties of data association for the hybrid
system mode estimation problem for two cases.

Case I. Assume there is no signal mixing and each yi mea-
sures a signal sj 2 S from system component j only. The
number of possible associations of yi’s with the correspond-
ing qj’s is nl, that is, it is exponential in the number of sensors
at each time step.

Case II. More generally, each sensor signal yi measures a
composite of sj’s through a mixing function: H : S t

! Y t.
Without prior knowledge about H, any combination of sj’s
could be present in yi’s. Pairing each yi with sj’s creates n!
associations. The total number of associations of y with q is
(n!)l / 2nl, i.e., exponential in the numbers of sensors and
signal sources.

For applications such as diagnosis, it is often necessary to
reason across multiple time steps and examine the history of
mode transitions in order to identify a component fault oc-
curred in an earlier mode. Each pairing of observation with
mode vector in the above single-step mode estimation creates
a hypothesis of the system mode transitionsequence. As more
observations are made over time, the total number of possi-
ble mode transition sequences is exponential in the numbers
of sensors and measurements over time.

3 An Online Mode Estimation Algorithm
The objective of mode estimation is to estimate the mode tran-
sition sequence of a hybrid system:

q
�1!q

�1+1 = q
�2!q

�2+1 : : :q�k!q
�k+1 : : :

where q�i 6= q
�i+1. Each transition is caused by one or more

mode transitions of components of q.
Assuming each sensor output yi is a linear superposition1

of possibly time-shifted sj’s

yi(t) =
nX

j=1

�ijsj(t� �ij); i = 1; : : : ; l (2)

or more compactly,

y
t = D(�ij; �ij) � s

t (3)

where D(�ij; �ij) is an l � n mixing matrix with elements
dij = �ij�(t � �ij) and �(t � �ij) is the sampling function.
The operator � denotes element-wise convolution in the same
way matrix-vector multiplication is performed.

In particular, when sj represents the signal event character-
istic of the mode transition q

�i

j
!q

�i+1

j
, the mode estimation

problem is then to determine �ij, the onset of the signal event
sj, and�ij, the contributionof sj to the composite sensor out-
put yi. A common physical interpretation for the mixing pa-
rameters � and � is that � characterizes signal arrival time at
each sensor, and � sensor gain for each sensor.

The following mode estimation algorithm computes
P (D(�; � )jyt), the posterior probability distribution of �

and � given observation y
t, iterating through the following

three steps: (1) Use a model of system behaviors to generate
a temporal prior P (D(�; � )) of transition events within
the time window associated with the current time step; (2)
Decompose sensor observation as a sum of component signal
eventsyt = D(�; � )�st, and compute the likelihoodfunction
P (ytjD(�; � )); (3) Compute the posterior probability distri-
bution of the mode transition P (D(�; � )jyt) using Bayesian
estimation and update the mode vector. The algorithm is
suited for a distributed implementation. Assume each node
stores a copy of signal component templates ŝj(t). At each
step, a few global nodes broadcast the model prediction, and
each node locally performs signal decomposition, likelihood
function generation, and Bayesian estimation.

Mode Estimation Algorithm

Initialize q0;
for n = 1; 2; : : : ;
(1) Prediction:

P (D(�n; �n)) = ModelPrediction(qn�1)
(2) Signal decomposition and likelihood generation:

r
n(t) = y

n(t)� ŷ
n(t)

where ŷn(t) = D(�n; �n) � ŝn(t) ;

P (ynjD(�n; �n)) = (2�)�
l

2 jRj
�

1
2 exp

�
�

1
2
(rn)TR�1(rn)

�

where R is the covariance matrix for rn;
(3) Update:

P (D(�n; �n)jyn) / P (ynjD(�n; �n))P (D(�n; �n))

1When the signals are nonlinearly superposed, then a nonlinear
source separation method must be used.



D(�n; �n) = argmax(�n ;�n)P (D(�n; �n)jyn)

q
n = NextMode(D(�n; �n);qn�1)

end

To address the problem of exponential blowup in data as-
sociation described earlier, ModelPrediction uses a model to
predict signal events that are present within a time window,
thus focusing the signal event localization and association on
just the predicted subset of events. A variety of models such
as timed finite automata or Petri nets (Section 4.2) could be
used to generate a prior. Other possible candidates include
partially observable Markov decision processes and dynamic
Bayesian nets suitably modified to encode both discrete and
continuous variables. Signal decomposition and Bayesian es-
timation identify the signal events that are most likely present,
thus eliminating the exponential factor in associating events
with component modes. The tracking cost is linear in the num-
ber of measurements over time. NextMode updates the mode
vector q with the identified mode parameters � and � . Al-
ternatively, instead of keeping only the most likely events ac-
cording to posterior, the algorithm could be extended to main-
tain less likely events by propagating the full posterior distri-
bution and using techniques such as backtracking [Kurien and
Nayak, 2000] or smoothing [Lerner et al., 2000] to manage
the branching complexity.

The notation y(t) in the algorithm represents the observa-
tion within a time window of interest. In the signal decompo-
sition ŷi(t) =

P
n

j=1�ij ŝj(t � �ij), fŝj jj = 1; : : : ; lg, are
the so-called signal event templates that characterize sj’s and
are constructed from training data.

The model predicts what combinations of signal compo-
nents are present (the �’s) and how they are appropriately
shifted (the � ’s) within the time window of interest. Given the
parameters � and � , the likelihood functions for sensors are
assumed to be independent of each other. Since each signal
template has a non-zero finite length, it is necessary to account
for adjacent signal events spilling from the previous time step
into the current time window. Given an observation, the pa-
rameters �n and �n are determined by maximizing the poste-
rior in Bayesian estimation.

For simplicity, the likelihood functions are assumed to be
Gaussian. For non-Gaussian, multi-modal priors and likeli-
hood functions, techniques such as mixture models or parti-
cle filter (also known as sequential Monte Carlo or Conden-
sation) could be used to represent and propagate probabilistic
evidence.

The algorithm exploits a temporal prior to manage the com-
putational complexity in mode estimation. Likewise, a spatial
prior could also be exploited to associate each yi with one or
a small number of identifiable signal sources sj’s, using tech-
niques such as beamforming in a multi-sensor system.

4 Experiment: An application to diagnosis of
DC265 printer

We have prototypeda diagnosis system comprising three main
components: timed Petri net model, mode estimation, and
decision-tree diagnoser (Fig. 3).

Discrete-event data from built-in sensors and control com-
mands of the printer are used to drive the Petri net model. The
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Figure 3: Architecture of the prototype diagnosis system.

model compares observed sensor events with their expected
values. When a fault occurs, the deviation from the Petri net
simulation triggers the decision-tree diagnoser. The diagnoser
either waits for the next sensor event from the Petri net or
queries the mode estimator for a particular event, depending
on the next test. The mode estimator requests a temporal prior
from the Petri net, uses the prior to retrieve the segment of the
signal from appropriate sensors, and computes the posterior
of the event. The Petri net uses the event posterior to update
model parameters, generate a deviation of the event parame-
ter for the diagnoser, and the process iterates until there are
no more sensor tests to perform and the diagnoser reports the
current fault candidates.

4.1 Experimental testbed
We have instrumented an experimental testbed, the Xerox
Document Center 265ST printer (Fig. 1), with a multi-sensor
data acquisition system and a controller interface card for
sending and retrieving control and sensor signals. The moni-
toringand diagnosis experiment to be discussed in this section
will focus on the paper feed subsystem (Fig. 4).

The function of the paper feed system is to move sheets
of paper from the tray to the xerographic module of the
printer, orchestrating a number of electro-mechanical compo-
nents such as feed and acquisition rolls, feed motor, acquisi-
tion solenoid, elevator motor, wait station sensor, and stack
height sensor. The feed motor is a 24V DC motor that drives
the feed and acquisition rolls. The acquisition solenoid is used
to initiate the feeding of the paper by lowering the acquisition
roll onto the top of the paper stack. The elevator motor is used
to regulate the stack height at an appropriate level. The wait
station sensor detects arrival of the leading or trailing edge of
the paper at a fixed point of the paper path. The stack height
sensor is used to detect the positionof the paper stack and con-
trols the operation of elevator motor.

In the experimental setup, in addition to the system built-in
sensors, audio and current sensors are deployed for estimat-
ing quantities not directly accessible (so-called virtual sen-
sors [Sampath et al., 2000]). A 14-microphone array is placed
next to the printer. Ground return currents of various subsys-
tems of the printer are acquired using three 0.22
 inline resis-
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Figure 4: Paper feed system of Xerox DC265 printer

tors. Sensor signals are acquired at 40K samples/sec/channel
and 16 bit/sample by a 32-channel data acquisition system.

The printer is designed such that control and sensor sig-
nals are passed between the controller and printer components
through a common bus. By using an interface card these con-
trol and sensor signals can be accurately detected and mapped
to the analog data acquired by the data acquisition system.
Another controller interface card is used to systematically ex-
ercise components of the printer one at a time in order to build
individual signal templates required by the mode estimation
algorithm.

4.2 Prediction using a timed Petri net model

We use a timed Petri net to model temporal discrete-event be-
havior of hybrid systems instead of finite automata for the fol-
lowing reasons. First, Petri nets offer significant computa-
tional advantages over concurrent finite automata when the
physical system to be modeled contains multiple moving ob-
jects. For example, it is desirable for a model of printer to
compactly describe multiple sheets of paper and a variable
number of sheets in a printing operation. Second, Petri nets
can be used to model concurrency and synchronization in dis-
tributed systems very efficiently without incurring state-space
explosion. Hybrid system models based on Petri nets have
been developed, for example, in [Koutsoukos et al., 1998].

The dynamics of a Petri net is characterized by the evolu-
tion of a marking vector referred to as the state of the net. The
marking vector represents the mode of the underlying hybrid
system and is updated upon firing of transitions synchronized
with system events. In a timed Petri net, transition firings can
be expressed as functions of time. A timed Petri net can be
used to monitor a physical system by firing some of the tran-

sitions in synchronization with external events. In this case, a
transition is associated with an external event that corresponds
to a change in state of the physical system. The firing of the
transition will occur when the associated event occurs and the
transition has been enabled.

Here, we associate with each transition a firing time do-
main [�min; �max]. The transition is enabled when all its input
places are marked, but the firing of the transition occurs at a
specific time instant within the time domain. The advantage
of this formalism is that it takes into consideration stochastic
fluctuations in the time duration of physical activities in the
system. If statistical information for the firings of the transi-
tion is provided, then the firing time domain can be augmented
with a probability distribution characterizing the time instant
the transition fires after it has been enabled. The model can
be used to generate temporal prior probability distribution for
the occurrence of autonomous events.

The Petri net model of the normal operation of the paper
feed system is derived from the control specification of the
system (shown in Fig. 5). Control commands issued by the
controller and outputs of built-in sensors are external events
for the appropriate transitions of the Petri net. For exam-
ple, the transition labeled by “Ac sl on” corresponds to the
event “acquisition solenoid on” and will fire when the con-
troller issues a command to energize the solenoid if it is en-
abled. The transition labeled by “Dr ac rl” corresponds to the
autonomous event “drop acquisition roll” that for the normal
operation of the system should occur within a specified time
interval [�min; �max] from the time it was enabled. The tran-
sition labeled by “LE@S1” corresponds to the event the wait
station sensor detects the leading edge of the paper and should
also occur in a specified time interval. This time interval is de-
rived using the motion dynamics of the paper according to the
specifications. This transition is synchronized with the corre-
sponding sensor signal from the physical system and is used
to detect if the paper arrives late at the wait station sensor or
does not arrive at all. This is accomplished by implementing
a watchdog timer for the event based on the specifications of
the paper feed system. It should be noted that the Petri net of
Fig. 5 models the control logic of the paper feed system and
can capture concurrent behavior for multiple sheets and mul-
tiple components in an efficient manner.

4.3 Diagnoser
The diagnostic process consists of the following two steps.
First, a fault symptom table is generated by a simulation of
the hybrid system model of the paper feed system that param-
eterizes both abrupt and gradual failures. Due to space limi-
tations, interested readers should refer to [Koutsoukos et al.,
2001] for details of the fault parameterization and the fault
symptom table generation. Alternatively, the fault symptom
table could be derived from experimental methods such as
FMEA when feasible. Second, a decision tree is compiled
from the fault symptom table and it is then used as the di-
agnoser. The fault symptom table contains qualitative devi-
ations of the sensor variables for different failure modes. In-
dividual measurements are labeled as normal (0), above nor-
mal (+), below normal (�), maximum value (max), and min-
imum value (min). The minimum and maximum values are
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Figure 5: Petri net model of the paper feed system.

used to distinguish, for example, between a slow motor and a
stalled motor. For real-time, embedded applications, the fault
symptom table can be compactly represented by a correspond-
ing decision tree using, for example, the ID3 algorithm [Quin-
lan, 1993].

In our diagnosis system we have two types of sensors, built-
in sensors that are always accessible with a low cost and
virtual sensors that cannot be used directly in the diagnoser
but require the invocation of the mode estimation algorithm.
Thus, the built-in sensors can be used for fault detection and
trigger the diagnosis algorithm. The diagnoser will try to iso-
late the fault using only the built-in sensors. If this is not pos-
sible, then it will use virtual sensors. In order to take into
consideration the sensor characteristics, we associate with the
built-in sensors a cost equal to 0 and with the virtual sensors
a cost equal to K > 0. The objective of the decision tree
generation algorithm is to minimize the weighted cost of the
tree

X

L2leaves

P (L)
X

X2path(L)

C(X), where P (L) is the proba-

bility of a fault or faults corresponding to leaf L of the tree
and C(X) is the cost of sensor test at node X of the path toL.
A decision tree minimizing the weighted cost is generated by
applying the ID3 algorithm in two phases. First, ID3 builds
a tree using only the built-in sensors. Next, ID3 is applied to
leaf nodes of the tree with more than one faults, and generates
subtrees for those leaves using the virtual sensors (see Fig. 6).

4.4 Experimental Results
The diagnosis system of Fig. 3 has been demonstrated on four
test fault scenarios, using the Petri net model of the paper
feed system, the automatically generated decision tree, and
the mode estimation algorithm. The system, implemented in
MATLAB running on a Win2000 PC, sequentially scans pre-
recorded data streams to emulate online monitoring. The four
test cases involve a feed roll worn fault (labeled as “8” in
the decision tree of Fig. 6) ), a feeder motor belt broken fault
(“5”), an acquisition roll worn fault (“11”), and a motor slow
ramp-up fault (“2”), and cover an interestingsubset of system-
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Figure 6: Decision tree for diagnosing faults in the paper feed
system.

level faults of the printer. These faults may cause a delayed
paper or no paper at subsequent sensors. Note the two “worn”
cases are not directly observable. Our algorithm isolates the
faults by reasoning across several sensor tests to rule out com-
peting hypotheses using the decision tree. The motor slow
ramp-up fault could be directly observed by the correspond-
ing virtual sensor test only at the cost of substantial signature
analysis. Instead, our algorithm uses less expensive system
built-in sensors to monitor and detect faults and only invokes
virtual sensor tests on a when-needed basis.

Let’s examine the trace of the diagnosis output for one of
the fault scenarios. The paper arrives late at wait station sen-
sor LE@S1. The arrival time is compared with the expected
time to generate a qualitative deviation “+”, which triggers
the diagnosis. The value of LE@S1 rules out faults such as
drive train broken. Reading off of the decision tree, the next
test TE@S1, trailing edge arrival time, is then invoked and re-
turns normal (“0”). This rules out feed roll worn and motor
slow ramp-up faults since both would cause the tailing edge
late. Next on the decision tree, the more expensive acquisition
solenoid pull-in time test (AS.pt) is invoked. This calls the
mode estimation algorithm to determine the transition time at
which the acquisition roll contacts the paper (or equivalently,
solenoid pull-in), an autonomous transition event. The com-
posite signal of one-page printing is shown in Fig. 2. The esti-
mation uses acoustic and current signal templates of solenoid
(Fig. 7) and motor (Fig. 8) to compute a posterior probabil-
ity distribution of the pull-in event. Using the Petri net model
prediction [495ms,505ms] to localize the event search, the es-
timation algorithm determines that the event is 2.5 ms later
than the nominal value, well within the permissible range (see
the peak location of posterior in Fig. 9). Therefore, AS.pt re-
turns “0”, and the only candidate remaining is the acquisition
roll worn fault, which is the correct diagnosis. Physically, the
reduced friction between the worn acquisition roll and paper
causes the leading edge of the paper late at LE@S1. But this
does not affect the trailing edge arrival time since the paper
stops momentarily when the sensor detects the leading edge,
and moves again without using the acquisition roll. In con-
trast, a worn feed roll would cause the trailing edge to be late.



The cost of the mode estimation algorithm scales linearly
with the numbers of sensors and measurements when the
mostly likely hypothesis is kept after each mode estimation.
The cost of estimating � is exponential in the number of ac-
tive component sources predicted by the model, since it has
to check combinations of active sources present in the signal.
Estimating � employs a search for the maximum peak in the
posterior in the mode parameter space. A brute-force search
of the space is complete but at the cost exponential in the num-
ber of predicted active component sources. A gradient-decent
search significantly speeds up the search and usually termi-
nates withina small number of steps, but at the risk of possibly
converging to local maxima. Experimentally, the diagnosis of
the fault scenario described above was completed in 5 seconds
for a sensor data sequence of 1.5 seconds in length.
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Figure 7: Acoustic and (high-pass filtered) current signal tem-
plates for AS pull in event.

5 Conclusions
This paper has presented a novel model-based mode estima-
tion algorithm for monitoring and diagnosing multi-sensor
distributed embedded systems. This work has demonstrated
that monitoring of multi-sensor distributed hybrid systems
can effectively exploit the knowledge of control and discrete-
event behaviors of the system to drastically mitigate the expo-
nential blowup due to the sensor data association problem.

There are a number of ways this work can be extended.
The simple sensor cost function could be generalized to
model more realistic distributed processing and communica-
tion characteristics in a distributed multi-sensor environment.
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Figure 8: Acoustic signal template for FM ramp up event.
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Figure 9: Posterior distribution of AS pull in time.

Currently, while mode estimation can be distributed, model
simulation and diagnosis are performed centrally. Distribut-
ing the model and diagnostic reasoning would require main-
taining and updating hypotheses on multiple nodes and re-
mains as one of the topics for future research.
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