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Abstract

Fault diagnosis in large-scale, distributed physical systems often requires the
use of a large number of measurements to achieve complete diagnosability. The
computational complexity of the diagnosis algorithm increases with the number of
measurements, making centralized approaches infeasible for online analysis. This
paper presents an extension to the Transcend framework for qualitative fault di-
agnosis in complex physical systems. The Transcend framework is based solely on
qualitative time-derivative effects. Our approach combines relative measurement
orderings with the traditional fault signature approach to increase the discrimina-
tory power of a set of measurements. The measurement orderings are based on a
qualitative analysis of the temporal propagation of fault effects derived from the
temporal causal graph of the system. These orderings allow for diagnosis with fewer
measurements. More importantly, in large-scale systems, the orderings can be used
to reduce the number of measurements used by local diagnosers, leading to more
efficient algorithms. The application of the approach to large-scale, distributed
systems is illustrated using a multi-tank system.

1 Introduction

Fault diagnosis in large-scale, distributed physical systems can be a challenging task
because of the many ways subsystems can interact. In order to uniquely isolate all faults
in such systems, a large number of measurements may be required. Moreover, in many
applications, the cost of adding certain sensors may be prohibitive or just not possible
physically. This motivates the need to exploit the full disciminatory power of a set of
measurements so that faults can be diagnosed with the smallest number of measurements
necessary.

Previous work in the area of model-based fault diagnosis produced the Transcend
architecture, in which faults are distinguished using qualitative time-derivative effects
known as fault signatures [1]. Centralized diagnoser design is based on measurement
selection algorithms, in which minimal measurement sets are determined to uniquely
isolate all faults [2]. Independent local diagnosers that produce globally correct diagnoses
have been designed in [3]. These algorithms distinguish faults by fault signatures alone,
which do not always contain enough information to uniquely diagnose all faults.

Related work in distributed diagnosis has mostly been concerned with discrete-event
systems. Failure diagnosis in discrete-event systems is based on relating faults to a set



of observable events [4]. This work was extended in [5] for distributed diagnosis, where
a centralized coordinator is used to generate a global diagnosis. In [6] and [7], the
local diagnosers communicate directly with each other to work out a consistent global
diagnosis, based on a distributed constraint satisfaction formulation of the problem.

Our work extends Transcend to incorporate the notion of relative measurement
orderings. Relative measurement orderings establish an ordering between measurement
pairs for different faults. These orderings are based on a predicted temporal order of
measurement deviation, and are systematically derived from the system model. Using
this new information often increases the discriminatory power of a set of measurements,
providing extra information by which faults can be distinguished, leading to more efficient
diagnosers.

The paper is organized as follows. Section 2 gives the background on Transcend.
Section 3 formalizes the idea of relative measurement orderings. Section 4 describes the
extensions to Transcend, and Section 5 explains how distributed diagnosis is performed
with relative measurement orderings. Section 6 gives distributed diagnoser design results
for a six-tank system. Section 7 concludes the paper.

2 Background

The Transcend architecture employs a qualitiative model-based approach for fault
isolation in complex physical systems [1]. System models are constructed using bond
graphs [8]. Faults are modeled as abrupt and persistent changes in parameter values in
the bond graph model of the system. We assume the sampling rate is fast enough to
capture the system dynamics. Further, we also make the single fault assumption.

Example. The application of the Transcend scheme and the new algorithms pre-
sented in this work are illustrated on a multi-tank system. The system consists of a
series of tanks connected by pipes. Each tank also has a drainage pipe, and the first tank
has an input flow. Figure 1 shows a six-tank system and its bond graph, where tanks
are respresented by capacitor components, pipes by resistor elements, common pressure
points by 0-junctions, and common flow points by 1-junctions. The set of possible com-
ponent faults can be mapped to the set of all parameter values in the bond graph, i.e.
F = {C−

1 , . . . , C−
6 , R+

1 , . . . , R+
6 , R+

12, . . . , R
+
56}, where C−

i is a capacitance decrease in tank
i, and R+

j is a blockage in pipe j. The set of all possible measurements consists of all
tank pressures and pipe flows, i.e. M = {e1, e6, e11, e16, e21, e26, f2, f7, f12, f17,
f22, f27, f4, f9, f14, f19, f24}.

The occurrence of an abrupt fault results in transient behavior in the system. Fault
isolation in Transcend is based on a qualitative analysis of the transient dynamics
caused by abrupt faults. Deviations in measurement values after a fault occurrence
constitute a fault signature, where predicted deviations in magnitude and higher or-
der derivative values are mapped to symbols of the set {+, 0,−}, which correspond to
deviations above normal, no deviations, and deviations below normal, respectively.

The fault isolation algorithm in Transcend utilizes the Temporal Causal Graph
(TCG) representation to predict fault effects. The TCG can be derived directly from the
bond graph model of the system. It models the causal relations between system variables
and thus causality of physical effects in the system. It specifies the signal flow graph of
the system in a form where edges are labeled with a single component parameter value
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Figure 1: Six-tank system diagram and its bond graph model.

or a direct or inverse proportionality relation. Figure 2 depicts the TCG of the six-tank
system.
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Figure 2: Six-tank system temporal causal graph.

Fault signatures are generated using a forward-propagation algorithm on the TCG.
The qualitative effect of a fault, + or −, is propagated to all measurement vertices in
the TCG. Instantaenous edges are traversed first, followed by temporal edges (specified
by a dt label). When a temporal edge is traversed, the signature along that path goes
from an ith to (i + 1)th order signature. In this way fault signatures are built up for each
measurement. These give a temporal progression of the predicted qualitative changes in
the signal’s transient by the following lemma [9].

Lemma 1. For a measurement, lower order effects manifest before higher order effects
in response to an abrupt fault in the system.

Fault isolation in Transcend consists of generating observed fault signatures from
measurement residuals. These are compared to predicted fault signatures to discriminate
between the fault hypotheses. Diagnosis in Transcend is based only on fault signatures
as the discriminating information. Before diagnosers can be designed, diagnosability must
be ensured. A system is diagnosable if all faults of interest can be uniquely isolated with
the given measurement set using the available discriminatory information.

Example. For the six-tank system, assuming the set of available measurements to
be only the tank pressures, i.e. M = {e1, e6, e11, e16, e21, e26}, and the fault set to
include all possible faults, the system is not diagnosable based on the fault signatures



alone. Table 1 shows some of the fault signatures for the tank system. All the drainage
pipe faults {R+

1 , . . . , R+
6 } cannot be discriminated between since they produce the same

effects on all pressure measurements (the fault signatures are the same). However, from
intuition one would expect that the effects will manifest themselves at different times in
different measurements, because of the system’s structure. If the first tank’s drainage
pipe becomes blocked (R+

1 ), then its pressure (e1) will rise before the fault propogates
to the last tank, causing its pressure (e6) to deviate above normal. It is this notion that
yields the idea of relative measurement orderings, formalized in the following section.

Fault e1 e2 e3 e4 e5 e6
C−

1 +− 0+ 0+ 0+ 0+ 0+
C−

2 0+ +− 0+ 0+ 0+ 0+
R+

1 0+ 0+ 0+ 0+ 0+ 0+
R+

2 0+ 0+ 0+ 0+ 0+ 0+
R+

12 0+ 0− 0− 0− 0− 0−
R+

23 0+ 0+ 0− 0− 0− 0−

Table 1: Fault signatures for the six-tank system, with leading zeros removed.

3 Relative Measurement Orderings

Relative measurement orderings refer to the intuition that the effects of faults will man-
ifest in some parts of the system before others.

Definition 1. Consider a fault f and measurements m1 and m2; if the fault manifests
in m1 before m2 then we can define a relative measurement ordering between m1 and m2

for fault f , denoted as m1 ≺f m2.

This information can be systematically derived from the TCG of the system, since the
TCG captures both the causal ordering and the temporal effects of an abrupt parameter
change. Relative measurement orderings are based on the notion of a fault path in a
TCG.

Definition 2. A fault path for a fault f and measurement m is a path in the TCG which
begins at the fault f and ends at the measurement m.

The set of all fault paths from f to m is denoted by FPf,m. The order of a fault path
is defined as the number of temporal edges in the path. A minimum order fault path is
a path in FPf,m which contains the minimum number of temporal edges needed to reach
m from f . More than one fault path of a specific order may exist for f and m, since
there are often multiple paths from one vertex to another in the TCG.

Definition 3. The minimum order fault path set for f and m is the set of all minimum
order fault paths, and is denoted as FP ∗

f,m.

A fault path represents the temporal propagation of a fault to a specific measurement
variable in the system. For a certain fault, there are multiple fault paths leading to a
measurement. Since lower order effects of faults manifest themselves first (by Lemma 1),
only the minimum order fault path sets are useful in determining relative measurement
orderings. For this purpose, we define a method of comparing fault paths.



Definition 4. For p ∈ FPf,m1 and p′ ∈ FPf,m2, p @ p′ if all temporal edges in p exist in
p′ in the same ordering, and the order of p is less than the order of p′. If so, we say p is
a temporal subpath of p′, denoted as p @ p′

Theorem 1. If for every p′ ∈ FP ∗
f,m2

there exists p ∈ FP ∗
f,m1

such that p @ p′, then we
have the relative measurement ordering m1 ≺f m2.

Proof. In the signal flow graph for the TCG, let r1 be the measurement vertex corre-
sponding to m1, r2 the vertex corresponding to m2, and rf correspond to the successor
vertex of the edge with fault parameter f . The transfer functions from rf to r1, R1(s) and
from rf to r2, R2(s), can be derived using Mason’s rule. Assume for every p′ ∈ FP ∗

f,m2

there exists p ∈ FP ∗
f,m1

such that p @ p′. Then each minimum order path from rf to
r2 must go through r1 or a vertex which can be expressed as r1 · G, where G is some
constant gain. R2(s) is a sum of terms which each correspond to different forward paths
from rf to r2. By Lemma 1, terms that correspond to forward paths of non-minimum
order can be removed to produce R′

2(s). Similarly, R′
1(s) can be produced. Because every

minimum order path from rf to r2 goes through a vertex r1 · G, R′
1(s) must appear as

a factor in each term of R′
2(s), therefore R′

2(s) = H(s)R′
1(s), where H(s) is a proper

transfer function. The order of m1 is less than the order of m2 by the definition of the @
relationship, so the number of poles for R′

1(s) must be less than the number of poles for
R′

2(s). Therefore H(s) must introduce more poles than zeros to R′
2(s), and, therefore,

H(s) is strictly proper. From H(s) we can discretize using the given sampling rate of the
system to get H(z). Since H(s) is strictly proper, H(z) is, therefore r′2(k) = f(r′1(k−1)).
Since r′2(k) depends only on past values of r′1(k), with appropriately selected detection
thresholds1, a deviation resulting from fault f will appear first in m1 and then in m2,
thus m1 ≺f m2.

Therefore, for a given fault, we can say that it manifests in measurement m1 before
measurement m2 if for all minimum order fault paths of m2, there is a minimum order
fault path for m1 the fault will traverse before completely traversing the given fault path
of m2. The transient due to the fault is slower for m2 than for m1, therefore the fault
will manifest first in m1 and then in m2. Using this information, we can distinguish pairs
of faults.

Definition 5. An ordering set for a fault f , Rf , is the set of all ordering relations for
fault f .

Definition 6. A conflict between ordering sets Rf1 and Rf2 for measurement set M
exists if there are two measurements mi, mj ∈ M such that {mi ≺f1 mj} ∈ Rf1 and
{mj ≺f2 mi} ∈ Rf2.

For a given measurement set and for each fault, we can derive a set of fault signatures
and also a set of ordering relations. Signatures alone have been used to distinguish be-
tween different faults in [1, 9]. However, the set of ordering relationships can also be used
as distinguishing information for fault isolation. Therefore, the discriminatory power of a
set of measurements is enhanced by using both fault signatures and relative measurement
orderings. Two faults can be discriminated between if they have different fault signatures
or if they have conflicts in their ordering sets. Futher, these two notions are independent

1This guarantees that for some time |r1(k)| will be greater than |r2(k)|, after that time |r2(k)| may
overtake |r1(k)| depending on the gain of H(z). Therefore thresholds must be small enough such that
deviations will cross them before that time.



Measurement Order Minimum order fault path set
e4 3 {{dt/C3, dt/C2, dt/C1}}
e7 2 {{dt/C3, dt/C2}}
e23 1 {{dt/C3}}
e20 2 {{dt/C3, dt/C4}}
e26 3 {{dt/C3, dt/C4, dt/C5}}
e12 4 {{dt/C3, dt/C4, dt/C5, dt/C6}}

Table 2: Minimum order fault path sets for R+
3 , with instantaneous edges removed.

and can be combined to distinguish among fault hypotheses. The implementation can
therefore check for distinguishability using the information in any order.

Example. In the six-tank system with the measurement set M = {e1, e6, e11, e16, e21,
e26}, faults {R+

1 , . . . , R+
6 } cannot be distinguished using only the fault signatures be-

cause their signatures are the same for all measurements. Utilizing relative measurement
orderings adds to the discriminatory power of the set M . Table 2 shows FP ∗

R+
3

. It fol-

lows that the ordering set for this fault is {(e7 ≺ e4), (e23 ≺ e4), (e23 ≺ e7), (e23 ≺
e20), (e23 ≺ e26), (e20 ≺ e26), (e23 ≺ e12), (e20 ≺ e12), (e26 ≺ e12)}2. The ordering
set is computed using an algorithm described in Section 4. The effects of the fault R+

3

(pipe blockage) will manifest in the third tank before all other tanks, in the second tank
before the first, in the fourth before the fifth, and in the fifth before the sixth. The effect
is similar for the other drainage pipe faults, for example R+

4 manifests first in tank 4 and
then in tank 3. We can now discriminate between drain pipe blockage faults by knowing
that for each of them, their effects manifest first in the tank to which they belong. By
using this new information, the system can now be shown to be completely diagnosable
for the given measurement set (Section 4).

4 Distributed Diagnosis

Extending the Transcend architecture to incorporate relative measurement orderings
requires modifying the prediction algorithm used to derive the fault signatures, so that
orderings are also determined. The prediction algorithm propagates the effects of a
fault throughout the TCG, considering instantaneous edges before temporal edges, thus
exploring the vertices in increasing derivative order. The algorithm is augmented to keep
track of the fault paths, only keeping the minimum order fault paths for each vertex.
This is a straightforward modification of the algorithm presented in [1].

After the prediction step, a second algorithm is used for each fault candidate to
construct its ordering set. The algorithm does this by comparing the minimum order
fault path sets between pairs of measurements. Fault paths are compared using the @
operator. If for every p′ ∈ FP ∗

f,m2
there exists p ∈ FP ∗

f,m1
p @ p′, then we have the

relative measurement ordering m1 ≺f m2, and we add it to the fault’s ordering set, Rf .
We extend Transcend to include relative measurement orderings as discriminatory

information in the diagnosability algorithm as well. It operates by comparing fault sig-
natures for pairs of faults. If there is no measurement for which the two faults have
different signatures, the faults are indistinuishable using signatures. This procedure is

2The subscript R+
3 is omitted.



Algorithm 1 Determine Diagnosability
Input: set of fault candidates F each with fault signature set Sf ordered by measurements,
and ordering set Rf for measurement set M
Output: set of indistinguishable faults F I

for all f ∈ F do
for all f ′ ∈ F do

if f 6= f ′ then
if Sf = Sf ′ and not conflict(Rf , Rf ′) then

F I = F I ∪ {f, f ′}
end if

end if
end for

end for
return F I

augmented to check for conflicts in ordering sets, such that when two faults cannot be
distinguished by signatures alone, their ordering sets are compared. If a conflict exists in
the ordering sets, then the faults can be distinguished using this new information. The
new diagnosability algorithm is shown as Algorithm 1. If a pair of faults is found which
are indistinguishable using both sets of information, the faults are added to the set of
indistinguishable faults.

Using Algorithm 1, we can determine if, given fault, measurement, signature, and
ordering sets, all faults are distinguishable from each other. This is accomplished by
comparing all pairs of faults using their signatures and ordering sets. The following
propostion shows that this can be done efficiently in polynomial time.

Proposition 1. The diagnosability algorithm runs in O(x2y2) time, given x faults and
y measurements.

Proof. All pairs of faults are considered, and for each pair, there are O(y) signatures to
compare, taking O(x2y) time. Also for each fault pair, there are two ordering sets of size
O(y2) to compare, and if ordering relationships are indexed by measurement, checking for
conflicts can be done in time linear in the size of an ordering set, so O(y2) time per fault
pair, taking O(x2y2) operations to compare all ordering sets. Therefore this algorithm is
in total O(x2y2), so diagnosability can be determined in polynomial time.

Relative measurement orderings change the monitoring algorithm of Transcend as
well. The online monitoring algorithm starts with a set of fault candidates and their
associated fault signatures after an initial deviation has been detected. It matches the
candidates’ predicted fault signatures to observed measurement deviations as they ap-
pear, dropping candidates whose signatures are inconsistent with observed transients.
This algorithm is modified such that candidates are also dropped if there is an inconsis-
tency between predicted measurement orderings and observed measurement orderings.

In designing diagnosers for distributed systems, including measurement orderings can
create smaller and more efficient local diagnosers. Each local diagnoser is defined by the
set of faults it must be able to diagnose, and the set of measurements that are locally
available to it. The goal is to determine which measurements need to be communicated
from other systems in order for each local diagnoser to obtain a globally correct diagnosis.
This avoids the need for a centralized coordinator. A distributed algorithm has been
developed using only fault signatures to determine such a design [3]. Utilizing relative



Algorithm 2 Distributed Diagnoser Design
Input: local fault sets Fi, local measurement sets Mi, fault signatures, ordering sets, k
subsystems
for subsystem i ∈ 1, . . . , k do

identify set remFaultsi such that f ∈ remFaultsi cannot be completely distinguished
using Mi (using extended diagnosability algorithm)
for f ∈ remFaultsi do

identify minimum set of communicated measurements to globally diagnose f (using ex-
tended diagnosability algorithm)
add this set to the local measurement set

end for
end for

measurement orderings in many cases will allow the local diagnosers to require fewer
local measurements and also require fewer measurements to be communicated.

The algorithm generates the distributed diagnoser by minimizing the number of
shared measurements between subsystems. For each subsystem, if a fault is not globally
diagnosable using local measurements, it searches neighboring subsystems for a minimal
set of additional measurements to make the fault globally diagnosable. The goal is to
achieve a unique diagnosis with minimum communication between the subsystems. This
algorithm is extended to include relative measurement orderings when determining if a
set of measurements can distinguish a set of faults. The modified algorithm is shown as
Algorithm 2. In the worst case all combinations of measurements are considered, so the
algorithm is exponential. Practically, this is done at design time so its time complexity
is not of much concern.

5 Experimental Results

Evaluation of a diagnoser’s design is dependent on the number of measurements it uses
to diagnose a given set of faults. A diagnoser is more efficient with a smaller number of
measurements because it has to make less comparisons in the online monitoring algorithm.
Also, less measurements need to deviate to obtain a diagnosis, so the diagnosis will
typically be achieved faster.

As previously shown, a given measurement set may not be able to completely diag-
nose all faults using fault signatures alone. Therefore, in order to evaluate and com-
pare designs with and without measurement orderings, we assume the system is di-
agnosable using fault signatures alone, and compare the number of measurements re-
quired to obtain a global diagnosis. To meet this criteria, we assume the fault set,
F , to be {C−

1 , . . . , C−
6 , R+

1 , . . . , R+
6 , R+

12, . . . , R
+
56}, and the measurement set, M , to be

{e1, e6, e11, e16, e21, e26, f4, f9, f14, f19, f24}, i.e. all tank pressures and connecting
pipe flows.

A centralized diagnoser design is based on finding the minimum set of measurements
which provides diagnosability for the given fault and measurement sets. For the chosen
F and M , without measurement orderings, all measurements are required to diagnose
all faults, i.e. M = {e1, e6, e11, e16, e21, e26, f4, f9, f14, f19, f24}. With orderings,
however, only the tank pressures are necessary i.e. M = {e1, e6, e11, e16, e21, e26}. In
this case, using orderings reduces the size of the diagnoser.

Table 3 shows the results of a distributed diagnoser design. Communicated mea-



surements are denoted by an asterisk. The subsystems are taken to be a tank with its
respective drainage pipe and its right connecting pipe. Each subsystem is responsible
for faults in its components, and has its tank pressure and connecting pipe flow rate as
measurements, i.e. the local fault sets are {C−

1 , R+
1 , R+

12}, {C−
2 , R+

2 , R+
23}, . . ., {C−

6 , R+
6 }.

Without measurement orderings, the subystems each need their own tank pressures and
connecting pipe flows, along with the flow rate for the previous subsystem and the tank
pressure for the next subsystem. With orderings, only the tank pressures are needed,
and each subsystem takes the pressure measurement from its neighboring subsystems.
In this case, using orderings reduces the size of each local diagnoser.

Subsystem Design Without Orderings Design With Orderings
1 M1 = {e1, f4, e6∗} M1 = {e1, e6∗}
2 M2 = {e6, f9, f4∗, e11∗} M2 = {e6, e1∗, e11∗}
3 M3 = {e11, f14, f9∗, e16∗} M3 = {e11, e6∗, e16∗}
4 M4 = {e16, f19, f14∗, e21∗} M4 = {e16, e11∗, e21∗}
5 M5 = {e21, f24, f19∗, e26∗} M5 = {e21, e16∗, e26∗}
6 M6 = {e26, f24∗} M6 = {e26, e21∗}

Table 3: Distributed Diagnoser Designs

Table 4 shows the results of a second distributed diagnoser design. The subsys-
tems are taken to be all tanks with their drainage pipes as one subsystem, and each
connecting pipe in its own subsystem. We consider only faults in the pipes. The subsys-
tems are {{R+

1 ,. . .,R+
6 },{e1, e6, e11, e16, e21, e26}}, {{R+

12}, {f4}}, {{R+
23},{f9}}, . . .,

{{R+
56}, {f24}}. Without measurement orderings, the subystem consisting of the tanks

and drainage pipes needs the flow rates of the connecting pipes to be communicated.
With measurement orderings, this communication is not required. In this case, using
orderings reduces the communication requirements of the local diagnosers.

Subsystem Design Without Orderings Design With Orderings
1 M1 = {e1, e6, e11, e16, e21, e26, M1 = {e1, e6, e11, e16, e21, e26}

f4∗, f9∗, f14∗, f24∗}
2 M2 = {f4} M2 = {f4}
3 M3 = {f9} M3 = {f9}
4 M4 = {f14} M4 = {f14}
5 M5 = {f19} M5 = {f19}
6 M6 = {f24} M6 = {f24}

Table 4: Distributed Diagnoser Designs for a Different Subsystem Partitioning

6 Conclusions

In this paper, we have presented and analyzed the concept of relative measurement order-
ings for fault diagnosis. Algorithms to systematically derive the information and use it to
diagnose faults have been constructed. Including this new information has been shown to
increase the discriminatory power of a given set of measurements, achieving diagnosabil-
ity with fewer measurements. Therefore some large systems which were not previously
diagnosable now are by including measurement orderings. Also, some previously diagnos-
able systems are now diagnosable with fewer measurements, leadings to smaller, faster



diagnosers. The benefit of using measurement orderings in diagnoser design has also been
shown.

Future work will address the benefit of relative measurement orderings in the par-
tioning method of distributed diagnoser design, where optimal partitions of the fault
sets are measurement sets are determined such that no communication of measurements
is needed between the distributed diagnosers. Experimental application to large-scale
systems, such as a tank system and multi-robot teams, will also be explored.
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