
Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2013, Article ID 678016, 15 pages
http://dx.doi.org/10.1155/2013/678016

Research Article
Model-Based Control Design and Integration of
Cyberphysical Systems: An Adaptive Cruise Control Case Study

Emeka Eyisi, Zhenkai Zhang, Xenofon Koutsoukos, Joseph Porter,
Gabor Karsai, and Janos Sztipanovits

Institute for Software Integrated Systems (ISIS), Vanderbilt University, Nashville, TN 37212, USA

Correspondence should be addressed to Emeka Eyisi; emeka.eyisi@vanderbilt.edu

Received 7 September 2012; Accepted 18 December 2012

Academic Editor: Sabri Cetinkunt

Copyright © 2013 Emeka Eyisi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The systematic design of automotive control applications is a challenging problem due to lack of understanding of the complex and
tight interactions that often manifest during the integration of components from the control design phase with the components
from software generation and deployment on actual platform/network. In order to address this challenge, we present a systematic
methodology and a toolchain usingwell-definedmodels to integrate components fromvarious design phases with specific emphasis
on restricting the complex interactions that manifest during integration such as timing, deployment, and quantization. We present
an experimental platform for the evaluation and testing of the design process. The approach is applied to the development of an
adaptive cruise control, and we present experimental results that demonstrate the efficacy of the approach.

1. Introduction

Cyberphysical systems (CPS) represent a class of complex
systems characterized by the tight interactions between the
physical dynamics, computational dynamics, and communi-
cation networks. Automotive systems are classical examples
of CPS and have recently been gaining increased attention
due to the emerging challenges in their design. Current
automotive systems employ up to 100 electronic control
units (ECUs) exchanging more than 2500 signals over up
to 5 different bus systems [1, 2]. These ECUs control and
monitormany subsystems of a vehicle such as chassis control,
vehicle stability, and engine control. The development of
control software has become one of the greatest challenges in
the automotive domain due to the increasing complexity of
automotive systems as well as the increasing roles of control,
computing, and communication [3–6].

The increased pressure to integrate as much functionality
on as few ECUs as possible, the persistent effort for low pro-
duction costs, and tight time-to-market constraints further
complicate the development of automotive software control
systems. Due to these challenges, there is a dire need for

a reliable and efficient approach for control software develop-
ment and integration. Amajor problem in the current state of
art is that most issues with deployed control applications are
typically discovered in the final phases of the development
cycle, and at these later phases, correcting the issues is very
expensive as it involves the modification of specifications,
requirements, and design. Another issue is the lack of realistic
experimental platforms for integrating and testing developed
control software prior to deployment.

Systematic design and analysis of automotive control
software early in the development cycle is very crucial.
The model-driven development approach has been found
to be very beneficial in addressing these issues [7]. How-
ever, the lack of a sound approach, for the integration of
components from the control design phase with the compo-
nents from software generation and deployment on actual
platform/network, makes the model-driven approach very
challenging because the tight interactions between the design
phases often manifest during integration. The current state-
of-the-art often resorts to ad hoc methods with the goal of
“making the systemwork.”These ad hocmethods are becom-
ing unpractical as the complexity of the system increases.

2 Journal of Control Science and Engineering

In this paper, we present a step towards addressing the
challenges in the design and integration of components from
control design with components from software generation
and deployment on actual platform/network. We present a
systematic methodology and a toolchain to integrate control
design and scheduling in the development of automotive
control applications with specific emphasis on restricting
the interactions that manifest during integration such as
timing, deployment, and quantization. Our design process
utilizes a model-based toolchain, Embedded SystemsModel-
ing Language (ESMoL) [8]. ESMoL, designed in the Generic
Modeling Environment (GME) [9], is a single multiaspect
embedded software design environment, which streamlines
control design with software modeling, code generation, and
deployment on platform/network, filling the very impor-
tant details between the design phases promoting a high-
confidence software development process.

In order to evaluate our software development process
and toolchain, we employ an experimental platform based on
the time-triggered paradigm that enables the deployment and
testing of automotive control applications.The time-triggered
paradigm is used to address the complexity and composabil-
ity challenges by precisely defining the interfaces between
components in order to provide predictability [10]. Also, our
choice of a time-triggered paradigm falls in line with the
increased ongoing efforts towards the standardization of in-
car communication networks, such as FlexRay and Time-
Triggered Ethernet (TTEthernet or TTE), with the overall
goal of guaranteeing highly reliable, deterministic, and fault-
tolerant system performance [11].

The software development process and toolchain together
with the experimental platform efficiently connect all the
phases of development of automotive control applications,
essentially going from control design using Matlab/Simulink
to deployment and hardware-in-the-loop simulations. In
order to demonstrate our approach, we apply the proposed
process to the development of an adaptive cruise control
(ACC).The adaptive cruise control (ACC) system is an active
safety and driver-assistance vehicle feature that automatically
controls a vehicle’s longitudinal velocity in a dynamic traffic
environment. ACC enables an ACC-equipped vehicle to
follow a leading forward moving vehicle while maintaining
a desired distance from the leading vehicle as determined by
the vehicle’s velocity and a specified time gap or headway.
We present experimental results from the hardware-in-the-
loop simulations of the designed ACC on the experimental
platform.

This paper is organized as follows. The related work
is presented in Section 2. In Section 3, we describe our
view of CPS design and integration, and we formulate the
specific problem considered in this paper. We present the
proposed systematic methodology for model-based control
design and integration in Section 4. Section 5 presents the
system architecture for the experimental platform. Section 6
describes the control design of the adaptive cruise control.
Section 7 describes the software design process for the
adaptive cruise control. Section 8 presents an experimental
evaluation of our proposed approach using the adaptive

cruise control case study. Finally, Section 9 provides a brief
discussion and concludes the paper.

2. Related Work

Model-based software development approach as well as test-
beds for testing automotive control systems architecture is a
very active research area. There is an increasing amount of
work in this area attempting to address various cross-layer
challenges [12]. In [13], an automotive testbed for electronic
controller unit testing and verification was presented. The
presented platform provides many advantages for testing
ECUs and is complementary to our work.The authors in [14]
present a software-based implementation and verification
scheme for a FlexRay-based automotive network. The main
focus of the paper is on verifying timing in control signals
and the network and providing a basis for detecting and diag-
nosing network faults. In [15], the authors used a technique
called Instrumentation-Based Verification (IBV) to design
automated tests in order to check whether models developed
in Matlab/Simulink satisfy specified requirements; while the
work addresses an important issue of verifying requirements
with control design, it does not go further into the actual
software deployment and evaluation on a test platform.

The design of the adaptive cruise control (ACC) has
been extensively studied, and there are numerous design
techniques for deriving the corresponding control laws. Some
of the most common approaches are sliding-mode design
techniques [16, 17], optimal control techniques [18, 19], fuzzy
logic [20], neural networks, and proportional derivative (PD)
type control law [21, 22]. In this work, our main focus in the
case study is on the design flow from the high level design of
a vehicle control system such as the ACC using model-based
tools such as Matlab/Simulink to the actual deployment and
testing on an automotive testbed capable of mimicking real
world scenarios. In [23], the authors describe a model-based
approach for the modeling, design,dere and implementation
of an intelligent cruise control. In contrast to their approach,
our development approach provides a simpler graphical lan-
guage that clearly defines the integration of the control soft-
ware. In addition, we adopt the time-triggered architecture
[10] which essentially ensures predictability, determinism,
and guaranteed latencies, hence, allowing for a certain level
of decoupling in system design. The work in [24] describes a
FlexRay-based distributed networked system for automotive
applications mainly focusing on the challenges in regards
to the paradigm shift from the Controller-Area-Network-
(CAN-) based even-triggered communication technologies
to the introduction of time-triggered communication scheme
while assuming an existing software environment.

Our work differs from the existing works, due to the fact
that we consider an end-to-end design flow in the devel-
opment of control software with well-defined components
that are necessary for the efficient and reliable integration
of design layers of an automotive CPS. By clearly defining
these components which include timing and deployment, we
restrict the possible interactions that can potentiallymake the
overall behavior of the system unpredictable.

Journal of Control Science and Engineering 3

Computational
object

Computational
object

Computational
object

Computational
object

Computational
object

Computation/communication layer

Computational
platform

Platform layer

Physical object Physical object

Communication platform

Implementation

Cyberphysical object

Physical layer

Cyberphysical object

Physical object

Computational interaction Physical interaction

Computational platform

Implementation

Ab
str

ac
tio

n

Re
fin

em
en

t

Figure 1: Design flow in CPS design layers [25].

3. Problem Formulation

Figure 1 shows the three fundamental design layers of CPS,
such as an automotive vehicle [25].

(1) The physical layer represents physical components
and their interactions. The behavior of the physical
components is governed by physical laws and is typ-
ically described in continuous (physical) time using,
for example, ordinary differential equations (ODEs).
Physical objects are interconnected by physical com-
ponents (e.g., steeringwheel) or cyberphysical objects
(e.g., steer by wire).

(2) The platform layer represents the hardware side of
CPS and includes the network architecture and com-
putation platform that interact with the physical
components through sensors and actuators. While
executing the software components on processors
and transferring data on communication links, their
abstract behavior is “translated” into physical behav-
ior.

(3) The computation/communication layer represents the
software components with behavior expressed in log-
ical time. Interconnections aremodeled using various

Models of Computations (MoCs) [26]. Software com-
ponents are connected using an input/output model
with an implied notion of causality.

In view of this CPS architecture, for an automotive
application, the vehicle chassis together with the engine,
transmission, brakes and tires, cyberphysical objects (e.g.,
steer by wire), and the initial controller design comprise the
physical layer. The electronic control units (ECUs) on which
the control software applications are deployed, together with
the communication network over which the ECUs send and
receive data, comprise the platform layer.

In this work, we assume that the components of the
physical layer are specified by a given physical vehicle
dynamic model. Also, we assume that the platform layer
is specified based on a given set of computational nodes
and communication network. The main research problem
we address is handling the complex interactions in the
computation/communication layer of automotive CPS which
manifest due to the lack of a clear andwell-defined systematic
integration of control design and scheduling. This problem
involves the need for a “correct-by-construction” end-to-end
design methodology for the modeling, designing, analysis,
deployment, and testing of automotive control applications.
In order for such a development process to be beneficial,
it should be systematic and efficient. Additionally, such an

4 Journal of Control Science and Engineering

Control design (Simulink)

User-side language (ESMoL)

Design model aspects

Requirements

Software
architecture Deployment

Behavior

Transformation
of model

details

1

2 4 3

5

6

7 8

Hardware
platform

Imports model structure

Intermediate language (ESMoL abstract)

Semantic model layers

Requirements (constraints)

Instances and
parameters

Syntax
generation

Schedulability and
timing analysis

Requirements
Dependencies

Resources
Component timing

Requirements

Other tools

Dependencies
Resources

Component timing

Model relations

Behavior

Release
times

Software
generation

Target tools and languages

Figure 2: Automotive embedded control software design flow supported by the ESMoL language and modeling tools.

approach will require an experimental platform that is able
to model realistic scenarios that can mimic real-world cases.

4. Automotive Control Software
Design Process

The proposed approach uses formal models and design
concepts integrated in the model-based tool chain ESMoL,
to restrict component interactions by specifying attributes
in various refinements of a single design model of an
application. These refinements, which include component
architecture, deployment, and timing/executionmodels, rep-
resent different aspects of the system as the process pro-
gresses towards implementation. The combined information
expressed in the aspects constitutes a suitable completemodel
for the actual deployment and implementation of the system.
We provide the design flow of the development process.

4.1. Automotive Control SoftwareDesign Flow. Figure 2 shows
the design flow for the proposed software development pro-
cess. The design process involves eight main steps numbered
in a top-down manner, starting from the first step which
involves the importation of a control design model into
ESMoL to the eighth and final step of software generation,
as shown in Figure 2. The design steps are described as in
Figure 2.

4.1.1. Controller Design and Importation. The controller for
a specific system functionality is typically designed and
validated in Matlab/Simulink using simulations. Real-Time
Workshop (RTW) [27], an automatic code generator in
Simulink, can subsequently be used to generate the equivalent
C code of the designed controller. The controller is typically
designed in floating-point math, while the actual control
software executes on ECUs with potentially limited number
of bits and fixed-point implementation. In order to convert

Journal of Control Science and Engineering 5

controller models from floating-point to fixed-point, fixed-
point Toolbox [28] is used to aid code generation.

AlthoughMatlab/Simulink provides the environment for
modeling and code generation of controllers, it lacks the ade-
quate and important refinement for controllers that provide
implementation details, such as real-time operating system
(RTOS) environment, timing, hardware platform specifica-
tions, and network considerations. Thus, after the controller
validation and generation of equivalent C code, in the first
step of our design process, the controller’s Matlab/Simulink
model is automatically imported into the ESMoL envi-
ronment by using the MDL2MGA tool in ESMoL. The
MDL2MGA tool is a model interpreter that creates a struc-
tural replica of the Matlab/Simulink model in the ESMoL
modeling environment. The replica of the Matlab/Simulink
model is represented as a synchronous data flow model
(SDF), and each subsystem in the replica becomes an actor
in the SDF. The ESMoL model’s references to the imported
Simulink blocks become the functional specifications for the
instances of software components in a logical SDF model. C
code fragments may also be used to specify the component
functionality. Component ports represent instances of data
message types. These types are defined as structures with
individual data fields to which Simulink data ports can be
mapped.These relations describe themarshaling, demarshal-
ing, and transfer of data between software components.

4.1.2. Logical Software Architecture. The second step in the
design process, denoted as B in Figure 2, involves the
specification of the logical software architecture. The logical
software architecture model describes the interconnection of
component instances representing the functional blocks.The
logical software architecture captures the data dependencies
between software components independent of their distribu-
tion over different processors. The semantics of the logical
interconnections are defined by task-local synchronous func-
tion invocations as well as message transfers between tasks
based on the time-triggered communication paradigm.

4.1.3. Hardware Platform. The third step in the design pro-
cess, depicted as C in Figure 2, involves the definition of
the hardware platform on which the controller software is
deployed. In this step, by specifying the attributes of the hard-
ware platform, we clearly define the components and interac-
tions of the platformwhich significantly impacts the behavior
of the overall control system. ESMoL’s network/platform sub-
language has several components including processing nodes
and communication networks for defining the computing
nodes as well as the underlying communication networks.
Several specific networks for automotive systems are defined
in this sublanguage, such as CAN bus and TTEthernet.
In this paper, we consider TTEthernet, which is based on
the time-triggered paradigm. In ESMoL, hardware platforms
are defined hierarchically as hardware units with ports for
interconnections.Themodel attributes for hardware platform
also capture timing resolution, overhead parameters for
data transfers, task context switching times, and scheduling
policies.

4.1.4. Deployment Model. The fourth step in the design
process, denoted as D in Figure 2, involves the definition of
the deploymentmodel.The deploymentmodel represents the
mapping of software components to processing nodes and
data messages to communication ports. This model captures
the assignment of component instances as periodic tasks
running on a particular processor. A well-defined specifi-
cation of the deployment model is important as the overall
behavior of the control application depends on the efficient
mapping of software components to the designated platforms.
In ESMoL, a task executes on a processing node at a single
periodic rate, and all components within the task execute
synchronously. Message ports on component instances are
assigned to hardware interface ports in the model to define
the media through which messages are transferred.

4.1.5. Timing Model. The fifth step, denoted asE in Figure 2,
involves the specification of the timing behavior of the
system. The timing model allows a designer to specify com-
ponent execution constraints involving the timing behavior
of the component. The specification of the timing model
is very important in order to ensure the predictability of
the overall system behavior. In ESMoL, the timing model
of a control application is established by attaching timing
parameter blocks to components and messages. There are
three types of timing parameter blocks in ESMoL to represent
three different execution modes. Time-triggered execution
information (TTExecInfo) is used to specify the timing
for a task or a message transfer that executes based on
a synchronized time base, such as in time-triggered dis-
tributed system. If the synchronized time base is not available
or used, an event-triggered system needs to be specified.
In this case, asynchronous periodic execution information
(AsyncPeriodicExecInfo) is used for periodic execution, while
sporadic execution information (SporadicExecInfo) is used
for aperiodic execution with a minimum period. The model
also indicates which components and messages that will be
scheduled independently, and those that should be grouped
into a single task or message object. In the case of processor-
localmessage transfers, transfer time is neglected as reads and
writes occur in locally shared memory.

4.1.6. Model Transformation. In order to integrate analysis
tools and other code generators into ESMoL, rather than
directly attaching translators directly to the user language,
ESMoL defines a simpler abstract intermediate language
whose elements are similar to those of the user language.The
sixth step in the design process, depicted as F in Figure 2,
involves this model transformation. An ESMoL interpreter
called Stage 1 is used to perform the transformation from
the originally defined ESMoL model into an abstract inter-
mediate language that contains explicit relation objects that
represent relationships implied by structures in ESMoL. This
translation is similar to the way a compiler translates concrete
syntax first to an abstract syntax tree and then to intermediate
semantic representations suitable for optimization. Stage 1
is implemented using the Universal Data Model (UDM)
navigation application interface [29]. The ESMoL Abstract

6 Journal of Control Science and Engineering

target model is a flattened ESMoL model and the source
for the transformations for further analysis and software
component generations.

4.1.7. Network/Task Scheduling. This step in the design pro-
cess, depicted as G in Figure 2, involves network and task
scheduling. A scheduler provided by TTTech [30] is used for
network scheduling. This scheduler requires a configuration
script of the network/hardware platform in order to perform
analysis. An ESMoL Abstract interpreter called Stage 2 is
integrated into the ESMoL’s abstract intermediate language
to generate the TTEthernet configuration script for network
scheduling.This interpreter takes the parameters specified in
the TTEthernet components of the network/platform model
and combines themwithmessage specifications generated for
interprocessormessage transfers, which can be deduced from
the software architecture model and the deployment model.
The desired offset fields of the TTmessages are obtained from
the timing model.

For the task scheduling, we use the bottom-level-based
heuristic scheduling algorithm [31].The algorithm establishes
the critical path of the task graph, which needs at least the
execution time of any other path in the task graph. In order
to distinguish the tasks on the critical path, the notion of
bottom-level of a task is used, which is the length of the
longest path starting with this task. Because the bottom-level
bounds the start time of a task, as-late-as-possible start time
of a task can be used to generate the task schedule.

4.1.8. Software Implementation. The final step in the design
process, depicted asH in Figure 2, is the software implemen-
tation of the control software. The network schedule from
the previous design step is used by a tool called TTEBuild
from TTTech to generate the binary configuration files and
C code configurations required for the implementation of
communication on the platform. An integrated interpreter in
ESMoL’s abstract intermediate language assembles the C code
files generated by RTW and TTEBuild with glue code files
and automatically generates a Makefile. After compilation,
the executables are deployed onto the respective ECUs.

The proposed software development process and
toolchain provides flexibility and convenience in the rapid
prototyping of automotive control software while at the
same time ensuring that the models are correct at the
different stages of design. In the design of automotive control
application, it is typical to test multiple configurations and
refinements in multiple iteration. Hence, the model-based
approach provides the ability to quickly modify models and
parameters to reflect changes and subsequently generate
deployable software components for testing on the platform.

5. System Architecture

Figure 3 shows the system architecture for the experimental
platform used in the evaluation of the automotive software
development process.

5.1. Physical Layer. Thephysical layermodeling the dynamics
of the automotive system encompasses twomain components
as described as follows.

5.1.1. Design/Visualization PC. The design/visualization PC
represents the computing platform, running Windows oper-
ating system, for the dynamic modeling of a vehicle using
CarSim as well as the initial control design and testing
using Matlab/Simulink. CarSim is a commercially avail-
able parameter-based vehicle dynamics modeling software.
It facilitates the efficient simulation and analysis of the
behavior of four-wheeled vehicles in response to various
inputs such as steering, braking, and acceleration [32]. The
design/visualization PC is also used for the visualization and
reporting of results from various experiments.

5.1.2. Target PC. The Target PC is a National Instruments
LabVIEW Real-Time target running NI’s Real-Time Module
which provides a complete solution for creating reliable,
stand-alone real-time systems [33]. In the experimental
platform, the vehicle’s physical dynamics modeled in CarSim
is deployed on the Target PC during experiments. The Target
PC is also integrated with a TTTech PCIe-XMC card [30]
which enables the seamless integration and communication
with ECUs on the time-triggered network supported by the
TTEthernet switch.

5.2. Platform Layer. The platform layer is modeled by
the TTEthernet switch and ECUs. These components are
described as follows.

5.2.1. TTEthernet Development Switch. The TTEthernet De-
velopment Switch is an 8-port 100Mbps system which sup-
ports 100 Base-TX Ethernet and enables hard real-time com-
munication based on the TTEthernet protocol. It supports a
star network topology. In Figure 3, the end systems comprised
of the ECUs and the XMC card communicate with each
other through the switch. The switch operates based on user
defined configurations based on an experimental scenario.
The configurations are specified in our model-based tool,
ESMoL.

5.2.2. Electronic Control Units (ECUs). In Figure 3, the net-
work depicts four ECUs, but there could possibly be more or
fewer number of ECUs connected at a time based on a specific
configuration. In our framework, an ECU is an IBX-530W-
ATOM box with an Intel Atom CPU running a Real-Time
Linux (RT-Linux) operating system. Each ECU is integrated
with a TTEthernet Linux driver using an implementation of
the TTEthernet protocol to enable the communication with
other end systems in the TTEthernet network. Controller
software components are deployed on the ECUs for the
execution of automotive control applications. The controller
software components that are deployed on each ECU are
generated from the software design process for the controller
specified in ESMoL. These software components execute in
kernel space of the RT-Linux running on each of the ECUs
and utilizes the synchronized time base of TTEthernet.

Journal of Control Science and Engineering 7

Design/visualization PC

CarSim

Matlab/
Simulink

NI
LabView

Windows OS

Target PC

NI VI models

NI EST RTOS

TTEthernet Linux driver

TTEthernet Linux driver

TTEthernet Linux driver

Real-Time Linux

ECU 2

ECU 4ECU 3

ECU 1

Controller C code

Real-Time Linux

Controller C code

Real-Time Linux

Controller C code

TTEthernet Linux driver

TTEthernet Linux driver

Real-Time Linux

Controller C code

TTEthernet
development switch

(8 ×100 Mbps)

Figure 3: System Architecture for the Experimental Platform.

6. Control Design

In this section, we describe the controller design for the ACC.
The operation of an ACC involves the use of a radar system
which is attached to the front of the vehicle in order to detect
when a vehicle is in the ACC-equipped vehicle’s detectable
view.When a vehicle is detected by the radar, the ACC system
will control the distance between the ACC-enabled vehicle
and the leading vehicle. In the absence of a leading vehicle in
the ACC-enabled vehicle’s path, the ACC system controls the
vehicle to maintain a driver set velocity, essentially behaving
like the conventional cruise control system.

Thevehiclemodel used for theACCdesign only considers
the longitudinal motion of the vehicle.

6.1. Longitudinal Vehicle Model. The longitudinal vehicle
model is typically based on the following assumptions [17].

A1: The torque converter is locked which implies that the
engine speed is algebraically proportional to the vehicle speed
via the gear ratios. A2: The tire slip is negligible.

The longitudinal dynamics of a vehicle can be described
by the following equation provided that assumptions A1 and
A2 hold:

𝑇
𝑒
− 𝑅
𝑔
(𝑇
𝑏
+𝑀rr + ℎ𝐹

𝑎
+ 𝑚𝑔ℎ sin 𝜃) = 𝛽𝑎, (1)

where

𝛽 =

[𝐽
𝑒
+ 𝑅
2

𝑔
(𝐽
𝑤𝑟

+ 𝐽𝑤𝑓 + 𝑚ℎ
2

)]

𝑅
𝑔
ℎ

,

𝐹
𝑎
= 𝐶
𝑎
V
2

.

(2)

Table 1 provides a summary of the parameter definitions.
Figure 4 shows a block diagram of the ACC system.The ACC
is hierarchically divided into two levels of control: the upper
level controller and the low level controller.

6.1.1. Upper Level Controller. The main functionality of the
upper level controller is to compute the desired acceleration
for the ACC-equipped vehicle that achieves the desired
spacing or velocity. As depicted in Figure 4, the upper level
controller, using the driver inputs, the radar measurements,
and the current distance and velocity of the ACC-equipped
vehicle relative to a leading vehicle, computes the desired
acceleration that is required to achieve the desired spacing
or velocity. The computed acceleration command is sent to
the lower level controller to compute and implement the
corresponding actuation commands as needed. The upper
level controller can operate in two main control modes.

(a) Velocity Control: In this mode, the radar does not
detect any vehicle in the path of the ACC-equipped
vehicle. In this mode, the ACC essentially acts like the

8 Journal of Control Science and Engineering

Radar inputs

Driver inputs
Upper level

controller controller

Vehicle dynamics

Low level

(range and range rate
𝑎des

𝜎des

𝑃mcdes

𝑣ℎ

𝑎ℎ

Figure 4: Adaptive cruise control system.

Table 1: Parameters for the longitudinal vehicle dynamics.

Parameter Definition
𝛽 Lumped inertia
𝐹
𝑎

Aerodynamic drag force
𝑇
𝑒

Net engine torque
𝑇
𝑏

Brake torque
𝑅
𝑔

Gear ratio
𝑀rr Rolling resistance moments
ℎ Effective wheel radius
𝑚 Total curb mass of the vehicle
𝐽
𝑒

Inertia of engine
𝐽
𝑤𝑟

Inertia of rear axle
𝐽
𝑤𝑓

Inertia of front axle
𝐶
𝑎

Aerodynamic drag coefficient
V Velocity of the vehicle
𝑎 Acceleration of vehicle
𝜃 Inclination angle of the road
𝑔 Gravitational acceleration

conventional cruise controller. Therefore, the ACC-
equipped vehicle’s velocity is maintained at the target
velocity set by the driver. The control law for com-
puting the acceleration command is a proportional
controller defined as.

𝑎des = 𝐾
1
∗ (V
𝑑
− V
ℎ
) , (3)

where 𝐾
1
is a control gain, V

𝑑
is the user-set velocity,

and V
ℎ
is the velocity of the host or ACC-equipped

vehicle.
(b) Spacing Control: The spacing control mode is entered

when the radar detects a leading vehicle in the ACC-
equipped vehicle’s path, and the ACC system controls
the vehicle tomaintain a desired distance based on the
velocity of the host vehicle and a user-specified time
gap. This desired distance, 𝑆

𝑑
, can be defined as

𝑆
𝑑
= Δ + (V

ℎ
∗ 𝑡gap) , (4)

where Δ is the desired distance to be maintained in the case
where the leading vehicle comes to a complete stop, and 𝑡gap
is the user-specified time gap with typical values in the range
of about 0.7–1.8 seconds.

Switching
Throttle

logic

controller

controller
Brake

𝑎des

𝑎res

𝜎des

𝑃mcdes

Figure 5: Low level controller.

The control law used in computing the desired accelera-
tion in this mode is

𝑎des = min (𝑎
1
, 𝑎
2
) , (5)

where 𝑎
1
is computed similar to the desired acceleration in

(3), and 𝑎
2
is computed as follows

𝑎
2
= 𝐾
2
∗ (V
𝑙
− V) + 𝐾

3
(𝑆
𝑑
− 𝑆
𝑎
) , (6)

where 𝑆
𝑎
is the gap distance measured by the radar, V

𝑙
is the

velocity of the leading vehicle, 𝐾
2
, and𝐾

3
are control gains.

6.1.2. Low Level Controller. The main objective of the low
level controller is twofold. First, using the desired acceleration
command from the upper level controller, the lower level
controller determines whether to apply braking control or
throttle control. Secondly, the required control command
is applied to the vehicle in order to achieve the desired
acceleration. The applied control command is either throttle
angle command, 𝜎des, or master cylinder pressure command,
𝑃
𝑚𝑐des.

(a) Switching Logic: The switching logic component
shown in Figure 5 determines, based on the desired
acceleration from the upper level controller, whether
a brake torque or engine torque is required to achieve
the desired acceleration. Typically, it is common to
assume that a simple logic for choosing between
brake and engine control can be based on the sign
of the desired acceleration; that is, if the acceleration
is greater than or equal to zero, then engine con-
trol should be applied, otherwise the brake control
should be applied. This approach neglects the fact
that with no control inputs, the engine torque is
not necessarily zero. Thus, a better alternative is to
consider the residual acceleration, 𝑎res, due to the
presence of engine torque when no control inputs are

Journal of Control Science and Engineering 9

Inverse engine
map

PI

800070006000500040003000200010000

90
0

50
100
150
200
250
300
350
400
450
500

70
62 53463634252010

controller

800700060005000

0
62 5346363425

Throttle angle

To
rq

ue
 (N

m
)

npm

−

+

+

+

𝑎des

𝑎err

𝜎des

𝜎𝑓

𝜎cmp

𝑎ℎ

Compute net engine torque

800700060005000

0
62 346363425

800700060005000

0
62 534446363425

Throttle

Figure 6: Throttle controller.

introduced [16]. Based on this approach, the engine
torque can be subdivided into two parts: minimum
or closed throttle torque, 𝑇ect, and the portion subject
to control,𝑇ec. Substituting these two components for
𝑇
𝑒
in (1) we have

𝑇ec + 𝑇ect − 𝑅
𝑔
(𝑇
𝑏
+𝑀rr + ℎ𝐹

𝑎
+ 𝑚𝑔ℎ sin 𝜃) = 𝛽𝑎.

(7)

In the absence of control inputs 𝑇ec = 𝑇
𝑏
= 0, the

residual acceleration, 𝑎res, as a result of closed-throttle
torque, can be obtained as

𝑎res =
1

𝛽
[𝑇ect − 𝑅

𝑔
(𝑇
𝑏
+𝑀rr + ℎ𝐹

𝑎
+ 𝑚𝑔ℎ sin 𝜃)] .

(8)

Once the residual acceleration is calculated, the
switching law uses the following criteria to determine
whether engine or braking is required:

𝑎des ≥ 𝑎res ⇒ throttle control,

𝑎des < 𝑎res ⇒ brake control.
(9)

In order to prevent rapid chattering between the
engine control and brake control models, a small
hysteresis, ℎyst, is introduced. This results in the
following switching law:

𝑎des ≥ 𝑎res + ℎyst ⇒ throttle control,

𝑎des < 𝑎res − ℎyst ⇒ brake control.
(10)

Once the decision of the control mode is determined,
the corresponding controller converts the desired
acceleration into the appropriate input to the vehicle.

(b) Throttle Control: When engine control torque is
required, the throttle controller converts the com-
puted desired acceleration into a throttle command
that is required to achieve the acceleration. Figure 6
shows the block diagram for the throttle control law.
The controller first converts desired acceleration into
a desired engine net torque. The desired net torque
can be computed based on (1) with 𝑇

𝑏
= 0 as follows:

𝑇
𝑒 des = 𝛽𝑎des + 𝑅

𝑔
(𝑇
𝑏
+𝑀rr + ℎ𝐹

𝑎
+ 𝑚𝑔ℎ sin 𝜃) .

(11)

The computed desired torque is converted into a
throttle angle command by using an inverse engine
map for the vehicle based on the current engine speed,
𝑤
𝑒
. This is performed by interpolating the data from

an experimentally determined engine map lookup
table for the vehicle. Consider

𝑇
𝑒 des ⇒ inverse engine map ⇒ 𝜎

𝑓
. (12)

Due to the potential inaccuracies from the obtained
engine map, an additional proportional-integral (PI)
controller is integrated in the throttle controller to
ensure that the desired acceleration is achieved.

(c) Brake Control: Figure 7 shows the brake controller.
When braking control torque is required, the brake
controller converts the desired acceleration to an

10 Journal of Control Science and Engineering

Compute Compute
𝑎des

total brake torque desired master
cylinder pressure

𝑇𝑏
𝑃mcdes

Figure 7: Brake controller.

appropriate brake command. The controller first
computes the desired brake torque from the desired
acceleration by using (7) and with 𝑇ec = 0, which
results in the following equation:

𝑇ect − 𝑅
𝑔
(𝑇
𝑏 des +𝑀rr + ℎ𝐹

𝑎
+ 𝑚𝑔ℎ sin 𝜃) = 𝛽𝑎des.

(13)

The computed desired brake torque is then converted
to an equivalent master cylinder pressure which is
applied as the control input to the vehicle.Themaster
cylinder pressure, 𝑃mc, can be related to the brake
torque by the following equation:

𝑇
𝑏
= 𝐾
𝑏
(𝑃mc − 𝑃po) , (14)

where 𝐾
𝑏
is a brake gain, and 𝑃po is the push-out

pressure required to engage brake.

7. ACC Controller Software Design and
Implementation

This section describes the ACC controller software design
and implementation based on the proposed development
process. The initial ACC controller design is performed
in Matlab/Simulink. Subsequently, following the automated
software development process described in Section 4, the
Matlab/Simulinkmodel is imported into the ESMoL environ-
ment.

Figure 8 shows the logical software architecture depicting
the logical interconnections of ACC controller components.
In this model, each component represents a task. The
ACC controller has four tasks, Instrument Cluster Sense
(InstrClstrSens), Instrument Cluster Actuate (InstrClstrAct),
Upper Level Controller (UpperLevelController), and Low
Level Controller (LowLevelController).The InstrClstrSens and
InstrClstrAct correspond to the tasks for processing the
inputs and outputs of the ACC controller, respectively, while
UpperLevelController and LowLevelController tasks imple-
ment the functionality of the controller designed in Section 6.
Two tasks, InputHandler and OutputHandler, are used to
represent the sensing and actuation for the vehicle dynamics
developed in CarSim. In addition to the ACC controller, we
also introduced another task, RearViewMonitor, in order to
emulate the execution of other tasks on the ECUs.

In Figure 9, the network/platform configurations are
explicitly modeled in the ESMoL. Three ECUs are specified
and are denoted as ECU1, ECU2, and ECU3. The RT-Target
node represents the Target-PC or computing node where the
CarSim vehicle dynamics is executed. In order to represent

the sensors and actuators of a vehicle, two virtual I/O devices
are used. For the networked system, specific parameters
for TTEthernet need to be defined, such as hyperperiod,
bandwidth, time slot size, clock synchronization cycle, and
synchronization precision. These specified parameters are
used to generate the TTEthernet configuration script in
ESMoL.

Figure 10 shows the deployment model of ACC control
software. Dashed arrows represent assignment of compo-
nents to their respective processors, and solid lines repre-
sent assignment of message instances (component ports) to
communication channels (port objects) on the processor. We
manually deploy InstrClstrSens and InstrClstrAct on ECU1,
UpperLevelController on ECU2, and LowLevelController and
RearViewMonitor on ECU3.

In Figure 11, the timing and executionmodel for tasks and
message transfers of the ACC control system are shown. The
ACC controller runs at a period of 10ms. Since the TTEth-
ernet provides a synchronized time base for communication,
all themessage transfers are attachedwithTTExecInfo to indi-
cate time-triggered communication. For example, ULMExec
is used to specify the timing for the message transfer from
InstrClstrSens to UpperLevelController. We set the following
parameters: the execution period which is the hyperperiod
of the TTEthernet configuration, the desired offset which is
used to specify the initstart ns field of TT message in the
generated TTEthernet configuration script, and the worst
case duration which is the worst case communication time of
the TTEthernet. The TTEthernet driver on each ECU has a
scheduler that utilizes the synchronized time base, which can
invoke the tasks according to a static schedule. Thus, all the
tasks are executed according to the time-triggered paradigm.
We specify theTTExecInfo for each task. For instance,ULExec
specifies the execution time of UpperLevelController in the
10ms period. Before scheduling, we only need to provide the
execution period and the task’s worst case execution time,
which is determined empirically.

Using the Stage 1 interpreter as described in Section 4,
the ESMoL model is transformed to an ESMoL Abstract
model in the form of XML file. A Stage 2 interpreter is
used to generate the TTEthernet network configuration
for scheduling and task scheduling. In this case of task
scheduling, the critical path is simple as follows: InputHandler
→ InstrClstrSens →UpperLevelController → LowLevelCon-
troller → InstrClstrAct. After network/task scheduling, the
schedule information is updated into the ESMoL and
ESMoL Abstract models automatically. The integrated inter-
preter then uses the updated ESMoL Abstract model to
assemble all the codes for compilation.

8. Experimental Evaluation

In this section, we present the experimental results from the
testing of the ACC system on the experimental platform.
The experiments consist of two vehicles, a leading vehicle
and an ACC-equipped vehicle which we refer to as the host
vehicle. When the ACC feature is enabled and engaged,
the host vehicle starts in the velocity control mode and

Journal of Control Science and Engineering 11

Component Component Component

Component Component Component

Low

Ins

LowLow

Mes

Low

HigInp

Inp Inp

Sen

Sen Ins Act

Upp
Rea

Component

RearViewMonitoring

InputHandler InstrClstrAct

InstrClstrSens UpperLevelController LowLevelController

OutputHandler

Figure 8: Logical software architecture of ACC controller.

I/O device I/O device

OCh OChICh ICh
Node

Node

Node

Node

BCh

BCh

ECU2ECU1

ECU3

BCh
TTBus

BCh

Acq RT target Act

TTEthernet

O
O

I I

B B

B

B

Figure 9: Hardware platform representation of the experimental platform.

Table 2: Parameters for the ACC experiments.

Parameter Value
𝐾
1

0.5
𝐾
2

2
𝐾
3

0.7
Range of ACC radar 100m
𝑡gap 1.5 s
Δ 10m
𝜃 0 rad
Sampling period 0.01 s
𝑚 1650 kg

maintains a driver-set velocity, and when a leading vehicle is
detected, the ACC transitions into the spacing control mode
in order to maintain a desired distance based on the driver-
set time gap and host velocity as described in Section 6.
The parameters for the experiments are provided in Table 2.

The experimental setup is based on the system architecture
described in Section 5. The generated software components
for the ACC are distributed over three ECUs as described
in Section 4. In this experiment, the velocity of the leading
vehicle starts at an initial value of 60 km/h. The initial global
longitudinal positions of the leading vehicle and the host
vehicle are 130m and 0m, respectively, which means that the
host vehicle radar is initially out of range. The host vehicle
initially starts at an initial velocity of 65 km/hwith a driver set
target velocity of 80 km/h. We present four scenarios based
on the driving behavior of the leading vehicle. In addition,
we compare the results obtained during the control design
stage using Matlab/Simulink with those obtained from the
experimental platform.The modeled scenarios are described
as follows.

(1) Scenario 1: Velocity Control. In this scenario, there is
no leading vehicle in front of the host vehicle within
the range of the radar, and, hence, the host vehicle is
under the velocity control mode or the conventional

12 Journal of Control Science and Engineering

RearViewMonitoringInputHandler

InstrClstrActInstrClstrSens

UpperLevelController

LowLevelControllerOutputHandler

OChICh

“Node”

“Node”

“Node”

Component Component Component Component

Component

ComponentComponent

BCh

CarDynamics

“Node”

BCh

BCh

BCh Low

LowLow

Low

Mes

Sen Sen

Ins Act

InsInp

InpInp

Rea
Upp

Hig

ECU3

ECU1

ECU2

O
I

B
B

B

B

Figure 10: Platform deployment aspect of ACC controller.

Component Component Component

Component

ComponentComponentComponent

Sen

Sen Ins Ins Act

InpMExec

ICSExec

SensMExec

RMExec

RVExec

HLMExec

Inp Inp Inp
Rea
Upp Low

Low Low

Mes

Low

Hig

InstrClstrSens UpperLevelController

LowLevelController

RearViewMonitoring

OutputHandlerInstrClstrAct

IMExec
ActMExec

ICAExec OutMsgExec LLExec

OHExec LLMExec

IHExec

InpExec

ULExec

InputHandler

Figure 11: Timing/execution model of ACC controller.

cruise control. Figure 12 shows the results from
the control design phase using Matlab/Simulink and
the results from the execution on the experimental
platform, respectively. This scenario can be observed
between the time segment of 0–10 s.

(2) Scenario 2: Spacing Control. In this scenario, the radar
detects a slower leading vehicle and transitions to the

spacing control mode to control the distance between
the two vehicles to a driver-set time gap. The desired
gap distance is attained when the two vehicles travel
at the same velocity. This scenario can be observed
between the time segment 10–40 s in Figure 12.

(3) Scenario 3: Leading Vehicle Speeds Up. In this scenario,
while in spacing control mode, the leading vehicle

Journal of Control Science and Engineering 13

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

110

Time (s)

Ve
lo

ci
ty

 (K
m

/h
)

Host velocity (platform)
Host velocity (Simulink)
Lead velocity

(a) Velocity plots

0 20 40 60 80 100 120
Time (s)

D
ist

an
ce

 (m
)

Actual distance (platform)
Actual distance (Simulink)
Desired distance

0

10

20

30

40

50

60

70

80

90

100

110

(b) Gap distance plots

Figure 12: Gap Distance and Velocities.

begins to speed up. As a result, the velocity of the host
vehicle also increases in order to maintain a desired
velocity. This scenario can be observed between the
time segment 40–60 s in Figure 12. From the plots,
when the leading vehicle reaches and a maintains
a velocity of 85 km/h after 60 s, the host vehicle
maintains it is velocity at the driver-set velocity of
80 km/h, since the driver-set velocity is themaximum
achievable velocity of the host vehicle based on the
ACC algorithm. It can be seen from the distance plots
that the distance between the two vehicles increases
due to the difference in velocity of the vehicles.

(4) Scenario 4: Leading Vehicle Slows Down. In this sce-
nario, the leading vehicle slows down, and as a result,
the host vehicle also starts to decrease its velocity in
order to maintain the desired spacing between the
vehicles. This scenario can be observed between the
time segment 70–90 s in Figure 12. At approximately
105 s, the two vehicles starts to travel at the same
velocity again.

To highlight the importance of the experimental platform
for the early assessment for control software before actual
deployment on a real vehicle, we compared the results
obtained from running the scenarios in Matlab/Simulink to
those obtained from running the scenarios on experimental
platform. This comparison provides insight to potential
impacts of the deployment of the control software on a
prototype platform. Figure 13 shows the velocity plots from
the simulation in Matlab/Simulink from the control design
stage and the results obtained from deploying the resulting
software components on the platform. By zooming in on the
velocity plots between 25 and 45 s, we notice that compared

25 30 35 40 45
55

60

65

70

Time (s)

Ve
lo

ci
ty

 (K
m

/h
)

Host velocity (platform)
Host velocity (Simulink)
Lead velocity

Figure 13: Comparison of Simulink simulation results and results
from the experimental platform.

to the Simulink results, the results from the deployed soft-
ware exhibit some oscillations with an amplitude 0.6 km/h.
Although this is barely noticeable, it is important to note the
difference in the results which can be attributed to platform
effects as a result of deploying the controller on the platform.
This implementation limitation is due to the fact that the
computation on the RT-Target is not synchronized with the
communication.

14 Journal of Control Science and Engineering

9. Discussion and Conclusion

Our proposed framework addresses the complex interactions
that emerge as a result of integrating the various design
layers of CPS. The proposed approach provides an end-
to-end methodology and a toolchain for the development
of automotive control software. The toolchain is based on
simple and visually intuitive formal languages that restrict
component interactions in a well-defined manner in order
to ensure a “correct-by-construction” design of automotive
control software. We employ an experimental platform based
on the time-triggered paradigm in order to facilitate the
design, deployment, and hardware-in-the-loop simulation
of automotive control software. We applied the design
methodology to a case study on the adaptive cruise control
and presented the experimental results based on realistic
scenarios.

In regards to future work, we would like to study the
possible interactions between multiple automotive control
systems deployed together and formally define their interact-
ing behavior as well as the impact on the overall system.This
interacting behavior is important because there are possible
cases where these systems can have conflicting objectives,
and, hence, a clear understanding of their underlying inter-
action is crucial.

Conflict of Interests

The authors do not have any conflict of interests with any of
the commercial identities mentioned in this paper.

Acknowledgments

The authors would like to thank ShigeWang for his insightful
suggestions and discussions. This work is supported in part
by the National Science Foundation (CNS-1035655 and CCF-
0820088), US Army Research Office (ARO W911NF-10-1-
0005), and Lockheed Martin. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the US
Government.

References

[1] J. Mossinger, “An insight into the hardware and software
complexity of ecus in vehicles,” in Advances in Computing
and Information Technology, vol. 198 of Communications in
Computer and Information Science, pp. 99–106, 2011.

[2] J. Mossinger, “Software in automotive systems,” IEEE Software,
vol. 27, no. 2, pp. 92–94, 2010.

[3] A. Michailidis, U. Spieth, T. Ringler, B. Hedenetz, and S.
Kowalewski, “Test front loading in early stages of automotive
software development based on AUTOSAR,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition (DATE ’10), pp. 435–440, March 2010.

[4] A. Sangiovanni-Vincentelli, “Electronic-system design in the
automobile industry,” IEEE Micro, vol. 23, no. 3, pp. 8–18, 2003.

[5] J. A. Cook, I. V. Kolmanovsky, D. McNamara, E. C. Nelson,
and K. V. Prasad, “Control, computing and communications:
technologies for the twenty-first century model T,” Proceedings
of the IEEE, vol. 95, no. 2, pp. 334–355, 2007.

[6] A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded
system design for automotive applications,” Computer, vol. 40,
no. 10, pp. 42–51, 2007.

[7] T. Stahl and M. Volter, Model-Driven Software Development,
John Wiley and Sons, 2006.

[8] J. Porter, G.Hemingway,H.Nine et al., “The esmol language and
tools for high-confidence distributed control systems design—
part 1: language, framework, and analysis,” Tech. Rep. ISIS-10-
109, Vanderbilt University, 2010.

[9] A. Ledeczi, M. Maroti, A. Bakay et al., “The generic modeling
environment,” inProceedings of the IEEEWorkshop on Intelligent
Signal Processing (WISP ’01), May 2001.

[10] H. Kopetz and G. Bauer, “The time-triggered architecture,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[11] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
automotive communication systems,” Proceedings of the IEEE,
vol. 93, no. 6, pp. 1204–1222, 2005.

[12] M. Broy, S. Chakraborty, D. Goswami et al., “Cross-layer anal-
ysis, testing and verification of automotive control software,”
in Proceedings of the 9th ACM International Conference on
Embedded Software (EMSOFT ’11), pp. 263–272, 2011.

[13] U. Drolia, Z. Wang, Y. Pant, and R. Mangharam, “AutoPlug:
an automotive test-bed for electronic controller unit testing
and verification,” in Proceedings of the 14th IEEE International
Conference on Intelligent Transportation Systems (ITSC ’11), pp.
1187–1192, 2011.

[14] W. Hu, M. Wang, and Y. Lin, “On the software-based devel-
opment and verification of automotive control systems,” in
Proceedings of the 33rd IEEE Annual Conference of the Industrial
Electronics Society (IECON ’07), pp. 857–862, 2007.

[15] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C.
Shelton, andC.Martin, “Validating automotive control software
using instrumentation-based verification,” in Proceedings of
the 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’09), pp. 15–25, November 2009.

[16] J. C. Gerdes and J. K. Hedrick, “Vehicle speed and spacing
control via coordinated throttle and brake actuation,” Control
Engineering Practice, vol. 5, no. 11, pp. 1607–1614, 1997.

[17] J. K. Hedrick and P. P. Yip, “Multiple sliding surface control: the-
ory and application,” Journal of Dynamic Systems,Measurement,
and Control, vol. 122, no. 4, pp. 586–593, 2000.

[18] P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise
control,” IEEE Transactions on Vehicular Technology, vol. 42, no.
4, pp. 657–672, 1993.

[19] K. Yi, S. Lee, and Y. D. Kwon, “An investigation of intelligent
cruise control laws for passenger vehicles,” Journal of Automo-
bile Engineering, vol. 215, no. 2, pp. 159–169, 2001.

[20] P. S. Fancher, H. Peng, and Z. Bareket, “Comparative analyses of
three types of headway control systems for heavy commercial
vehicles,” Vehicle System Dynamics, vol. 25, no. 1, pp. 139–151,
1996.

[21] B. A. Güvenç and E. Kural, “Adaptive cruise control simulator: a
low-cost, multiple-driver-in-the-loop simulator,” IEEE Control
Systems Magazine, vol. 26, no. 3, pp. 42–55, 2006.

[22] K. Breuer and M. Weilkes, “A versatile test vehicle for acc-
systems and components,” Tech. Rep., 1999.

Journal of Control Science and Engineering 15

[23] A. R. Girard, S. Spry, and J. K. Hedrick, “Intelligent cruise-
control applications: real-time, embedded hybrid control soft-
ware,” IEEE Robotics and Automation Magazine, vol. 12, no. 1,
pp. 22–28, 2005.

[24] E. Armengaud, A. Tengg, M. Driussi, M. Karner, C. Steger,
and R. Weiß, “Automotive software architecture: migration
challenges from an event-triggered to a time-triggered com-
munication scheme,” in Proceedings of the 7th Workshop on
Intelligent Solutions in Embedded Systems (WISES ’09), pp. 95–
103, June 2009.

[25] J. Sztipanovits, X. Koutsoukos, G. Karsai et al., “Toward a
science of cyber-physical system integration,” Proceedings of the
IEEE, vol. 100, no. 1, pp. 29–44, 2012.

[26] J. Eker, J. W. Janneck, E. A. Lee et al., “Taming heterogeneity—
the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp.
127–143, 2003.

[27] MathWorks—real-time workshop, http://www.mathworks
.com/products/rtw/.

[28] B. Chou and T. Erkkinen, “Converting models from floating
point to fixed point for production code generation,” Matlab
Digest, November 2008.

[29] E. Magyari, A. Bakay, A. Lang et al., “Udm: an infrastructure
for implementing domain-specific modeling languages,” in
Proceedings of the 3rd OOPSLA Workshop on Domain-Specific
Modeling, Anaheim, Calif, USA, 2003.

[30] Ttethernet, http://www.tttech.com/en/products/ttethernet/.
[31] O. Sinnen, Task Scheduling for Parallel Systems, Wiley-

Interscience, New York, NY, USA, 2007.
[32] Carsim, http://www.carsim.com/.
[33] National Instruments, http://www.ni.com/.

Submit your manuscripts at
http://www.hindawi.com

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013
Part I

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Signal Processing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mechanical
Engineering

Advances in

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Sensor Networks

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

ISRN
Robotics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Electronics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Active and Passive
Electronic Components

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Civil Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Journal of 

Sensors

