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Abstract—The design of wireless sensor networks for detection
applications is a challenging task. On one hand, classical work on
decentralized detection does not consider practical wireless sensor
networks. On the other hand, practical sensor network design
approaches that treat the signal processing and communication
aspects of the sensor network separately result in suboptimal de-
tection performance because network resources are not allocated
efficiently. In this work, we attempt to cross the gap between
theoretical decentralized detection work and practical sensor
network implementations. We consider a cross-layer approach,
where the quality of information, channel state information, and
residual energy information are included in the design process of
tree-topology sensor networks. The design objective is to specify
which sensors should contribute to a given detection task, and to
calculate the relevant communication parameters. We compare
two design schemes: (1) direct transmission, where raw data are
transmitted to the fusion center without compression, and (2) in-
network processing, where data is quantized before transmission.
For both schemes, we design the optimal transmission control
policy that coordinates the communication between sensor nodes
and the fusion center. We show the performance improvement
for the proposed design schemes over the classical decoupled and
maximum throughput design approaches.

Keywords: Decentralized detection, networked information
fusion, wireless sensor network, transmission control pol-
icy, optimization.

I. INTRODUCTION

The deployment of Wireless Sensor Networks (WSNs)
in decentralized detection applications is motivated by the
availability of low cost sensors, combined with the advances
in communication network technologies. In Decentralized De-
tection (DD), multiple sensors collaborate to distinguish be-
tween two or more hypotheses. In many practical applications,
sensors are distributed geographically and connected in a tree
configuration to sample the environment, pre-process the data,
and communicate the information to the fusion center for final
decision-making.
The deployment of WSNs in detection applications brings

new challenges, in addition to the design of signal processing
algorithms at the application layer that has been extensively
addressed, e.g. [1], [2]. Protocols for communication layers
have to be co-designed to optimize the detection performance.
The layered approach commonly adopted to design wireless
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networks may not be appropriate for detection applications,
as it neither provides the optimal resource allocation nor
exploits the application domain knowledge. A cross-layer
design approach is desired for efficient implementation of
WSNs in decentralized detection applications.
The cross-layer design approach has been recently explored

for the design of Media Access Control (MAC) protocols
for parallel topology (direct transmission) sensor networks in
detection applications. Decision fusion over slotted ALOHA
MAC employing a collision resolution algorithm is studied
in [3]. A thorough investigation of the design of MAC trans-
mission policies to minimize the error probability has been
considered in [4], where sensors are assumed non-identical,
and the MAC policy is assumed stochastic. The cross-layer
approach is also considered in [5] where an integrated model
for the physical channel and the queuing behavior for sensors
is developed. For tree networks, energy-efficient routing for
signal detection in WSNs is considered in [6], where the
objective is to find the optimal route for local data from a
target location to the fusion center, in order to maximize the
detection performance or to minimize the energy consumption.
Cooperative routing for distributed detection in large sensor
networks is studied in [7] using a link metric that characterizes
the detection error exponent. Optimal communication rate
allocation for multihop sensor networks deployed for DD is
studied in [8], where no medium access contention is assumed.
For a survey on the interplay between signal processing and
networking in sensor networks, see [9] and the references
therein.
Our work is different in two main aspects: (1) we integrate

the physical layer, MAC layer, and the detection application
layer in one unified system model, and (2) we include the
three quality measures that were previously treated separately,
namely the Quality of Information (QoI), Channel State Infor-
mation (CSI), and Residual Energy Information (REI) for each
sensor. We considered the Transmission Control Policy (TCP)
design for parallel topology sensor networks in [10]. In this pa-
per, we design the optimal TCP that coordinates the communi-
cation between sensor nodes connected in a tree configuration.
Our approach formulates the detection performance measure
as a function of the parameters of the integrated system model.
We then solve a constrained optimization problem to obtain the
TCP variables that maximize the detection performance. We
have the following design assumptions: (1)Minimal movement



of sensor nodes. This assumption allows us to consider the
large scale fading component only for the physical channel,
hence simplifying the analysis. (2) Slotted ALOHA MAC. The
traditional assumption of a dedicated orthogonal channel be-
tween each sensor node and its parent node may not be feasible
in practice. Slotted ALOHA multiaccess scheme, on the other
hand, has been successfully deployed in practice. We use a
simplified version of the slotted ALOHA protocol, ignoring
the protocol specifics, to keep the analysis tractable. (3) Syn-
chronization. We assume that sensors are synchronized, which
allows us to model the network as a discrete time system,
hence simplifying the analysis. (4) Transmission scheme. We
assume two transmission schemes, direct transmission where
raw observations are sent directly to the fusion center without
local processing, and in-network processing where information
is compressed and quantized locally before transmission.
We summarize the contributions of our work as follows:

(1) Integrated model for the detection system. The model
captures the physical channel, MAC protocol, and the detec-
tion application models, and their interactions. The model also
incorporates the QoI, CSI, and REI measures for each sensor.
(2) Design of a complete transmission control policy. We
design the TCP for the tree topology for a finite number
of sensors, rather than asymptotically. The TCP variables
include retransmission probabilities and communication rates
for all sensor nodes. (3) Enhanced detection performance.
We show that the proposed design approach has a significant
improvement in the detection performance over the classical
decoupled and maximum throughput approaches. (4) Com-
parison between direct transmission and in-network pro-
cessing schemes. We study the design problem when local
observations are quantized, and show the conditions under
which the in-network processing scheme outperforms the
direct transmission scheme.
The rest of the paper is organized as follows: Section II

presents the problem formulation. Section III explains the
system model. Section IV presents the solution of the opti-
mization problem to obtain the optimal TCP design. Section
V presents the performance evaluation for the proposed design,
in comparison to two other classical design approaches, using
a numerical example. The work is concluded in Section VI.

II. PROBLEM FORMULATION

Figure 1 illustrates the detection system architecture, where
a set of N wireless sensors, and a fusion center denoted by
FC, are arranged in a tree structure, and collaborate to detect
the phenomenon of interest. We assume the tree structure is
pre-specified, possibly based on sensor locations. Initially, the
fusion center broadcasts a query message containing the loca-
tion of the phenomenon to be detected, soliciting information
from different sensors. Each sensor responds to its parent
with the following information: (1) sensor location, (2) the
average signal to noise ratio of the measured phenomenon at
the sensor location, and (3) the energy the sensor allocates to
the detection process .
Two approaches are possible to calculate the optimal trans-

mission control policy. The global approach, where the fusion
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Figure 1. Detection architecture for tree-topology WSN.

center receives the information from all sensors (through their
respective parents), calculates the optimal transmission control
policy for each sensor by solving a constrained nonlinear op-
timization problem, and transmits the values of the TCP vari-
ables back to the relevant sensors. This global approach may
not be feasible in large sensor networks as it is not scalable
with the network size. In addition, the design parameters have
to be propagated back from the fusion center to all network
nodes. A more practical approach is the local approach, where
each parent node solves a smaller local optimization problem
to specify the locally optimal TCP variables for its children.
Some sensors may not contribute to the detection process,

due to either low quality of information, low channel quality,
or not enough energy to transmit to the parent node (e.g.
not enough battery power or long distance to the parent node
combined with bad channel quality). The fusion center (global
approach) or the parent node (local approach) transmits the
TCP variables only to the sensors which are specified by the
optimization algorithm to be reliable to contribute to the de-
tection task. The resulting values of the TCP variables remain
valid for the given location as long as the quality measures
for each sensor did not change from the last execution of the
optimization algorithm.
After each sensor receives the optimal values of the TCP

variables, the detection process proceeds as follows: The
fusion center broadcasts a message to initiate a detection
cycle at the local wireless sensors. Each local sensor samples
the environment by collecting a number of observations, and
then forms a data packet and communicates its message to
the parent node over a shared wireless link using the slotted
ALOHA multiaccess control scheme. Parent nodes relay the
information of the child nodes, in addition to their own
information, through the tree network until reaching the fusion
center. Finally, the fusion center makes a final decision after a
fixed amount of time representing the maximum allowed delay
for detection.
In this paper, we consider the two transmission schemes.

(1) Direct transmission, where each sensor transmits its raw
observations without quantization to the fusion center. Obvi-
ously, quantization is necessary for digital communication, but
the number of quantization bits is assumed large in this case
so that the quantization effect is negligible. Transmission of



raw observations guarantees no loss of detection performance
at the fusion center. On the down side, observations build-
up and accumulate through the tree network. Therefore, the
communication rate at relay nodes up in the tree hierarchy
has to increase to cope with the volume of data coming from
child nodes. This causes higher probability of information
loss due to the high communication rate. (2) In-network
processing, where information is compressed by calculating its
Log Likelihood Ratio (LLR), then the LLR is quantized before
transmission using a limited number of quantization bits.
This scheme reduces the communication rate and increases
the probability of successful transmission, but suffers from
irrecoverable loss of information caused by the in-network
processing. We assume uniform quantization to simplify the
analysis, as the problem of finding the optimal quantization
thresholds for detection applications have proved to be very
difficult, even with small network sizes [11].

III. SYSTEM MODEL

The detection scheme described above suggests a layered
approach to system modeling, as depicted in Figure 2. The
physical layer represents the wireless channel model. The
Media Access Control (MAC) layer represents the slotted
ALOHA protocol model. Finally, the application layer rep-
resents the sensing model, and defines the model of the
observations obtained by local sensors.

A. Wireless Channel Model

We present a model for the wireless channel between each
parent-child pair in the tree detection network. We focus on
the case where the sensor nodes and the fusion center have
minimal movement and the environment changes slowly. Since
detection applications typically have low communication rate
requirements, the coherence time of the wireless channel could
be considered much larger than the transmission frame length.
Accordingly, only the slow fading component of the wireless
channel is considered. Figure 3 shows the fading channel
model, where w(t) is an additive white Gaussian noise with
power spectral density N0/2. The term m(d) represents the
mean path attenuation for a sensor node at a distance d from
its parent, where the dependence on time t is dropped since
slow fading is considered. We use the Hata path-loss model
for the mean path attenuation, where the total dB power loss
is given by [12]:

PL = 20 log10

(
4πd0
λ

)
+ 10ρc log10(d/d0)︸ ︷︷ ︸
μc

+Xσc
(1)

where d0 is a reference distance corresponding to a point
located in the far field of the transmit antenna, λ is the
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Figure 2. A layered approach to detection system modeling.
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Figure 3. Block diagram for the wireless communication channel.

wavelength of the propagating signal, ρc is the path loss
exponent, d is the distance between the transmitting and
receiving antennas (i.e. child and parent nodes), and Xσc

is
a zero-mean Gaussian random variable with variance σ2

c . The
power loss (in dB) is therefore a Gaussian random variable
with mean μc and variance σ2

c , i.e. PL ∼ N (μc, σ
2
c ).

The wireless channel represents an unreliable bit pipe for
the data link layer, with instantaneous Shannon capacity
C = W log2

(
1 + Pr

N0W

)
bps, where W is the channel

bandwidth and Pr is the signal power received by the parent
node. Using Shannon coding theorem, the data link layer could
achieve arbitrary communication rates R up to the channel
capacity using appropriate coding schemes. Given the state of
the art coding schemes that approach the Shannon capacity,
we can assume that the fusion center can perform error-free
decoding for any transmission with bit rate R < C. Therefore,
the channel is considered “ON” when R < C and “OFF”
otherwise, giving rise to the two-state channel model akin
to the one presented in [5]. Noting that Pr = Pt10

−PL/10,
where Pt is the average signal power transmitted by the local
sensor, and using the result that PL ∼ N (μc, σ

2
c ), we get the

probability for the channel being “ON” during a transmission:

λc = Φ

[
1

σc

(
10 log

Pt

N0W (2
R
W − 1)

− μc

)]
(2)

where Φ(.) is the cumulative distribution function for the stan-
dard normal PDF. We note that the Channel State Information
(CSI) relevant to our model is represented by the statistics
σc, μc, and N0.

B. Media Access Control Protocol Model

We assume a slotted ALOHA multi-access communication
protocol between each parent node and its child nodes, where
each packet requires one time slot for the transmission, all
time slots have the same length, and all transmitters are
synchronized. We consider a simplified version of the MAC
protocol, where collision detection, handshaking, as well as
other protocol specifics are ignored to simplify the analysis.
Furthermore, we assume that the sub-trees composed of each
parent and its immediate children do not interfere with each
other. This could be achieved in practice by using different
wireless channels for transmission, or it may be as a result
of the physical separation between sub-trees such that sub-
tree transmissions get attenuated before interfering with other
transmissions.
The detection cycle, demonstrated in Figure 4, has length

τ , which defines the delay for detection. The detection cycle
is divided into a number of transmission slots Li, for nodes
at the same depth i of the tree, and sharing a common parent.
The relationship between the number of slots for consecutive
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Figure 4. Detection cycle for the tree network.

depths is given by Li+1 = miLi, where mi is a positive
integer. In the following discussion, we designate the set of
all child nodes for sensor k by Ck, and the set of all siblings
(excluding sensor k) by Bk.
Direct transmission. At the beginning of every time slot,

each local sensor k collects a number of observations nk

and forms an information packet for transmission over the
wireless channel. The sensor then attempts to transmit to
its parent with probability qk, transmission power Pk , and
communication rate Rk. The sensor attempts transmission at
each time slot, despite the status of its previous transmission
attempts. The final decision is taken at the fusion center
using the information received during the detection cycle. The
process repeats for every detection request initiated by the
fusion center.
The communication rate for sensor k at tree depth i could

be expressed with the aid of Figure 5 as follows:

Rk =
bLink

τ
+

1

mi

∑
v∈Ck

ZvRv,
∑
v∈Ck

Zv = mi (3)

where b is the number of encoding bits for each observation,
which is fixed, and Zv is the number of times the child sensor
v successfully transmitted during the mi time slots. The first
term in (3) represents the information collected by the sensor
node, and vanishes if the node functions as a relay node for
its child nodes. The second term represents the information
received from the child nodes and vanishes for leaf nodes.
We note here that the design variable is nk, the number of
observations collected at each time slot by sensor k.
We note that the communication rate of intermediate nodes

is a random variable, being dependent on the information
received from its child nodes. Accurate formulation for this
problem is hard. Therefore, to keep the analysis tractable, we
resort to a suboptimal solution, where the communication rate
for each node is represented by its expected value:

R̄k =
bLink

τ
+

∑
v∈Ck

λvR̄v (4)

In-Network processing. After each sensor k collects its nk

observations in slot i, it calculates its Log Likelihood Ratio
(LLR):

zk =
μk

σk2

s

nk∑
j=1

x[j, i] (5)

where x is a Gaussian random variable (as explained in Section
III-D). There is no loss of optimality in this process, since
the LLR is optimal at the fusion center as observations are

independent across sensors [13]. The LLR is then quantized
using bk bits, to obtain the discrete random variable yk:

yk = Q(zk; bk) (6)

This quantized version is transmitted to the parent node. Each
sensor node forwards the quantized LLR of its descendants
without further quantization, in addition to its own quantized
LLR, to the next parent node. The process repeats until all
observations arrive at the fusion center. Similar to (4), the
communication rate for each sensor is given by:

R̄k =
bkLi

τ
+

∑
v∈Ck

λvR̄v (7)

We note here that the number of quantization bits is the design
variable, and it may vary for each sensor. The decision on how
many quantization bits will be used is dependent on the sensor
quality measures. A large number of quantization bits reduces
the loss in the signal to noise ratio but increases the probability
of packet loss.
Next, we calculate the overall probability of a successful

packet transmission, including the wireless channel effect.
At any given time slot, the probability of a single packet
transmission by sensor k is given by qk

∏
v∈Bk

(1 − qv).
Further, this packet will be successfully received by the parent
node if the state of the physical channel between the child
node k and the parent node is “ON” during this time slot.
Therefore, using (2), the total probability of a successful
packet transmission by sensor k is given by:

λk = qk

[ ∏
v∈Bk

(1− qv)

]
Φ

[
10

σk
c

log
P k
t

N0W (2
R̄k
W − 1)

−
μk
c

σk
c

]
(8)

C. Energy Model

To formulate the energy model for each sensor, we first
introduce the definition for the network lifetime. The network
lifetime L could be defined as the average time span from
the deployment to the instant when the network can no longer
perform the task [9]. The network lifetime could be expressed
as:

L =
E0 − Ew

frEr
(9)

where E0 =
∑N

i=1 e
0
i is the total initial energy in all sensors

at the time of deployment, Ew =
∑N

i=1 e
w
i is the total energy

remaining in sensor nodes when the network cannot perform
the assigned task, fr is the average sensor reporting rate
defined here as the number of detection cycles per unit time,

j
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Figure 5. Communication rate calculation for node k at tree depth i.



and Er =
∑N

i=1 e
r
i is the expected energy consumed by all

sensors in one detection cycle. The total energy remaining
is defined for our detection problem as the energy required
to achieve a minimum pre-specified value for the detection
performance measure.
In this work, we resort to a simple energy formulation.

First, we assume that ewi is the energy remaining in the
sensor battery when the sensor is not capable of operating its
electronic circuits for computations and communication, which
is fixed and known for each sensor. Second, we assume that
the reporting energy for each sensor eri is a fixed percentage of
its net useful energy at the time of sensor deployment. Using
these two assumptions, we get the following expression for
the energy consumed by each sensor k in one detection cycle:

erk =
e0k − ewk
frL

(10)

which could be calculated for any desired network lifetime
L. The total energy consumed by each sensor is divided
between transmission and reception (except for leaf nodes).
By assuming that the energy consumed in the reception
process is proportional to the detection cycle lifetime with
proportionality constant α, and by noting that the expected
number of transmissions by sensor k during a detection cycle
is Liqk, we get:

P k
t =

(erk/τ)− α

qk
=

1

qk
(pk − α) (11)

where pk is the average transmission power over one detection
cycle, which summarizes the Residual Energy Information
(REI) for each sensor. Using (11) in (8), we get:

λk = qk

[ ∏
v∈Bk

(1− qv)

]
Φ

[
ak −

(
10

σk
c

)
log qk

(
2

R̄k
W − 1

)]
(12)

where ak = 1
σk
c

(
10 log pk−α

N0W
− μk

c

)
. We note that α < pk =

erk/τ for the sensor to be able to transmit the information. In
addition, α = 0 for leaf nodes.
This energy formulation simplifies the analysis, as the

reporting energy er for each sensor is preallocated. In general,
however, we can include the energy allocation problem in
our formulation, i.e. finding optimal er values for all sensors
that maximize the detection performance while guaranteeing
a minimum network lifetime.

D. Sensing Model

We consider a detection application where a set of sensors
are randomly placed in a surveillance area to detect the
presence of an object. Sensors have fixed positions, which
could be estimated using different localization algorithms. The
surveillance area is divided into a number of resolution cells
that are probed by local sensors upon receiving a command
from the fusion center. We focus our work on detection using
signal amplitude measurements. Therefore, when there is an
object at a specific resolution cell, the observation at sensor

k, located at dk distance from the object, could be expressed
as:

xk =
ε

d
η/2
k

+ wk (13)

where ε is the amplitude of the emitted signal at the object, η
is a known attenuation coefficient, typically between 2 and 4,
and wk is an additive white Gaussian noise with zero mean
and variance σk2

s .
The detection problem could be defined as the following

binary hypothesis testing problem, for each time slot i:

H0 : xk[j, i] = wk[j, i] j = 1, 2, . . . , nk

H1 : xk[j, i] = μk + wk[j, i] j = 1, 2, . . . , nk (14)

where μk = ε/d
η/2
k , and nk is the number of observations

obtained by sensor k at each time slot. We note that noise
samples are independent across sensors, i.e., the observations
at local sensors are independent across time and space, but not
necessarily identically distributed since some sensors may be
closer to the measured phenomenon, and noise variances are
assumed unequal.
Based on the given sensing model, we next derive the

objective function for the two transmission schemes.
Direct transmission. We present the following two propo-

sitions, without proof, due to space limitations. The detailed
proofs can be found in [14].
Proposition 1: The optimal test statistic at the fusion center

for the slotted ALOHA tree network with depth l and direct
transmission scheme is given by (15).
The expression in (15) is simply a weighted sum of the

observations received at the fusion center. The complexity of
the equation comes from the fact that successful reception of
the observations of child nodes at the fusion center depends
on the success of the transmission of all parent nodes up to
the fusion center.
We adopt the deflection coefficient as a detection perfor-

mance measure, defined as [15]:

d2 =
(E[V ;H1]− E[V ;H0])

2

var[V ;H0]
(18)

which provides more tractable results in our study.
Proposition 2: The deflection coefficient for the detector in

(15) is given by (16), where cv = (μv/σv
s )

2.
We note that the quantity nvcv is a measure of the Quality
of Information (QoI) for each sensor. Using (4) in (16), we
obtain our objective function in (17).
In-Network Processing. We first choose the test statistic

in (22) to be implemented at the fusion center. This test
statistic is sub-optimal. To obtain the optimal one, we need
to take the LLR for the discrete random variables Yi in (6)
at the fusion center. Unfortunately, this problem does not
have a closed form solution, and the detector performance
is usually approximated using different statistical techniques
[16]. We resort to the suboptimal statistic in (22), as it is
similar to the one in (15) for the direct observation system,
which facilitates the performance comparison. Now, to find
the deflection coefficient for the statistic in (22), we need
to calculate the expectation of V under both H0 and H1, in



V =

L1∑
i1=1

∑
v1∈Cf

nv1∑
j1=1

rv1 [i1]

⎡
⎢⎣
(

μv1

σ
v1

2

s

)
xv1 [j1, i1] + . . . +

ml−1∑
il=1

∑
vl∈Cvl−1

nvl∑
jl=1

rvl [i1 . . . il]

(
μvl

σ
vl

2

s

)
xvl

[jl, ili2 . . . il]

⎤
⎥⎦ (15)

D2 = L1

∑
v1∈Cf

λv1

⎡
⎢⎣nv1cv1 + m1

∑
v2∈Cv1

λv2

⎡
⎢⎣nv2cv2 + . . . + md−1

∑
vl∈Cvl−1

λvl
nvl

cvl

⎤
⎥⎦ . . .

⎤
⎥⎦ (16)

D2 =
τ

b

∑
v1∈Cf

λv1

⎡
⎢⎣R̄v1cv1 +

∑
v2∈Cv1

λv2

⎡
⎢⎣R̄v2(cv2 − cv1) +

∑
v3∈Cv2

λv3

⎡
⎢⎣R̄v3(cv3 − cv2) + . . . +

∑
vl∈Cvl−1

λvl
R̄vl

(cvl − cvl−1
)

⎤
⎥⎦
⎤
⎥⎦ . . .

⎤
⎥⎦ (17)

addition to its variance under H0. We first need to define the
quantization function in (6). We adopt the following quantizer:

Q(z) = Δ

(⌊ z

Δ

⌋
+

1

2

)
(19)

where Δ is the quantizer step size. We have the following
proposition.
Proposition 3: The deflection coefficient of the test statistic

in (22), with the quantizer in (19), is given by (23), where:

δ =
Δ

π

∞∑
k=1

1

k
sin

[
2πkn

Δ

(
μ

σs

)2
]
e−2(πk

Δ )
2
n( μ

σs
)
2

(20)

and δ′ is given by (24).
The expression for the deflection coefficient in (23) is not

amenable to optimization. However, we note that both the
mean and variance degrade exponentially with the quantizer
step size Δ. SinceΔ is inversely proportional to the number of
quantization bits, bk, we can approximate the signal to noise
ratio for each sensor k after quantization by:

S = nk

(
μk

σk2

)2 (
1− 2−βbk

)
(21)

where β specifies the decay rate, and depends on the range
of the quantizer as well as the quantizer design. Now, we use
the degraded SNR in (21) to define our approximate deflection
coefficient as in (25), where c′v = (μv/σv

s )
2 (

1− 2−βbv
)

IV. TCP DESIGN FOR OPTIMAL DETECTION

Direct transmission. The optimization problem could be
summarized as follows:

max
q,R̄

τ

b

∑
v1∈Cf

λv1

⎡
⎣R̄v1cv1 +

∑
v2∈Cv1

λv2

⎡
⎣R̄v2(cv2 − cv1) +

∑
v2∈Cv1

. . . +
∑

vl∈Cvl−1

λvlR̄vl(cvl − cvl−1
)

⎤
⎦ . . .

⎤
⎦

s.t. 0 ≤ qi ≤ 1, R̄i ≥
∑
v∈Ci

λvR̄v i = 1 : N (27)

where:

λv = qv

[ ∏
k∈Bv

(1 − qk)

]
Φ

[
av −

(
10

σv
c

)
log qv

(
2

R̄v
W − 1

)]

av =
1

σv
c

(
10 log

pv − α

N0W
− μv

c

)
, cv =

(
μv

σv
s

)2

(28)

The last constraint guarantees that intermediate nodes can
at least relay the observations of their children nodes. This
constraint reduces to R̄i ≥ 0 for leaf nodes. Although this
problem could be solved by existing algorithms (e.g. interior
point methods) for a local maximum, we note that the objective
function in (17) gets more complicated as the tree depth
increases. Adding the fact that all design variables have to be
propagated back to tree nodes, a more practical approach is
clearly needed. If we look at the objective function expression
in (17), we note that it reflects the tree hierarchy, i.e. the last
term in the expression represents the contribution of the leaf
nodes, preceded by the contribution of the parents of the leaf
nodes, and so on, until reaching the sensor nodes at the top
level of the tree (depth=1). This could be shown by expressing
the objective function using the following recursive equation:

D2 =
τ

b
JFC , Jk =

∑
v∈Ck

λv

[
R̄v(cv − ck) + Jv

]
(29)

where Jv = 0 for leaf nodes and ck = 0 for the fusion
center node. This structure of the objective function suggests
a local optimization approach for the problem, where we start
by optimizing Jv for sensors at depth l − 1 and continue the
local optimization recursively using (29), until reaching the
fusion center. This approach is practical since the solution of
each local optimization problem could be carried out locally
at each parent node. The solution approach is illustrated in
Figure 6. By substituting (12) in (29), we can express the
local optimization problem at parent node k as follows:

max
q,R̄

∑
v∈Ck

qv

[ ∏
i∈Bv

(1− qi)

] [
R̄v(cv − ck) + Jv

]
×

Φ

[
av −

(
10

σv
c

)
log qv

(
2

R̄v
W − 1

)]
s.t. 0 ≤ qv ≤ 1, R̄v ≥

∑
u∈Cv

λuR̄u = rv (30)

We note that Jv and rv are fixed values, obtained from
solving the local optimization problems at lower levels in the
hierarchy. The notation for the local optimization problem is
illustrated in Figure 7.
Let the number of child nodes for sensor k be Nk, and

denote the decision variables by:

x =
[
q1 q2 . . . qNk

R̄1 R̄2 . . . R̄Nk

]
(31)

where x ∈ R
2Nk , and the objective function by J(x), then

the optimization problem could be rewritten as:

min
x

−J(x) subject to Ax ≥ b (32)



V =

L1∑
i1=1

∑
v1∈Cf

rv1 [i1]

⎡
⎢⎣yv1 +

m1∑
i2=1

∑
v2∈Cv1

rv2 [i1i2]

⎡
⎢⎣yv2 [j2, i1i2] + . . . +
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∑
vl∈Cvl−1

rvl [i1 . . . il]yvl
[jl, ili2 . . . il]

⎤
⎥⎦ . . .

⎤
⎥⎦ (22)
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λv1
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nv1
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s

)2
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] (23)
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1
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(
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D2 = L1

∑
v1∈Cf

λv1

⎡
⎢⎣nv1c

′

v1
+ m1

∑
v2∈Cv1

λv2

⎡
⎢⎣nv2c

′

v2
+ . . . + md−1

∑
vl∈Cvl−1

λvl
nvl

c′vl

⎤
⎥⎦ . . .

⎤
⎥⎦ (25)

D2 =
τ

b

∑
v1∈Cf

λv1

⎡
⎢⎣uv1c

′

v1
+

∑
v2∈Cv1

λv2

⎡
⎢⎣uv2c

′

v2
+

∑
v3∈Cv2

λv3

⎡
⎢⎣uv3c

′

v3
+
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. . . +
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uvl
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⎤
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⎤
⎥⎦ . . .

⎤
⎥⎦ (26)

J10 J11 J12

JFC

J14J13

FC

13 14

10 11 12

1 2 . . . 3 4 5 . . . 6 . . . 7 8 . . . 9

Figure 6. Hierarchical optimization for the TCP design problem.

where

A =

[
I −I 0

0 0 I

]T
, b =

[
0 −1 r

]T
(33)

I is the identity matrix, 0(1) is the vector/matrix of
all zeros (ones) with appropriate dimensions, and r =[
r1 r2 . . . rNk

]T
. Although the objective function is not

convex, we note that the inequality constraints are linear.
Therefore, the Karush-Kuhn-Tucker (KKT) conditions are
necessary conditions for a local maximizer of the objective
function [17]. We present the following proposition without
proof, due to space limitations. The result is derived by solving
the KKT conditions.
Proposition 4: The maximum value of the objective func-

tion in (30) occurs either when one sensor transmits with
probability one and all other sensors remain silent, or at a
stationary point of the objective function, i.e. at x

∗ where
∇J(x∗) = 0.

k

v v . . . v

u u . . . u

Jk
Rv, qv [bv, qv]

Jv, rv [Jv, gv]

Figure 7. Notation for the local optimization problem. In-network processing
parameters are shown between brackets.

Since we may have multiple stationary points in the inte-
rior of the objective function domain, the proposition does
not guarantee obtaining the global maximum. However, the
proposition is still useful for the following reasons: 1) it avoids
the case where the optimization algorithm may terminate at
the local maximum qi = 1, qj = 0, while a better local
maximum maybe at one of the stationary points, and 2) it
provides information about the choice of the initial point for
the optimization algorithm, where initial points near the corner
points qi = 1, qj = 0 have to be avoided.
In-Network Processing. We note that the objective function

in (26) has the same recursive structure as the direct transmis-
sion design. Accordingly, we adopt the same local approach
presented for the direct transmission scheme to solve for the
optimal design variables. The local optimization problem at
parent node k could be expressed as 1:

max
q,b

∑
v∈Ck

qv

[∏
i∈Bv

(1− qi)

][
uv

(
μv

σv
s

)2 (
1− 2−βbv

)
+ Jv

]
×

Φ

[
av −

(
10

σv
c

)
log qv

(
2[bv(L/τ)+gv]/W − 1

)]
s.t. 0 ≤ qv ≤ 1, bv ∈ N (34)

where uv = R̄v−rv, and rv is the average communication rate
for the child nodes Cv. We note that Jv and gv are fixed values,
obtained from solving the local optimization problems at lower
levels in the hierarchy. The notation for the local optimization
problem with in-network processing is illustrated in Figure 7.

V. PERFORMANCE EVALUATION

We compare our design approach to the classical decoupled
and maximum throughput design approaches. The optimiza-
tion for the classical designs is carried out using the same
local approach pursued for the proposed design.

A. Decoupled design

In this approach, each layer is designed separately. In the
conventional slotted ALOHA, the MAC sublayer is designed

1Details are omitted due to space limitation



to minimize the probability of collision, without regard to the
QoI and CSI for each node. For the sub-tree composed of
node k and the set of its immediate children, Ck, minimum
probability of collision occurs at qv = 1/Nk, where Nk =
|Ck|, and consequently P k

t = (pk−α)/Nk. The physical layer
is designed to guarantee a minimum probability of successful
packet transmission, λv . Using (2), we obtain:

R̄i = W log2

(
1 + 10[0.1σ

i
c(ai−Φ−1[λv ])+logNk]

)
(35)

and using (29), the deflection coefficient is given by:

D2 =
τ

b
JFC

Jk =
λv

Nk

(
1−

1

Nk

)Nk−1 ∑
v∈Ck

[
Jv + (cv − ck)R̄i

]
(36)

To make a fair comparison, we do not assume a pre-set value
of λk. Rather, we optimize λk values to yield the maximum
deflection coefficient. Therefore, the local optimization prob-
lem in (37) could be written on the form:

max
λv

λv

Nk

(
1−

1

Nk

)Nk−1 ∑
v∈Ck

[
R̄v(cv − ck) + Jv

]
s.t. R̄v ≥

∑
u∈Cv

λuR̄u = rv (37)

where R̄v is given by (35).

B. Max. Throughput Design

The throughput of any relay node k is defined as:

Tk =
∑
v∈Ck

λvR̄v

=
∑
v∈Ck

R̄vqv
∏
i∈Bv

(1− qi)Φ

[
av −

(
10

σv
c

)
log qv

(
2

R̄v
W − 1

)]
(38)

The objective is to choose the design variables qv and Rv

to locally maximize the throughput. The constraint on the
communication rate of node v could be expressed in terms
of its throughput as R̄v ≥ Tv, where Tv = 0 for leaf nodes.
The optimization problem could be formulated as:

max
qv,R̄v

Tk s.t. 0 ≤ qv ≤ 1, R̄v ≥
∑
u∈Cv

λuR̄u (39)

where λu and R̄u are obtained from solving the local op-
timization problems at the lower level for each node v, as
indicated in Figure 7. The optimal design variables could
then be substituted back in (29) to evaluate the deflection
coefficient.

C. Numerical Example

We consider the tree network in Figure 8, with system
parameters as indicated on the tree edges. We useW = 2×103

Hz, N0 = 10−10 W/Hz, and b = 16 bits. For each value
of the delay for detection τ and network lifetime L, we
solve the local optimization problems in (30), (34), (37), and
(38) recursively to find the optimal TCP design variables

and the relevant deflection coefficient value for each design
approach. We calculate the optimal solution in each case using
the fmincon interior-point algorithm in Matlab Optimization
Toolbox [18].
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Figure 8. Tree detection network for the example problem. Labels on each
edge represent μc, σc, e (in mJ), and Signal to noise ratio, respectively, for
each source sensor.

Proposed design performance. Figure 9 shows the perfor-
mance surface for the slotted ALOHA tree network in Figure
8, for the proposed design approach. The surface plots the
deflection coefficient for different delay and network lifetime
values. For a fixed network lifetime, the deflection coefficient
increases with the delay for detection, as more observations are
expected at the fusion center. For a fixed delay for detection,
the deflection coefficient decreases with network lifetime, as
the energy budget allocated for each detection cycle decreases
to prolong the network lifetime. Decreasing the energy budget
reduces the probability of successful packet transmission,
hence causing less observations at the fusion center.
Figure 10 shows a contour plot for the deflection coefficient,

where each curve corresponds to the set of pair values (Delay
for detection, network lifetime) that gives rise to the indicated
value of the deflection coefficient. To keep the deflection
coefficient constant while increasing the network lifetime,
the delay for detection has to increase also, so that more
observations could be received in each detection cycle. This
compensates for the energy decrease as a result of a prolonged
network lifetime.
Performance comparison. We resort to one dimensional

plots to compare between the different design approaches.
Figure 11 shows the deflection coefficient versus the delay for
detection, where the network lifetime is set to 250 days. The
decoupled design approach exhibits the worst performance,
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Figure 9. Deflection coefficient as it varies with the network lifetime and
delay for detection.
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Figure 10. Contour plot for the deflection coefficient for the ALOHA tree
sensor network.

since it does not take into account the application layer, in
addition to the decoupling between the physical and MAC
layers. The max throughput design outperforms the decoupled
design, since it integrates both the physical and MAC layers.
The proposed cross-layer design approach outperforms the two
other approaches, by integrating the application layer (quality
of the sensors) into the design process. This performance
enhancement comes with no additional complexity since the
optimization problem is very similar in the cross-layer and
the max throughput design approaches. Therefore, for any
value of the delay for detection, the detection performance
is the highest for the cross-layer design. Thus, to obtain the
same detection performance from the other designs as in the
cross-layer approach, the delay for detection has to increase
significantly.
Figure 11 also shows the deflection coefficient resulting

from solving the global optimization problem in (27). We
note that there is no loss of optimality in using the local
optimization approach for very small delay for detection.
As the delay increases, the local optimization results in a
degraded performance. However, we note that the degradation
is not significant. More importantly, the degradation does
not increase significantly with further increase of the delay.
Therefore, the local optimization approach allocates the system
resources efficiently, with a small loss in the performance. We
note that this result is particular to the given example network
and system parameters. The degradation in performance due
to local optimization has to be assessed based on the given
system and constraints.
Figure 12 shows the deflection coefficient as it varies with

the network lifetime, where delay for detection is set to 50
sec. The results are similar to the delay for detection study,
where the proposed cross-layer approach outperforms the
max. throughput and decoupled design approaches. Similarly,
performance degradation due to local optimization gets larger
with increasing the network lifetime, but insignificant when
compared to the saving in system resources.
Comparison of transmission schemes. We compare the

direct transmission and the in-network processing schemes,
using the same example network in Figure 8 and the same
system parameter. Figure 13 compares the deflection coeffi-
cient for the direct transmission and in-network processing
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Figure 11. Deflection coefficient as it varies with the delay for detection.

designs for different delay for detection values. We note that
the direct transmission design outperforms the design with
local quantization for all delay for detection values below a
threshold value τth. Increasing the delay for detection further
causes the in-network processing design to outperform. The
first region, i.e. τ < τth is where the signal processing aspect
of the system dominates. In this region, the loss due to
quantization cannot be compensated since the delay allowed
is small and not enough measurements can be collected to
compensate for the quantization loss. The direct transmission
scheme outperforms since information is transmitted without
prior processing. In addition, shorter delay allows the reporting
energy to be concentrated over a smaller duration, resulting
in higher power for each sensor. The high power mitigates
the channel impairments and therefore the communication
network aspect is not dominant. The situation is reversed when
τ > τth. In this region, energy is distributed over longer
period, which results in low sensor transmission power and
hence the channel impairment is dominant in determining
the system performance. The in-network processing design
requires lower communication rate thereby mitigating the
channel impairment. On the other hand, the direct transmission
design requires higher communication rate, resulting in packet
loss and degraded system performance.
The delay threshold depends mainly on the quantizer design,

summarized by the parameter β, in addition to the signal
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Figure 12. Deflection coefficient as it varies with the network lifetime.
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Figure 13. Deflection coefficient for direct transmission and in-network
processing designs.

to noise ratio for each sensor and the energy allocated for
the detection process. Figure 14 shows the variation in the
delay threshold with the quantizer design parameter β. As β
increases, the exponential decay rate for quantization effect is
much faster, hence the threshold is lower.

VI. CONCLUSIONS

In this paper, we used a model-based approach to design
a tree-structured, slotted ALOHA sensor network, for de-
tection applications. We developed an integrated model for
the detection system and integrated the QoI, REI, and CSI
quality measures into the design process. We designed the
communication rate and transmission probability for each tree
node. The proposed model-based approach shows significant
performance gain over the classical decoupled and maximum
throughput approaches commonly adopted to design sensor
networks. This performance enhancement comes with no
additional complexity since the optimization problem is very
similar to the max. throughput design case.
For applications with stringent delay requirements, we

show that system design with direct transmission of sensor
observations results in better performance since the channel
impairment is unlikely to play a major role. If the application
can tolerate longer delays, then the design with in-network
processing results in better detection performance, as the com-
munication network becomes a dominant factor in determining
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Figure 14. Variation of detection threshold with quantizer parameter β.

the system performance.
We assumed that the energy is preallocated to each sensor

based on its energy reserve. Optimal energy allocation to
maximize the detection performance is one possible extension
to the presented work. In this case, care should be taken that
the energy of relay nodes is not depleted before its descen-
dants. Another possible extension is the design of TDMA tree
networks, where all transmissions are pre-scheduled, and the
performance comparison to the ALOHA network presented in
this paper.
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