
Passivity-Based Trajectory Tracking Control with Adaptive Sampling
Over a Wireless Network

Emeka Eyisi and Xenofon Koutsoukos and Nicholas Kottenstette

Abstract— Uncertainty in wireless networks, such as time-
varying delays and packet loss, often leads to instability and
degraded performance in Networked Control Systems (NCS).
Further, limited network resources impose constraints on com-
munication between plants and controllers. In this paper, we use
passivity combined with adaptive sampling to design a control
architecture for trajectory tracking. The proposed architecture
can tolerate time-varying delays and packet loss while efficiently
utilizing network bandwidth. We provide analytical results to
show passivity of the proposed networked control architecture
and trajectory tracking. We demonstrate our approach using
a case study on the trajectory tracking control of a robotic
manipulator over a wireless network. The simulation results
show the efficient utilization of network resources as well as
robustness to network uncertainties.

I. INTRODUCTION

This paper addresses the challenges in designing Net-
worked Control Systems (NCS), posed by the limitations and
unreliability of wireless networks, by integrating passivity-
based control with adaptive sampling. Passivity has been
exploited as a major tool for the design of NCS because it
provides significant advantages in dealing with network de-
lays, data dropouts, and quantization [1]–[4]. Using passivity
in NCS has resulted in many novel approaches in control
over communication networks (see [2]–[5] and references
therein). However, a precise formalism demonstrating how
to handle adaptive sampling in order to utilize network
resources, especially for control objectives such as tracking,
is lacking.

Adaptive sampling has become very important due to
a strong need for the efficient use of computational and
network resources [6], [7], [8]. The main idea of adaptive
sampling is to compute the sample interval, Ti, at which
a control law needs to be executed based on certain criteria
such as the current state of the system, a function of a desired
system characteristics such as error or even based on the
quality of service (QoS) of the communication network. Over
the past years, various adaptive sampling techniques have
been developed [9] [10] [11] [12] and references therein.
An example of such an adaptive sampling scheme is self-
triggered control. Self-triggered control, first introduced by
[7], uses a model of the system dynamics to perform com-
putations in order to predict when the violation of a defined
event condition will occur and based on this prediction,

Emeka Eyisi, Xenofon Koutsoukos are with the EECS Depart-
ment, Vanderbilt University, Nashville, TN, USA, [emeka.eyisi,
xenofon.koutsoukos]@vanderbilt.edu

Nicholas Kottenstette is with WW Technology Group, USA,
nicholas.e.kottenstette@ieee.org

appropriate sampling intervals are determined. Several self-
triggered implementations have been proposed [13] [14] [15]
[16] and references therein.

The main contribution of this work is that we achieve
trajectory tracking in a hierarchical NCS [17] using a
passivity-based approach integrated with adaptive sampling.
This approach guarantees stability of the NCS in the pres-
ence of network uncertainties. The integration of adaptive
sampling not only ensures the efficient utilization of network
resources but also provides the flexibility of incorporating
network scheduling adaptation. Additionally, we demonstrate
our approach with a case study on the trajectory tracking
control of a robotic manipulator over a wireless network. We
provide simulation results using Matlab/Simulink/TrueTime.
We show that the robotic manipulator tracks a desired
trajectory while reducing the utilization of network resources
compared to the case of a fixed sampling period. We also
provide simulation results to demonstrate the robustness of
our approach under various network uncertainties such as
time-varying delays and packet loss.

The rest of the paper is organized as follows: The problem
statement is provided in Section II. The proposed architec-
ture is introduced in Section III. Analysis of the proposed
approach is provided in Section IV. Section V presents an
example case study. Finally, Section VI provides concluding
remarks and directions for future work.

II. PROBLEM STATEMENT

This paper considers the problem of achieving trajectory
tracking in a networked control system in the presence
of network uncertainties and limited network bandwidth.
Consider the system model Hmp shown in Fig. 1, Hp (which

Fig. 1. System Model, Hmp.

could be linear or nonlinear) is a plant with input and output
defined as ap and yp respectively. e is the error defined as
the difference between the plant output, yp and a reference
trajectory, yd. Hlc is a local controller which takes fp, yd

and e as inputs and provides an output ap which is fed into
the plant. Hes is defined as a function that relates the output
s, as shown in the Fig. 1, to the error, e.

We provide the following definitions of passivity [18]
. Definition 1: A dynamical system, H ,

H :

{
ẋ = f(x, u)

y = h(x)
(1)

is said to be passive if there exists a non-negative function
V : Rn !→ R, called storage function, such that for all u ∈ U ,
for all x(0) = x0, for all y ∈ Y and t ≥ 0, it satisfies

∫ t

0
yT(τ)u(τ)dτ ≥ V (x(t))− V (x0) ≥ −β (2)

where U ⊂ Rn is the set of input values, X ⊂ Rm is
the state space and Y ⊂ Rn is a set of output values and
β = V (x0). If V (x) is C1, which implies differentiable,
then (2) can also be expressed as V̇ ≤ yT(t)u(t)

1) H is said to be strictly input passive if
∫ t

0
yT(τ)u(τ)− uT(τ)φu(τ)dτ ≥ −β (3)

where uT(τ)φu(τ) > 0 for some function φ and ∀u)= 0
2) H is strictly output passive if

∫ t

0
yT(τ)u(τ)− yT(τ)ηy(τ)dτ ≥ −β (4)

where yT(τ)ηy(τ) > 0 for some function η and ∀y)= 0

The discrete-time equivalent of the above definitions is
provided in [19].
We assume the following about the system model, Hmp

A1: The input-output pair, with input, fp and output, s as
shown in Fig. 1 can be defined such that a map, Hmp : fp !→
s is passive.
A2: Hmp is zero-state detectable [18].
A3: There exists a function, Hes, relating e to s with Λ
defined as a positive diagonal matrix, in the form,

s = ė+ Λe (5)

such that if s → 0 then

lim
t→∞

e(t) = 0 (6)

.
A4: The desired reference trajectory, yd, is bounded and
twice differentiable.

In regards to the communication over the network, we
assume the following on the packet handling of network
messages:
A5: The networked packet handling mechanism is designed
to ensure that no duplicate packet is processed.
A6: In the case of packet loss, if the input buffer is empty,
null packets are processed.

Assumptions A5 and A6 ensure that no additional energy is
introduced by the communication channel.

Based on these assumptions, we address two main prob-
lems in this paper:

1) We consider the problem of designing a robust hier-
archical networked control system for achieving the
following tracking objective in an unreliable wireless
network:

a) Ensure that, yp, the output of the plant, Hp, tracks a
local reference trajectory, yd such that

lim
t→∞

yp(t)− yd(t) = 0 (7)

b) In the presence of a non-local reference input, rc,
which can be used to model behaviors such as the
presence of an obstacle in the plant’s environment,
the plant output tracks a modified reference signal,
yda such that

lim
t→∞

yp(t)− yda(t) = lim
t→∞

yp(t)− yd(t)− rc(t) = 0

(8)
Hence, ensuring that the plant avoids the obstacle.

2) We consider the problem of reducing the amount of net-
work resources utilized while ensuring that the tracking
objective is achieved.

III. PASSIVITY-BASED ADAPTIVE SAMPLING CONTROL
ARCHITECTURE

Fig. 2, depicts the proposed networked control architecture
which we refer to as passivity-based adaptive sampling
control architecture (PBASC). This architecture is designed
to achieve trajectory tracking as well as the efficient use
of network resources. The remote system and the networked
controller are shown on the left and right sides of the network
in Fig. 2 respectively. On the remote system side of the net-
work, the block Hmp represents the system model introduced
in Fig. 1. In what follows we describe the components of
Fig. 2.

A. Adaptive Sampling Scheme

The sampling policy box, in Fig. 2 depicts an adaptive
sampling scheme which outputs the sampling intervals. In
order to interconnect the system, Hmp to the digitally imple-
mented networked controller, a sample-and-hold mechanism
is needed. Traditionally, the sample-and-hold mechanism is
based on fixed sampling periods but in order to efficiently
utilize network bandwidth we use an adaptive sampling
scheme. The adaptive sampling mechanism can be designed
based on any of the existing adaptive sampling techniques
in order to generate sampling intervals. For the purpose of
tracking, we need a mechanism that determines the sampling
intervals based on a function of tracking error. We chose
the adaptive sampling mechanism based on the self-triggered
control concept described in [15]. This approach enables us
to specify adaptive sampling scheme in terms of a storage
function, a lyapunov-like function of the tracking error. The
chosen triggering condition is based on a passive mapping.

Fig. 2. PBASC Networked Control Architecture.

Our triggering mechanism is based on the system model,
Hes, relating the tracking error, e, with the output of Hmp,
s. Rearranging and restating (5), we obtain the system model
defined as

ė(t) = −Λe(t) + s(t); (9)

s(t) = s(ti), t ∈ [ti, ti+1) (10)

where [ti]i∈N is an increasing sequence of sampling times
with t0 = 0. This model represents a strictly output passive
mapping with the tracking error, e, as the output and s, as the
input. The system model in (9) and (10) could be represented
in a minimal state-space realization, where the tracking error,
e, is the state as well as the output of the system and s, is
the input. This results in the state-space coefficients where
A = −Λ, B = C = I , the identity matrix, and D = 0.

A map, Γd, can then be used to define the self-triggered
implementation of the system model given by (9) and (10).
This map determines the ti+1, as a function of the tracking
error output, e at the time ti, i.e., ti+1 = ti + Γd(e(ti)). If
we denote by Ti, the sampling interval Ti = ti+1 − ti we
have Ti = Γd(e(ti)). As described in [15], the design of a
self-triggered policy involves a sequence of steps.

First, an output function to describe the evolution of the
system’s tracking error needs to be determined. The output
function for our sampling policy is the storage function of
the system defined by (9) and (10).

V (e) = eTPe (11)

where P is a positive definte matrix satisfying the passivity
constraints for the system model defined by (9) and (10). The
passivity constraints for the strictly output passive system can
be defined by a set of Linear Matrix Inequalities (LMI) [20].
The output function defined in (11) has an estimated decay
rate, ρ0 which can be computed based on the approach in
[21].

Next, we define a performance specification in terms of
the tracking error output. Our performance function is an
exponentially decaying function of the output function with
an initial value as the current sampled error. The performance

specification is defined as:

D(t) = V (e(ti))exp
−ρ(t−ti) (12)

In order to guarantee that the performance function bounds
the output function, the decay rate of the performance
specification is chosen as ρ < ρ0.

With the output function and performance specification,
we determine a continuous time triggering function. From
(11) and (12), the triggering condition is given as

hc(ti, e(t), e(ti)) := V (e(t))− V (e(ti))exp
(−ρ(t−ti)) ≤ 0;

(13)
for some 0 < ρ < ρ0.

Finally, a self-triggered policy can then be determined
from the continuous time triggering function. In order to
check when the triggering condition defined in (13) is vio-
lated, we consider a discrete-time implementation based on
a discrete step size, ∆ ∈ R+ since no digital implementation
can be used to perform this check. With, Ti defined as
the sampling interval, let Tmin and Tmax be defined as the
minimum and maximum sampling intervals respectively.
Also Nmin := *Tmin/∆+, Nmax := *Tmax/∆+. The discrete-
time implementation can be defined as follows:

hd(e(ti), n) := hc(ti, e(t), e(ti)) ∀n ∈ [0, Nmax] ∀i ∈ N
(14)

From this discrete-time implementation, the map Γd : Rn !→
R+, for computing the next sampling interval or time for the
tracking error system model given in (9) is given by:

Γd(e(ti)) := max{Tmin, ni∆} (15)

where

ni := max
n∈N

{n ≤ Nmax|hd(e(ti), c) ≤ 0, c = 0, ..., n} (16)

The lower and upper bounds of the sampling intervals are
explicitly enforced by Tmin and Tmax respectively. The upper
bound enforces robustness of the implementation and limits
computational complexity. The discrete time step, ∆, can
be chosen based on desired accuracy and computational
complexity.

B. Wave Variables

The blocks denoted as b in Fig. 2 each represents the
scattering transformation. The scattering transformation is
used in order to convert power variables, such as input and
output signals of plants and controllers, to wave variables and
vice versa. By transmitting wave variables over the network,
the communication channel maintains passivity even in the
presence of time-varying delays and packet loss [3].

On the left hand side of Fig. 2, the control signal, z(t) and
the system’s output signal, s(t) are transformed into the wave
domain through the scattering transformation. The scattering
transformation produces the continuous wave variables up(t)
and vcd(t), which are related to the signals, z(t) ∈ Rm and
s(t) ∈ Rm as follows:

1

2
(uT

p (t)up(t)− vTcd(t)(t)vcd(t)) = sT(t)z(t). (17)

The wave variables up(t) and vcd(t) can be described by the
following expressions:

up(t) =
1√
2b

(bs(t) + z(t)); vcd(t) =
1√
2b

(bs(t)− z(t));

(18)
where b ∈ R+

0 .
On the right hand side of Fig. 2, the scattering trans-

formation produces discrete wave variables upd[i] and vc[i],
which are related to the corresponding discrete control signal
zc[i] ∈ Rm and the system’s discrete-time output sc[i] ∈ Rm

as follows:
1

2
(uT

pd[i]upd[i]− vTc [i]vc[i]) = zTc [i]sc[i] (19)

The wave variables upd[i] and vc[i] can be described by the
following expressions:

upd[i] =
1√
2b

(bsc[i] + zc[i]); vc =
1√
2b

(bsc[i]− zc[i]);

(20)
The wave variables upd[i] and vcd[i] are the delayed versions
of the wave variables up[i] and vc[i] respectively such that

upd[i] = up[i− p(i)]; vcd[i] = vc[i− c(i)] (21)

in which p(i), c(i) ∈ N+
0 are the respective delays at time i

as shown in Fig. 2 as Z−p(i) and Z−c(i).

C. Variable Passive Sampler and Variable Passive Hold

The blocks VPS and VPH in Fig. 2 denote the variable
passive sampler and variable passive hold respectively. These
blocks represent a pair of sample-and-hold components that
can handle non-uniform and adaptive sampling intervals
while at same time preserving passivity. These components
perform their tasks based on the sampling intervals provided
by the adaptive sampling policy described in Section III-
A. VPS performs the task of converting continuous time
wave variables to discrete time wave variables while VPH
performs the task of converting discrete time wave variables
to continuous time wave variables.

The VPS and VPH are designed to satisfy the inequality:
∫ tN

0
(uT

p (t)up(t)− vTcd(t)vcd(t))dt

≥
N−1∑

i=0

Ti(u
T
p [i]up[i]− vTcd[i]vcd[i])

(22)

To satisfy (22), VPS can be designed to satisfy the following
inequality

∫ tN

0
uT
p (t)up(t)dt ≥

N−1∑

i=0

Tiu
T
p [i]up[i], (23)

while VPH can be designed to satisfy
N−1∑

i=0

Tiv
T
cd[i]vcd[i] ≥

∫ tN

0
vTcd(t)vcd(t)dt (24)

These inequalities ensure that no energy is generated by the
sample and hold devices and thus preserve passivity. Let the
jth element of the column vectors up(t) and up[i] be defined
as upj (t) and upj [i], respectively, where j = 1, ...,m and
assume that upj(t) = 0; if t< 0. A design of the VPS that
ensures condition (23) is given by

upj [i] =
1√

Ti−1Ti

∫ ti

ti−1

upj (t)dt, ∀ j ∈ {1, . . . ,m}.

(25)
where upj [0] = 0 and upj (t) is the continuous-time wave
variable.

In a similar manner, a design of the VPH that satisfies the
condition in (24) is given by

vcdj (t) = vcdj [i], t ∈ [ti, ti+1). (26)

The proofs for both (25) and (26) are provided in [22].

D. Networked Controller
The networked controller provides control law updates at

the request of the system, Hmp in order for the plant, Hp

to track a desired trajectory. Additionally, for the case of rc
as shown in Fig. 2, the networked controller introduces an
additional bias to the desired local trajectory. As a result of
the introduced bias, yp the output of the plant, Hp, tracks
the desired local trajectory, yd plus an additional offset, rc
due to the bias.

The networked controller, Hc, is an event-based propor-
tional controller defined as

zc[i] = Hc(fc[i]) = Kc(sc[i]− Λrc[i]) (27)

where the proportional gain, Kc = diag[Kc1,Kc2, ...,Kcm]
is a positive diagonal matrix. rc ∈ Rm is the bias reference
input and Λ is a positive diagonal matrix used in (5).

The networked controller is strictly input passive [23] with
an input-output mapping : fc !→ zc. This implies that

N−1∑

i=0

Tiz
T
c [i]fc[i] ≥ δ

N−1∑

i=0

Tif
T
c [i]fc[i]− β2 (28)

where δ, β2 ∈ R+
0

IV. ANALYSIS

This section presents the main analytical results that
prove stability and trajectory tracking in the proposed
PBASC architecture. Due to space limitations, the proofs
are omitted here and are provided in [22].

Theorem 1: Consider the proposed PBASC architecture
shown in Fig. 2, if the components of the architecture
satisfy their individual passivity constraints such that Hmp

is passive, VPH and VPS are both passive, the networked
controller is strictly input passive and the assumptions A5
and A6 hold, then the closed loop system described in
Fig. 2 is passive. Additionally, if Kc = bI and rp(t) = 0,
the input-output mapping rc !→ s shown in Fig. 2 is strictly
output passive [23].

Theorem 2: Consider the proposed PBASC architecture
shown in Fig. 2, with the system, Hmp and the event-
based networked controller described by (27). Assuming the
disturbance input, rp(t) = 0, then

lim
t→∞

ea(t) = lim
t→∞

yp(t)− yda(t) = 0. (29)

where yda and ea are the modified desired trajectory and
modified tracking error respectively in the presence of a
bias rc.

Corollary 1: In the absence of a networked controller bias,
that is with the input vector rc = 0, the plant system, Hp

tracks the desired trajectory.

V. CASE STUDY

This case study involves the trajectory tracking control
of a robotic manipulator over a wireless network using
the PBASC architecture. Due to space limitations, a brief
description of the robot is provided, the detailed model with
figures of the described robot is provided in [22].

A. Derivation of Hmp and Hes for the robotic manipulator

The Euler-Lagrange equations of motion for an n-degree-
of-freedom robotic manipulator, neglecting friction, can be
generally described by [24]:

M(yp)ÿp + C(yp, ẏp)(ẏp) + g(yp) = τ ; (30)

where yp(t) ∈ Rn is the vector of joint angles, τ(t) ∈ Rn is
the input torque vector, M(yp) ∈ Rn×n is the inertia matrix,
C(yp, ẏp) ∈ Rn×n is the matrix of centrifugal and coriolis
effects, and g(yp) ∈ Rn is the gravity vector.

In order to obtain the passive mapping, Hmp and the
tracking error function, Hes for the robotic manipulator in
the form described in (2) and (5) respectively, we sought
the sliding mode technique employed in [25] where s is
introduced as a sliding variable.

With the tracking error, e defined as yp(t) − yd(t), we
choose the local controller, Hlc as:

τ = M(yp)ÿr + C(yp, ẏp)ẏr + g(yp) + fp; (31)

where fp is the input to the system, Hmp. Let yr and ẏr be
defined as

yr = yd − λ

∫ t

0
e; ẏr = ẏd − Λe; (32)

where Λ, as defined in Section II, is a positive diagonal
matrix. By combining (30), (31) and (32), we obtain the
following

M(yp)ṡ+ C(yp, ẏp)s = fp; (33)

where s is defined as

s = ẏp − ẏr = ė+ Λe. (34)

The expresion in (33) results in the system, Hmp, a passive
input-output mapping from fp !→ s. Additionally, (34) results
in the desired function, Hes relating the system output, s to
the tracking error, e. Hence, the obtained Hmp and Hes satisy
the assumptions stated in Section II.

B. Evaluation
Using simulations, we evaluate the case study on a robotic

manipulator. The setup involves the passive mapping, Hmp

for the robot and an event-based networked controller, Hc,
communicating over a wireless network as shown in Fig. 2.
The dynamics of Hmp and Hc are implemented using
Matlab/Simulink models while TrueTime is used to model
the dynamics of the wireless network. The network protocol
used is 802.11b, with a speed/bandwidth of 11Mbps. The
robot has four degrees-of-freedom and is modeled using four
points of mass. The point masses are: m1 = 0.362kg, m2 =
0.401kg, m3 = 0.059kg and m4 = 0.177kg. The design
parameters for the self-triggered policy are Tmin = 0.01s,
Tmax = 0.1s, ∆ = 0.001s and P = 0.5 ∗ I . The other
parameters are b = 1, Kc = I , and Λ = 10 ∗ I .

The goal of these experiments is for the robot to track
a specified trajectory while efficiently using the network
resources. Due to limited space, we focus on joint 2 of
the robotic arm with a rest position of 0.17 radians. The
desired local trajectory with respect to the home position is
yd2 = 0.5sin(2π5). Additionally, we evaluate the introduction
of a bias, by the networked controller, which modifies the
desired reference trajectory. Such a bias can be viewed as
the presence of an obstacle in the robotic manipulator’s path
which can only be perceived by the networked controller.

1) PBASC Approach vs Traditional Approach.: This ex-
periment considers nominal network conditions with no
additional delays and packet losses. We model the presence
of an obstacle as a step reference input, rcj = 0.9, which
is introduced between the interval from 3 seconds to 10
seconds. Figs. 3a and 3c show the plots for joint 2 trajectory
and the sampling intervals respectively using the PBASC
approach. We compare the plots from our nominal scenario
with the case of a traditional sampling alternative in the same
framework but instead using a fixed sampling period (FSP)
of Tmin. Figs. 3b and 3d show the trajectory and sampling
intervals plots respectively for the FSP approach. Compar-
atively, it can be seen that both approaches closely track
the specified trajectory and in the presence of an obstacle,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(a) PBASC Trajectory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(b) FSP Trajectory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

Sa
m

pl
in

g
Ti

m
e(

s)

Time(s)

(c) PBASC Sampling Intervals.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

Sa
m

pl
in

g
Ti

m
e(

s)

Time(s)

(d) FSP Intervals.

Fig. 3. PBASC Approach vs. FSP Approach in Nominal Case.

the trajectories are adjusted with a bias of 0.9, although the
FSP approach seems to respond quicker initially. The average
tracking error, the average absolute difference between the
joint’s trajectory and the desired trajectory for the PBASC
and FSP approaches are 0.1064 and 0.04 respectively. On
the other hand, using PBASC approach, fewer control law
updates are required in order to maintain tracking thereby
reducing the amount of network resources utilized.

2) Time-Varying Delays.: This experiment considers the
effect of time-varying delays. To simulate the case of time-
varying delays, starting with the nominal case we incorporate
a disturbance node in the network with a sampling period
of 0.05 seconds. The disturbance node floods the network
with packets based on a Bernoulli process with parameter
d. The disturbance node samples a uniformly distributed
random variable X[k]∈ [0, 1] every 0.05 seconds. If X[k] >
d, a disturbance packet is forced on the network. Fig. 4a
shows the trajectory of joint 2 in the presence of time-
varying delays. Compared to the nominal case using the
PBASC approach, due to the presence of time delays it
takes the system a little longer to adjust it’s trajectory in
order to track the modified trajectory. The average tracking
error in the presence of time delays is 0.117. Also, the
impact of the delay can also be seen in Fig. 4b, as more
control updates are requested in order to achieve tracking.
The overall system still maintains stability in the presence
of time-varying delays.

3) Packet Losses.: This experiment demonstrates the ef-
fect of packet losses on the PBASC approach. We consider
a lossy network whereby packets containing either sensor
updates or control signals can be lost in the communication

channel. The packet loss conditions are designed using a
probabilistic Bernoulli loss model. A packet is dropped if a
sampled probability is less than a specified probability. We
consider the case of thirty percent probability of packet loss.
The average tracking error with packet loss is 0.1485. From
Figs. 4c and 4d, the effect of packet losses is clearly evident
from the plots by the deteriorated performance in tracking
but the overall system remains stable.

VI. CONCLUSION AND FUTURE WORK

In this paper, a passivity-based adaptive sampling control
architecture for trajectory tracking is introduced. The ap-
proach integrates passivity and adaptive sampling to address
the challenges of guaranteeing stability in the presence of
network uncertainties and efficiently utilizing limited net-
work resources. A case study on the trajectory tracking
control of a robotic manipulator over a wireless network in
the presence of network uncertainties is used to demonstrate
the approach.

Our future work includes extensions to a more dynamic
controller and the control of multiple remote sytems.

VII. ACKNOWLEDGEMENT

This work is supported in part by the National Sci-
ence Foundation (CNS-1035655, CCF-0820088), U.S. Army
Research Office (ARO W911NF-10-1-0005) and Lockheed
Martin. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U.S. Government.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(a) PBASC Trajectory(Delay).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

Sa
m

pl
in

g
Ti

m
e(

s)

Time(s)

(b) Sampling Intervals (Delay).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Joint 2 Reference+Bias
Joint 2 Actual

(c) PBASC Trajectory(Loss).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

Sa
m

pl
in

g
Ti

m
e(

s)

Time(s)

(d) Sampling Intervals (Loss).

Fig. 4. PBASC Approach with Network Uncertainties.

REFERENCES

[1] H. Gao, T. Chen, and T. Chai, “Passivity and passification for
networked control systems,” SIAM J. on Control and Optimization,
vol. 46, no. 4, pp. 1299–1322, 2008.

[2] N. Kottenstette, J. Hall, X. Koutsoukos, P. Antsaklis, and J. Szti-
napovits, “Passivity-based design of wireless networked control sys-
tems for robustness to time-varying delays,” in 29th IEEE Real-Time
Systems Symposium, 2008, pp. 15–24.

[3] N. Chopra, P. Berestesky, and M. Spong, “Bilateral teleoperation over
unreliable communication networks,” IEEE Trans. on Control System
Technology., vol. 16, no. 2, pp. 304 – 313, 2008.

[4] S. Hirche, T. Matiakis, and M. Buss, “A distributed controller ap-
proach for delay-independent stability of networked control systems,”
Automatica, vol. 45, pp. 1828–1836, August 2009.

[5] S. Stramigioli, C. S. , A. J. van der Schaft, and C. Fantuzzi, “Sampled
data systems passivity and discrete port-hamiltonian systems,” IEEE
Trans. on Robotics, vol. 21, no. 4, pp. 574 – 587, 2005.

[6] R. Dorf, M. Farren, and C. Phillips, “Adaptive sampling frequency for
sampled-data control systems,” IRE Trans. on Aut. Control,, vol. 7,
no. 1, pp. 38 – 47, jan 1962.

[7] M. Velasco, J. M. Fuertes, and P. Marti, “The self triggered task
model for real-time control systems,” in 24th IEEE Real-Time Systems
Symposium (work in progress), 2003, pp. 67–70.

[8] K. Astrom and B. Bernhardsson, “Comparison of riemann and
lebesgue sampling for first order stochastic systems,” in 41st IEEE
Conf. on Decision and Control, 2002, pp. 2011 – 2016.

[9] W. Heemels, A. Teel, N. van de Wouw, and D. Nesic, “Networked
control systems with communication constraints: Tradeoffs between
transmission intervals, delays and performance,” IEEE Trans. on Aut.
Control,, vol. 55, no. 8, pp. 1781 –1796, aug. 2010.

[10] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Trans. on Automatic Control,, vol. 52, no. 9, pp. 1680 –
1685, 2007.

[11] P. Otanez, J. Moyne, and D. Tilbury, “Using deadbands to reduce
communication in networked control systems,” in American Control
Conf.,, vol. 4, 2002, pp. 3015 – 3020.

[12] J. Colandairaj, G. Irwin, and W. Scanlon, “Wireless networked control
systems with qos-based sampling,” IET Control Theory Applications,,
vol. 1, no. 1, pp. 430 –438, january 2007.

[13] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Trans. on Aut. Control, vol. 55,
no. 9, pp. 2030 – 2042, 2010.

[14] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain l2-stability,” IEEE Trans. on Aut. Control, vol. 45,
no. 3, pp. 452 – 467, 2009.

[15] M. Mazo and P. Tabuada, “Input-to-state stability of self-triggered
control systems,” in 48th IEEE Conf. on Decision and Control, Dec.
2009, pp. 928 –933.

[16] M. Mazo Jr. and P. Tabuada, “On event-triggered and self-triggered
control over sensor/actuator networks,” in 47th IEEE Conf. on Deci-
sion and Control, 2008, pp. 435 – 440.

[17] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Engineering Practice, vol. 11, no. 10, pp.
1099 – 1111, 2003.

[18] C. Byrnes, A. Isidori, and J. Willems, “Passivity, feedback equivalence,
and the global stabilization of minimum phase nonlinear systems,”
IEEE Trans. on Aut. Control, IEEE Transactions on, vol. 36, no. 11,
pp. 1228 –1240, nov 1991.

[19] C. Byrnes and W. Lin, “Losslessness, feedback equivalence, and the
global stabilization of discrete-time nonlinear systems,” Automatic
Control, IEEE Transactions on, vol. 39, no. 1, pp. 83 –98, jan 1994.

[20] N. Kottenstette and P. Antsaklis, “Relationships between positive real,
passive dissipative, and positive systems,” in American Control Conf.,
2010, pp. 409 –416.

[21] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[22] E. Eyisi, X. Koutsoukos, and N. Kottenstette, “Passivity-Based Tra-
jectory Tracking Control with Adaptive Sampling Over a Wireless
Network,” Technical Report ISIS-12-104.

[23] A. van der Schaft, L2-Gain and Passivity in Nonlinear Control.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

[24] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots:
A tutorial,” in 27th IEEE Conf. on Decision and Control, 1988, pp.
1575–1584.

[25] J. J. E. Slotine and W. Li, “Adaptive manipulator control: A case
study,” IEEE Trans. on Aut. Control, vol. 33, no. 11, pp. 995 –1003,
Nov. 1988.

