
Chapter 18
Transportation Networks

Gabor Karsai, Xenofon Koutsoukos, Himanshu Neema, Peter Volgyesi,
and Janos Sztipanovits

1 Introduction

According to one of the widely accepted definitions, CPS are engineered systems
where functionality emerges from the networked interaction of computational and
physical processes. The tight integration of physical and computational components
creates new generations of smart systems whose impacts are revolutionary; this is
evident today in emerging autonomous vehicles, military platforms, intelligent
buildings, smart energy systems, intelligent transportation systems, robots, and
smart medical devices. A recent study by McKinsey (Manyika et al. 2015) estimates
that the ongoing digitization of industry will potentially add an additional 1.5 trillion
US $ to the GDP of the United States by 2025 and 1 trillion EUR to the GDP in
Europe. Emerging industrial platforms such as the Internet of Things (IoT), Indus-
trial Internet (II) in the United States (Evans and Annunziata 2012), and Industrie 4.0
in Europe (Kagermann et al. 2013) are triggering a “gold rush” toward new markets
and are creating societal-scale systems, which importantly, in addition to the synergy
of computational and physical components, involve humans (H-CPS). H-CPS is at
the heart of today’s sharing economy and the driver of new kinds of industry sectors
that involve humans interacting with CPS. These sectors are now producing com-
panies which are changing how we live. For example, the future of mobility is being
determined by companies like Uber, Lyft, Olla, and Didi, which are transforming
personal transportation into a service. In addition, shared use of the third aerial
dimension is being used to determine the future of logistics and how we deliver
goods through our urban and rural infrastructures.

G. Karsai · X. Koutsoukos · H. Neema · P. Volgyesi · J. Sztipanovits (*)
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
e-mail: gabor.karsai@vanderbilt.edu; xenofon.koutsoukos@vanderbilt.edu; himanshu.
neema@vanderbilt.edu; peter.volgyesi@vanderbilt.edu; janos.sztipanovits@vanderbilt.edu

© Springer International Publishing AG, part of Springer Nature 2019
A. Kott, I. Linkov (eds.), Cyber Resilience of Systems and Networks, Risk, Systems
and Decisions, https://doi.org/10.1007/978-3-319-77492-3_18

425

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77492-3_18&domain=pdf
mailto:gabor.karsai@vanderbilt.edu
mailto:xenofon.koutsoukos@vanderbilt.edu
mailto:himanshu.neema@vanderbilt.edu
mailto:himanshu.neema@vanderbilt.edu
mailto:peter.volgyesi@vanderbilt.edu
mailto:janos.sztipanovits@vanderbilt.edu
https://doi.org/10.1007/978-3-319-77492-3_18

It is not surprising that many of these systems are safety and mission critical that
makes their resilience against faults and cyber-attacks an essential problem. Even
under normal conditions, CPS and H-CPS face complex issues crosscutting many
disciplines with significant implications on essential system functions. Designers
must resolve complex constraints among physical configurations, disturbances, and
software-based functions; they need to deal with significant differences in semantics
of models and manage physical uncertainties and the always limited validity of
physical models, as well as constraints caused by computational complexity. Adding
faults and cyber-attacks in all their insidious variety creates a massive challenge that
cannot be neglected due to their potential consequences. While conventional design
of CPS and H-CPS implements functionalities that accounts for regular physical
uncertainties in the system and tolerates environmental impact in some boundaries,
resilient system design must handle larger variations in the external and internal
physical and software environment and consider even maliciously injected physical
faults and impacts of cyber-attacks.

H-CPS design processes use abstraction layers dictated by the heterogeneity of
their component technology. Figure 18.1 shows a simplified view of abstraction
layers that have distinct architectures, design patterns, composition principles, and
vulnerabilities. The five fundamentally different abstraction layers are the physical
layer, the three “cyber” layers (network, service platform, and application layers),
and the human layer. The physical layer embodies physical components and their
interactions which are modeled in continuous (physical) time. The mathematics of
composition is based on linear algebra, topology, and differential equations. The

Human Layer

Application Layer

Service Platform
Layer

Network Layer

Physical Layer

Insider attack,
unwitting behavior

Data and policy
corruption

Malware, worms,
viruses

Flooding, integrity
attacks

Physical
destruction,
backdoors

Disinformation
distraction

Disruption of C2,
behavior

manipulation

Induced
inaccuracies and

failures

Denial of service,
exfiltration

Triggered
malfunction,

performance loss

ATTACKS TARGETS EFFECTS
H
-C

PS
C
PS

Fig. 18.1 H-CPS abstraction layers

426 G. Karsai et al.

design requirements and key properties are described using well-understood abstrac-
tions of physical systems such as continuous (usually multi-physics), lumped, or
distributed parameter dynamic models and geometry. The two cyber platform layers,
network and service platforms, comprise the digital hardware side of CPS and
include the networks and computation platforms that interact with the physical
components through sensors and actuators. Execution of software-defined applica-
tions on processors and transfer of data through communication links “translate”
their abstract behavior into physical, real-time behavior. The behavior of these
platforms is usually modeled by discrete event systems. The mathematics of com-
position is timed automata, hybrid automata, algebra, and queuing theory. The
application layer comprises the software components with behavior expressed in
logical time. The mathematics of composition is discrete, based on logic, combina-
torics, and universal algebra.

In H-CPS where humans are indirectly involved in system operation (by selecting
architectures, weighting optimization criteria, and making investment decisions),
incentives and regulations are used to guide the investment of resources in such a
way as to improve the composite properties of the CPS system both at the strategic
and tactical levels. For example, for DoD Information Systems (not CPS), the DoDI
8510.01 Risk Management Framework governs the certification and accreditation
process to maintain the information assurance posture during the system’s life cycle.
The requirement for compliance forces organizations to follow design practices that
provide improved assurance against cyber-attacks. In H-CPS where human behavior
is directly involved in the properties of the overall system dynamics (as operators of
vehicles or consumers of contested resources), incentive engineering is used to
modulate the decision loop of individual players (drivers, consumers) such that the
overall system behavior converges toward a societal optimum. The mathematical
foundation for incentive engineering is mechanism design (Williams 2008), a field in
game theory that uses an engineering approach to find the game (i.e., the game
defined by the specific mechanism), in which Nash equilibria will be close to a
desired optimum.

As Fig. 18.1 illustrates, the abstraction layers are built on each other. They are
associated with layer-specific architectures that utilize and provide services and
interact via energy and information flows during operation. In CPS/H-CPS systems,
architecture layering has the following implications on analyzing and providing
resilience properties:

1. The layers are associated with technologies that have specific vulnerabilities and
related attacks vectors. Figure 18.1 shows some examples for attacks and their
implications. Understanding attacks and their potential implications requires the
use of the appropriate abstractions and related theories.

2. Attacks and impacts are not isolated to a single layer. Cross-layer interactions can
propagate impact: attacks on the physical layer can cause anomalies on cyber
layers (e.g., blocking cooling mechanisms may lead to overheating of circuits that
in turn may cause shutdown of services implemented by impacted processors).
Similarly, cyber-attacks can have physical impact (e.g., integrity attacks on

18 Transportation Networks 427

sensor signals that may cause incorrect actuation on physical processes leading to
potentially catastrophic system failures).

3. A more subtle but important implication of architecture layering is a new category
of vulnerabilities caused by violations of assumption/guarantee relationships
across layers. As an example, let’s consider a safety critical physical layer
property, stability. Control theory has developed methods (e.g., Lyapunov criteria
(Bhatia and Szegő 2002)) and introduced architectural restriction (e.g., linear
dynamics (Teschl 2012)) to make verification of stability solvable. However,
multilayer implementation of controller dynamics that includes networking and
computing introduces implementation side effects (such as time-varying delays in
control loops, nonlinear effects of fixed-point arithmetic, coefficient quantization,
and signal quantization) that violate key assumptions that were used in stability
analysis on the physical layer. The result is that the integrated system may lose
stability because these side effects can be easily manipulated by relatively simple
timing attacks in the “cyber” layers. In conclusion, a layered system that operates
correctly in each layer can be destroyed by attacking the frequently undocu-
mented cross-layer assumptions that are vital for guaranteeing critical safety
properties.

Designing large and heterogeneous CPS/H-CPS systems is a difficult problem,
and one of the most difficult aspects is providing resilience. Beyond the problems
mentioned above, what makes achieving resilience particularly hard is that cyber-
attacks may be coordinated on different layers and combined with physical attacks to
achieve maximum damage with the smallest investment. In this chapter we will
examine two approaches to resilience: passive and active resilience.

Passive resilience refers to properties that are inherently robust against classes of
uncertainties, “resilient-by-construction”. Examples of passive resilience include
decreasing safety and security risk by increasing safety margins, hardening access
control policies, or using longer encryption keys.

Active resilience refers to the ability of a system to respond to attacks that implies
some form of reflexive or deliberative control.

1. Reflexive methods employ a monitor-response scheme: monitors detect anoma-
lies (or signatures) from a predefined library and rapidly associate those with
predefined control actions that are expected to resolve or mitigate the problem.
Reflexive methods are widely used in many safety critical systems, such as flight
control. ClearView (Perkins et al.) uses this method to automatically patch errors
in compiled binaries. It first observes normal, error-free executions to derive
invariants that are true in all observed executions. The monitors respond to a
program crash by finding violated invariants and trigger an action that reenforce
the violated invariants by patches. Reflective methods are effective when the
required response resolution is low, so the number of anomalies (invariant
violations) and the associated actions are limited and can be well separated.

2. Deliberative methods expand anomaly detection with root cause analysis, isola-
tion, recovery planning, and recovery actions using detailed information about
the structure and expected behavior of the system. The approach involves

428 G. Karsai et al.

reasoning, and its implementation requires deeper integration with the overall
system architecture (the deliberative controllers need to be made resilient as well).

After reviewing examples for passive and active resilience, we will discuss
illustrative examples followed by simulation-based evaluation of resilience in
CPS. We will conclude the chapter with presenting a simulation tool kit for resilience
analysis.

2 Methods for Implementing Passive Resilience

Passive resilience of systems can be improved by increasing robustness against
impacts of cyber-attacks. We demonstrate this concept using two very different
examples: (a) designing attack-resilient sensor allocation and (b) improving resil-
ience against cross-layer attacks by improving robustness via architectural
constraints.

2.1 Attack-Resilient Sensor Allocation

The ability to control any system hinges on having accurate information about its
evolving state, obtained through persistent system monitoring. In many applications,
such as transportation networks, the system to be monitored can extend over a large
area, with many possible points of observation. Although these areas can be very
large, the number of sensors deployed is always limited by financial and/or techno-
logical constraints. Consequently, we faced the problem of finding locations for
placing a limited number of sensors so as to minimize our posterior uncertainty about
the quantities being monitored. This problem is further complicated by the presence
of strategic adversaries, who may disable some of the deployed sensors in order to
impair the operator’s ability to make predictions.

Based on a Gaussian-process-based regression model, we formulated the problem
of attack-resilient sensor placement as the problem of selecting a subset from a set of
possible observations, with the goal of minimizing the posterior variance of pre-
dictions (Laszka et al. 2015). In order to illustrate the approach, we consider a
transportation network. We assume that a set of possible traffic flow sensor locations
is given, and a designer can place at most N sensors at some locations. The designer
uses the observations of the deployed sensors to predict a value using Gaussian
process-based regression. For example, traffic measurements obtained from
induction-loop sensors can be used to predict traffic at unobserved locations or in
a future time. Given the sensor measurements, the predicted value is a random
variable which follows a Gaussian distribution. Next, we consider a model of
denial-of-service attacks against sensors. We assume that the attacker is resource-
bounded, so she can remove at most K of the sensors deployed by the designer. In

18 Transportation Networks 429

practice, removing a sensor can model all forms of denial-of-service type attacks,
such as physical destruction, wireless jamming, or battery exhaustion. We also
assume that the attacker is malicious in the sense that it will select a set of sensors
to remove that will minimize the accuracy of prediction. We quantify the accuracy
using the posterior variance; the lower the variance, the more accurate the prediction
is. Then, the resilient sensor location selection problem can be formulated as an
attacker-defender game where the designer first selects a set of sensor locations to
minimize variance, and then the attacker removes a set of sensors to maximize the
variance. We have shown that both finding an optimal resilient subset and finding an
optimal attack against a given subset are NP-hard problems. Since both the design
and the attack problems are computationally complex, we proposed efficient heu-
ristic algorithms for solving them and presented theoretical approximability results.
Finally, we have shown by using numerical results based on real-world datasets
(Laszka et al. 2015) that the proposed algorithms perform well in practice.

2.2 Passivity-Based Architecture

As we mentioned earlier, an important cyber-attack category impacting networked
control systems may exploit hidden and undocumented interdependences between
the physical layer and cyber layers (such as networking and service platforms). For
example, the physical stability of distributed CPS is usually verified using continu-
ous time dynamic models of the plant and the ideal controllers. The networked,
digital implementation of the controllers brings in implementation side effects in the
timing properties; therefore stability needs to be reverified. However, sensitivity of
the system-level stability to the timing properties of the controllers creates an
exploitable vulnerability: by injecting time-varying delays, jitter, bandwidth
changes, and packet drops into feedback loops, an attacker can destabilize the
physical systems.

Similarly, networked multi-agent systems (such as swarms of interacting UAVs),
like all large-scale distributed systems, have many entry points for malicious attacks
or intrusions. If one or more of the agents are compromised in a security breach, it is
crucial for the networked system to continue operating with minimal degradation in
performance, and the success of the global objective should be assured. To achieve
this, it is necessary for the cooperative control algorithms to be designed in such a
way that they can withstand the compromise of a subset of the nodes and network
links and still guarantee some notion of correct behavior at some decreased level of
performance.

We have studied this problem in various application contexts and developed an
approach that is based on improving decoupling of the stability property on the
physical from implementation side effects of the cyber layers by an architectural
constraint, called Passivity-Based Architecture (PBA) (Sztipanovits et al. 2012).
Passivity is a fundamental concept in system science. It quantifies the property of
a system to dissipate energy that is either being supplied to it through external inputs

430 G. Karsai et al.

or that is stored internally. In classical circuit theory, a dynamic system (e.g., a filter)
implemented by using passive L, R, and C electronic components is passive;
therefore it cannot ever become instable. While transitioning from analog filter
technology to digital, a theory was developed for transforming passive continuous
dynamics to digital implementation that preserves the property of passivity by
maintaining passivity-related constraints among the digital representations of phys-
ical variables (Fettweis 1986). Passive systems (whether they are physical, digital, or
their combination) have a unique property that when connected in either a parallel or
negative feedback manner, the overall system remains also passive. Accordingly,
large-scale and open systems organized as interconnections of passive structures
(e.g., physical plants and digitally implemented networked controllers) will remain
also passive; therefore they preserve stability independently from the timing and
other uncertainties caused by the networks and computations in the digital control-
lers (Koutsoukos et al. 2012; Kottenstette et al. 2013). Further, the interconnection
topology can be dynamically adapted or reconfigured in order to improve system
availability. PBA, by decoupling physical stability property of CPS/H-CPS from
timing uncertainties in the cyber layer, eliminates a significant category of exploit-
able vulnerabilities. While the progress in PBA design is significant, novel scalable
analysis and design methods are necessary for understanding and eventually con-
trolling the impact of dynamic topologies on stability and robustness (LeBlanc et al.
2013; LeBlanc and Koutsoukos 2013).

We briefly illustrate the approach with an example for safe semiautonomous
driving (Dai and Koutsoukos 2016). An autonomous vehicle can be described as a
CPS where the dynamics of the vehicle interact with the control software. Consider a
scenario where a host vehicle is following autonomously a lead vehicle on a curved
road. The control system must ensure that the vehicle behaves in a stable and safe
manner avoiding collisions and skidding. The control system consists of an adaptive
cruise control (ACC) system which controls the speed of the vehicle and a lane-
keeping control (LKC) system which controls the angle of the steering wheel in
order to maintain a desired position on the road. The overall system behavior
emerges by the composition of the vehicle dynamics, the control software and
network, and disturbances such as wind and the slope of the road. PBA is used for
control design to ensure stability and safety in the presence of nonlinear dynamics,
disturbances as well as uncertainties created by cyber-attacks, such as time-varying
delay, jitter, and packet loss (Koutsoukos et al. 2012; Kottenstette et al. 2013).

Characterizing robust CPS behavior requires new notions of uncertainty that
crosscut the physical, computation, and communication layers. These diverse
notions of uncertainty require novel assessment metrics that capture different
views of system stability and robustness. Extensions of passivity to discrete event
and hybrid systems are required in order to characterize robust composition of
software and physical components. Imposing such restrictions on the component
dynamics will enable compositional modeling and reasoning for computing, sens-
ing, and acting on the physical world.

Compositional properties such as passivity offer advantages for designing robust
large-scale systems, but stability and robustness cannot be studied in isolation from

18 Transportation Networks 431

other design concerns. Understanding fundamental trade-offs between stability and
robustness, system performance, safety and security, and properties of the physical
platform is emerging research endeavors in CPS. They will help, for example,
understanding how composition based on passivity affects performance, platform
properties, and other design concerns.

Attack-resilient sensor allocation and PBA are examples for passive resilience
against specific categories of cyber-attacks. Both methods improve robustness of
selected properties of the CPS by introducing additional architectural constraints
(optimality of sensor allocation and passivity) in the design process resulting
decreased vulnerability. This is in sharp contrast with active resilience that requires
the extension of the system architecture with new functional components dedicated
to resilience.

3 Methods for Implementing Active Resilience

Design of systems with active resilience starts with deciding if reflexive or deliber-
ative strategy is appropriate. In CPS/H-CPS a common challenge is that cross-layer
propagation of anomalies (see Fig. 18.1) creates signatures that are nondeterministic
and not specific to the underlying attack. This restricts the use of reflexive methods to
trigger coarse reactions, for instance, switching from blacklisting to whitelisting
under specific attack conditions. Deliberative methods require models, automated
processes, and tools that provide a systematic, model-based reasoning method to
intrusion detection, isolation, recovery planning, and plan execution in operation
time. One possible approach to this has been developed and evaluated by our team
(Pradhan et al. 2016), which is based on symbolic representation of the configuration
space and automated, constraint-based reasoning.

The approach starts with the modeling and analysis of the system architecture; for
example, applications that are built from components and deployed on a network of
computing nodes providing platform services, interconnected through a network.
Components are stateful objects that interact with each other through messages (via
the network), and they implement a well-defined model of computation (e.g., single-
threaded, event- or time-triggered actor model). The application(s) built from such
distributed components provide some well-defined functionality that can be explic-
itly represented in an application model. The application model enumerates all the
objectives (“functions”) of the application and shows how the individual functions
are linked to specific software components. This linkage may have cardinality, e.g., a
function may require multiple copies of a component. A component may also require
platform resources (e.g., hardware resources, like memory or file space; or specific
hardware devices, like sensors or actuators). Thus the application model represents
what functions the application provides, how these are mapped to (one or more)
software components, and what platform resources those components require.

A second model, called the platform model, represents the hardware platform: its
computing nodes and resources, the connectivity, and the capabilities and capacities

432 G. Karsai et al.

of those. Once these models are created, a calculation can be performed that
represents a deployment (i.e., a mapping or assignment) of the software components
to the platform. This calculation can be done by a heuristic search algorithm, but it is
much simpler to implement using another approach based on constraint program-
ming. Both the application model and the platform model can be expressed in the
form of mixed-integer linear constraints, where decision variables indicate what
component gets mapped to what resources. Solving this constraint programming
problem is simple (using modern solver technology, like Z3 (de Moura and Bjørner
2008)), and the solution is the deployment of components on the platform such that
the application functions are realized. Typically the solution is not unique, as
multiple deployments are feasible – providing resilience for the implemented func-
tions. If anomalies develop in a system (e.g., a component fails due to a local breach,
or a network link gets jammed), this fact can be represented as an additional
constraint that “negates” the failed resource. Now if the solver is run again, a new
solution will be computed (if there is one) – which is a new deployment configura-
tion of the system that (1) satisfies the application’s objectives and (2) does not use
compromised or failed node. Then the system should be reconfigured (the applica-
tion must be redeployed) according to this new deployment plan. This process can be
repeated upon new anomalies detected; while there is a viable configuration, the
solver will find it.

In summary, the above approach is based on (1) modeling the application (its
functions and its architecture and the component’s resource requirements),
(2) modeling the platform (processing and communication capabilities of the
resources), (3) translating the models into constraint form and representing the
deployment configuration in the form of decision variables, and (4) generating a
solution that represents a possible deployment of the application on the platform. In
other words, we model the configuration space of the system, then use constraint-
based pruning to find solutions that yield an acceptable deployment. This method
can be obviously extended to various componentized and layered architectures,
which may include security requirements in information flows, or extended with
optimization of the deployments.

As this example illustrates, implementation of active resilience requires addi-
tional management functions that are outside of the system’s functional architecture.
It is important to recognize that these resilience management functions need to be
resilient as well; therefore they need to be organically integrated into the overall
system architecture as part of the control hierarchy.

4 Simulation-Based Evaluation of Resilience

Heterogeneity and the richness of interactions among system components are the key
barriers for evaluating resilience in CPS/H-CPS. For some approaches, such as
passivity-based design, formal analytical methods are available for proving passive
resilience of selected properties (stability) for whole attack classes (Koutsoukos

18 Transportation Networks 433

et al. 2012), but this is rather an exception. The remaining option is simulation-based
evaluation of resilience. In general, what makes evaluation of resilience challenging
is its context dependence: resilience makes sense only for some well-defined prop-
erty and against some well-defined attack classes. In addition, resilience is a system-
level property which is usually non-compositional – except in rare cases such as
passivity-based design, where compositionality for stability has been established
(Kottenstette et al. 2013). In this section we establish requirements for simulation-
based studies using a simple example.

Earlier we introduced an approach for selecting the locations of networked sensor
devices so that their placement is resilient to denial-of- service type attacks that aim
to degrade prediction accuracy for a networked physical process (e.g., traffic flow or
flows in water distribution networks) (Laszka et al. 2015). The approach was built on
a Gaussian process-based regression model (Rasmussen and Williams 2006), whose
parameters are estimated using the simulation test bed prior to deployment. Since
finding an optimal placement is an NP-hard problem, we developed a heuristic
algorithm and evaluated it using simulations. The simulation-based analysis required
the following problem setup:

1. Sensor and Prediction Model: We assume that a set V of possible sensor locations
is given, and a designer can place at most N sensors at a set S � V of locations.
The designer uses the observations of the deployed sensors to predict a value
using Gaussian process-based regression. For example, traffic measurements
obtained from induction-loop sensors can be used to predict traffic situation at
unobserved locations or in the future.

2. Attacker Model: Next, we introduce our model of denial-of-service attacks
against the sensor network. We assume that the attacker is resource-bounded,
so it can remove at most K of the sensors deployed by the designer. In practice,
removing a sensor can model all forms of denial-of-service type attacks, such as
physical destruction, wireless jamming, or battery exhaustion. We also assume
that the attacker is malicious in the sense that it will select a set of sensors to
remove that will minimize the accuracy of flow prediction.

3. Problem Formulation: We quantify the accuracy of predicting traffic flow using
the posterior variance: the lower the variance, the more accurate the prediction
is. Then, the resilient sensor location selection problem is defined as attacker-
defender game.

While all mathematical details and the detailed results are omitted here (for
details, see Laszka et al. (2015)), the example shows some interesting requirements
for simulation-based studies:

1. Modeling and simulation of CPS. The simulation platform needs to support multi-
modeling including realistic models of cyber and physical components and their
interactions, as well as operational scenarios that can be used for evaluations of
cybersecurity risks and mitigation measures.

2. Attack modeling. Attack modeling requires intricate connections and deeper
insights in the cyber and physical infrastructure. As Fig. 18.1 shows, attacks

434 G. Karsai et al.

can be deployed in different system layers, and their effects can propagate up and
down in the implementation hierarchy. The basic tenet of a simulation platform
for resilience studies is to build and evaluate executable models. Thus we cannot
sidestep important details about the execution of a cyber-attack. Such details in
network attacks include the formation of network packets, routing information, or
OS-level behavior of individual nodes. This requirement is in conflict with goals
of providing a truly generic, technology neutral, and executable adversarial
language that captures abstract high-level domain concepts only, since simulation
of cyber-attacks relies on the details of the implementation infrastructure. The
consequences of this requirement on the simulation infrastructure are significant.
The declared goal of the resilience study (the selected system properties and
attack types) strongly influences the level of abstractions to be used both in the
attack models and system models. This makes flexibility and rapid
reconfiguration of simulations a fundamental requirement. In some analysis, the
required level of simulation fidelity may not be feasible; therefore applying
Hardware-in-the-Loop (HIL) and System-in-the-Loop (SIL) solutions is the
only possibility.

3. Attacker-defender games. Resilience studies are frequently scenario-based where
real or virtual attackers and defenders play against each other. In these setups
interactive access to simulated models are essential since attack scenarios unfold
dynamically driven by interactions with players.

4. Information management. Simulation-based evaluations require information in
the forms of models, software, and data that are interdependent, deeply versioned
and linked to an extensive IT infrastructure. Services for managing this informa-
tion are a frequently overlooked aspect of simulation-based evaluations.

In summary, simulation-based evaluation of CPS resilience against cyber-attacks
involves multiple, heterogeneous, interacting modeling domains. While established
modeling domains usually have model building and simulation tools, their integra-
tion into a multi-model simulation is time-consuming, labor-intensive, and error-
prone task. This means that computational studies cannot be completed rapidly, and
the process does not provide timely answers to the planners, operators, and policy
makers. Furthermore, CPS/H-CPS behavior has to be tested in a number of scenarios
and situations that usually involve large number of simulation runs so as to cover the
space of possibilities. Designing and efficiently deploying such computational
“experiments” by utilizing multi-domain tools for integrated CPS are a significant
challenge.

5 Simulation Integration Architecture and Tool Kit

Multi-model simulation test beds require that domain-specific models and simulators
are integrated into heterogeneous system models, and the simulations are executed
on scalable computing platforms. This section will describe the Cyber-Physical

18 Transportation Networks 435

Systems Wind Tunnel (CPSWT), a simulation integration architecture and tool kit,
which is the result of a decade-long research effort (Hemingway et al. 2012) and now
used as foundation for several distributed simulators such as Vanderbilt’s SURE
Test Bed for resilience studies and the NIST CPS test bed called Universal CPS
Environment for Federation (UCEF) (Roth et al. 2017).

The key idea in creating the CPSWT tool kit was to introduce three horizontal
integration platforms for model integration, simulator integration, and execution
integration (see Fig. 18.2).

5.1 Model Integration Platform

Model integration is required for expressing interactions across modeling domains –
a basic need for multi-model simulations. The primary challenge to be addressed has
been the semantic heterogeneity of domain models and the different model types
required for the specification of a simulation experiment. The fact that domain
models in CPS subdomains are provided by different simulation tools that evolve
more or less independently further adds to the model integration challenge.

Resilience studies require the introduction of a number of model types:

1. Domain models (DM) that are specified in terms of the domain-specific modeling
languages of various simulation tools integrated in the CPSWT tool kit. Examples
are Simulink/Stateflow (dynamics), Simpower (Simscape Power Systems –

Simulink), Colored Petri Net (CPN), ns-3 (network simulator), OMNeT++ (net-
work simulator), DEVS (discrete event simulator), FMU-CS (Functional Mock-
up Interface Co-Simulation Units), Modelica (multi-physical dynamics), SUMO
(traffic flow simulator), and Delta3D (physics).

Domain
Models

System
Models

Scenario
Models

Analytics
Workflows

Parametric
Exploration

Job Manager

Local File system and/or Cloud Storage Simulation Trace Files, Analysis Results, Computed Metrics

Builder
Tool Docker Meso-

Sphere
Open

MDAO

Simulator Integration Platform

Federate
Generation

Simulation
Integration

Model Integration Platform

Analysis/Sim.
Specifications

Simulation
Engines

OpenStack
ToolsExecution Integration Platform

Federate

HLA

Composed Analysis/Simulation Models

FederateFederateFederateFederateFederate

Fig. 18.2 Integration platforms for heterogeneous modeling and simulation

436 G. Karsai et al.

2. Model Integration Language (MIL) that captures the integration models for the
overall integrated CPS/H- CPS to be simulated. Integration models include
modeling constructs imported from individual domain models (semantic inter-
faces), as well as modeling constructs for representing interactions among the
domain models.

3. Scenario Models (SEM) representing synchronization points, event conditions,
and timed events driving a simulation run. Scenario modeling is part of the
CPSWT language suite and essential for describing experiment scenarios.

Beyond these fundamental model types, there are several sub-languages for
representing deployment and execution management information required for cre-
ating and running experiments.

To address heterogeneity, the CPSWT tool kit departed from the most frequently
used approach to address heterogeneity: the development or adoption of a very broad
and necessarily complex modeling language designed for covering all relevant views
of multi-physics and cyber domains. Instead, emphasis was placed on the develop-
ment of a model integration language –MIL – with constructs limited to modeling
the interactions among different constituent models. The key to this approach is the
concept of semantic interface. When integrating a new model type with its associ-
ated simulator, the semantic interface captures the sub-language exposed by the
domain modeling language (e.g., Simulink) for integration. These exported
sub-languages are complemented by integration constructs enabling the specification
of integration models. Since CPSWT uses the High Level Architecture (HLA)
standard for simulation engine integration, it is a natural choice that the MIL
incorporates HLA interaction models and distributed object model (HLA Standard).
It means that the interaction semantics among domain models is defined by HLA
(and implemented by the HLA Run-Time Infrastructure – HLA-RTI).

5.2 Simulator Integration Platform

The role of the simulation integration platform is to establish interactions across the
concurrently running simulators by coordinating time advancement and routing
messages among the simulators. Since CPSWT uses HLA as the backbone for the
simulation integration platform, a large range of services for configuring, running,
and managing large-scale distributed simulations comes with the HLA-RTI that
exists both open-source and COTS implementation. (Since CPSWT is an open-
source project, it uses the Portico open-source RTI implementation (PORTICO).)
Since the HLA standard documents the simulation services extensively (HLA
Standard), it is not included in this discussion.

It is worth mentioning that there are still much discussion about the complexity
and scalability of HLA implementations. In our experience, distributed time and
object management are inherently complex problems, particularly when logical-time
simulation needs to be synchronized with the real-time execution of HIL/SIL

18 Transportation Networks 437

components. Competing solutions such as Functional Mock-up Interface (FMI)
(http://fmi-standard.org) or the Distributed Interactive Simulation (DIS) (Davis
1995) framework are simpler but provide limited services for integrating multi-
model simulations on distributed computing platforms. Even using HLA, the inte-
gration of multi-model simulations by using directly the APIs of the HLA Run-Time
Infrastructure (HLA-RTI) and writing integration code is an error-prone and time-
consuming task. To alleviate this challenge, the CPSWT tool kit includes a suite of
model-based generators that automatically integrate the executable federation from
the integration models.

5.3 Execution Integration Platform

The CPSWT execution integration platform incorporates a range of tools for
deploying and managing distributed simulations on desktops, on servers, and on
cloud platforms. Availability of relatively low-cost computing resources offered a
major simplification of running large-scale simulations. However it brought to the
forefront the needs for structuring large simulations as federation of federations.
Decomposing of large-scale models based on intensity of interactions and required
time resolution have much need for automation.

5.4 The Integrated CPSWT Tool Kit

The horizontal integration platforms described above are supported by services and
tools. The functional architecture of the CPSWT tool kit is shown in Fig. 18.3.

Runtime Environment

High Level Architecture (HLA) – RTI

HardwareSimulation
FederatesSimulat
ion
HardwareSimulation
Federates

HardwareHardware in
the loop
HardwareHardware in

the loopHardwareSIL/HIL
Gateways

HardwareHuman in the
loopHardwareHuman in the
loop
HardwareHuman
Interface

Hardware
Courses of
Actions
(COAs)
Hardware
Courses of
Actions
(COAs)
HardwareCOA
Orchestrator

HardwareLoggers
MonitorsHardwareLoggers
MonitorsHardwareLoggers

Monitors
Hardware

Projections
Prognostics
Analyzers

Hardware
Projections
Prognostics
Analyzers

HardwareAnalyzers

Deployment Platforms

HardwareDesktopsHardwareDesktopsHardwareDesktops HardwareServersHardwareServersHardwareServers HardwareCloudHardwareCloudHardwareCloud

Experiment
Manager

HardwareSimulation
Integrator

HardwareSimulation Deployer

HardwareCourse of Action
(COA) Generator

HardwareExperiment
Controller

In
te

gr
at

e
&

 C
on

tr
ol

Experiment Designer

Hardware
Experiment Modeling Tools

• Multi-model expt. designs
• COA models
• Deployment models

Hardware
Results Visualization Tools

• MySQL DB analyzers/viz.
• Dashboard

Mapping
Model libraries
* Federate models
* Federation models

Exp. libraries
* Config. models
* Analytics
- Analysis libs.
- Visualization libs

HardwareCollaboration Tools

HardwareManagement Tools

Sp
ec

ify

Users

Fig. 18.3 CPSWT tool kit

438 G. Karsai et al.

Components of the runtime environment and the experiment manager belong pri-
marily to the simulation integration layer and execution integration layer on
Fig. 18.2, while the experiment designer incorporates tools supporting the model
integration layer. The distributed runtime environment includes various domain-
specific simulation engines wrapped as HLA federates, the SIL/HIL gateways, a
range of HLA service functions. It also includes deployment platform alternatives as
mentioned before. The overall tool kit incorporates two other functional components
that were not mentioned before, the experiment manager and experiment designer.

The experiment manager component incorporates facilities for building, config-
uring, deploying, and controlling experiments. These components are model-based;
their actions are the result of interpreting experiment, scenario, and deployment
models created by the experiment designer tool suite. The simulation integrator and
simulation deployer components enable web-based modeling and configuration of
the multi-model integrated simulations according to their deployment models. The
experiment controller presents a front-end interface for experimentation where user
can selectively deploy experiments, configure analysis, control running simulations,
and analyze simulation results. The experiment designer tool suite incorporates a
web-based modeling tool, WebGME (Maroti et al. 2014), for graphically building
integration models, repositories for models and experiments, visualizer tools, and
services that make the overall system accessible to users, manage user groups and
communities, and enable collaborative modeling and experimentation.

A fundamental aspect of CPSWT is that it supports three distinct levels of users.
At the top are the experiment designers and analysts who perform studies and
evaluations by designing experimental scenarios on a configured system and running
experiments using those scenarios. The second level of users include the system
modelers and integrators who have the knowledge of the system-of-system archi-
tecture of the overall system that is being simulated in an integrated manner. These
users can create models and artifacts needed for new studies. Lastly, the third level of
users are the infrastructure developers and maintainers who have deep technical
knowledge to incorporate new simulation tools in the infrastructure, to build and
enable parameters for the individual models and experiments, and to develop and
maintain the build systems and tooling infrastructure.

6 Example: Resilience Analysis for Transportation
Networks

In this section we demonstrate simulation-based resilience analysis using a trans-
portation network example.

Optimization of traffic lights in urban transportation networks is a known chal-
lenge in modern traffic control systems (Helbing and Siegmeier 2007). A common
goal is to minimize congestion. Much prior work has now demonstrated that
allowing for dynamic real-time control (as compared to fixed-time control) can

18 Transportation Networks 439

significantly improve performance of optimized traffic light controllers (Fouladvand
et al. 2004; Gershenson and Rosenblueth 2012). A number of methods to perform
optimization of closed-loop control systems have been proposed, where sensor
measurements are used to dynamically adjust the timing of traffic light green-red
cycles (Mikami and Kakazu 1994; Royani et al. 2010).

Although adaptive, state-aware strategies can offer gains in traffic control effi-
ciency, they expose an attack surface that can be exploited to increase congestion,
even to bring down a traffic network. For example, a common sort of adaptive
control logic involves system state captured by vehicle queue lengths in each
direction, with light switching between red and green as a function of relative
queue lengths. While such state-aware switching can significantly increase effi-
ciency, it also exposes a vulnerability of controllers to attacks on sensors from
which queue length information is derived. An additional consideration which is
crucial in modern complex traffic networks is that traffic lights on the network are
often designed by multiple actors (e.g., municipalities).

We demonstrate how the SURE simulation-based traffic control test bed1 (created
using the CPSWT tool kit) can be successfully used to systematically and efficiently
explore these challenges in multi-intersection closed-loop traffic light control, where
(1) traffic light controllers take into account relative queue lengths to determine
red-green state of the traffic lights at an intersection, (2) controllers for all lights must
be designed to work jointly so as to optimize overall traffic network performance,
(3) sensors feeding data into the controllers are vulnerable to denial-of-service
attacks, and (4) intersections can be partitioned among a set of players, with own
goals pertaining to congestion within their local municipal region, which are in
general misaligned with global interests of the entire traffic network. The SURE
environment integrates the SUMO traffic simulator,2 OMNET++3 network simula-
tor, and Simulink for modeling controllers. Details of the theoretical approach can be
found in (Lou and Vorobeychik 2016).

6.1 Traffic Model

The transportation network domain supports the use of real-world, detailed – street
and lane-level – traffic maps. These maps can be imported from OpenStreetMap
(OpenStreetMap Contributors 2017) with ready-to-use street network, intersection
rules (i.e., permitted lane-to-lane graphs and priorities). The current test bed scenar-
ios are developed on the Vanderbilt University campus network (Fig. 18.4a). Once
the road map is imported, the traffic demand patterns are to be modeled. We have
built a graphical demand modeling tool that can be used to easily to create different

1http://cps-vo.org/group/sos/sure
2sumo.dlr.de/index.html
3https://omnetpp.org/

440 G. Karsai et al.

http://cps-vo.org/group/sos/sure
https://sumo.dlr.de/index.html
https://omnetpp.org/

stochastic traffic demand patterns. Figure 18.4b shows an example of demand
modeling in the WebGME modeling environment. The model allows for arbitrary
number sequential demand phases, each with a time interval and weights for traffic
heading into (from Home), from (to Home), and within (intra) the network.

6.2 Signalized Intersection Models

The design interface of SURE uses hierarchical decomposition and multiple abstrac-
tion levels to work at the map level, for capturing intersection-level parameters or
fine-tuning attack strategies. Figure 18.4c shows the intersection-level model. Each
signalized intersection is equipped with a full set of sensors on all incoming lanes
capable for measuring the current queue length (number of cars) waiting on the
corresponding lanes to cross the intersection. Also, each intersection is equipped
with a traffic light running a predefined program. In each phase of the traffic light
program, one or more incoming lanes are being emptied – this information is
available for the controller algorithm. The controller logic – using the queue length
measurement and driven by a few design parameters – can advance the phase of the
traffic light, thus modulating the periodicity and the timing of the program.

Fig. 18.4 Traffic control models. (a) Vanderbilt campus street network. (b) Stochastic traffic
demand model. (c) Intersection model. (d) Communication network model

18 Transportation Networks 441

6.3 Resilient Monitoring and Control Model

Formally, a feedback traffic light controller has a predefined phase sequence (p0,...,
pn). For each phase pi, mi is the minimum interval, Mi is the maximal interval, qi is
the average queue length of the lanes related to the ith phase, and θi is the threshold
on the queue length of lanes blocked in the ith phase. The controller parameters we
need to tune are the thresholds Θ ¼ (Θ0,...,Θm), where Θi ¼ (θ0,...θni) are the
thresholds of the ith intersection. The global objective is to maximize average
speed, s(Θ), over the entire traffic network.

6.4 Communication Network Model

Apart from the road network and traffic demands, one also needs to model the
associated cyber communication network for the traffic sensors, controllers, and
communication network elements such as routers. In SURE, this can be done on the
same web-based interface, by instantiating the appropriate elements from the part
browser and creating the necessary communication links between them.
Figure 18.4d shows an example of a cyber communication network model. Here,
the large computerlike icon is for a centralized control center, connected to sensors –
depicted as hexagons with the letter “S” – using intermediate routers and commu-
nication links.

6.5 Attacker-Defender Games

The current attack model allows for arbitrary denial-of-service (DoS) attacks to be
deployed on the map – targeting the sensors or other elements of the cyber infra-
structure. The task of defender (blue) team is to tune the controller parameters
(interval and queue thresholds), while the attacker (red) team selects one or more –
but limited number – of attack targets. Each round is evaluated by executing the
C2WT-based simulation from the web interface. The results – i.e., average travel
time – are shown once the simulation finished. A typical experiment workflow is
shown in Fig. 18.5.

The high-level results (average speed) of various configurations on the Vanderbilt
University campus network with five selected intersections are shown in Fig. 18.4.

We can make two important observations: (1) controller parameters which are
jointly optimized can result in a significant increase in average speed and (2) explic-
itly building resilience into a controller can improve its resilience against attacks,
while maintaining high performance when no attacks are present.

442 G. Karsai et al.

7 Future Developments and Promising Research Directions

Engineering resilience into cyber-physical systems has made significant advances in
recent years, but it is clearly far from a well-defined engineering discipline. Systems
are still often unprepared for unforeseen situations, and they are relatively weak
compared to, for instance, biological systems. However, there are a few interesting
research directions that can and should be pursued. Resilience is a system-level
property, and it is emerging from (the design of) a system, not from an individual
component of a system. Given this, resilient system design that focuses on
architecting and engineering issues related to resilience is always going to be in
focus. New engineering principles and architectures are sought that could be for-
mally analyzed to prove that the system functions can be recovered, even under
adverse conditions.

Formal or simulation-based analysis of resilience is desired, because exhaustive
testing on real-life systems is frequently not feasible, especially in cyber-physical
systems. Classic techniques based on simple redundancy need to be replaced by
intelligent management of resources that achieves the same level of resilience at a

Fig. 18.5 SURE experiments and results. (a) SURE experiment workflow. (b) Performance of
optimized and baseline controllers with and without attacks

18 Transportation Networks 443

lower cost. Classical redundancy is feasible but typically very expensive; hence
more cost-effective solutions are needed. Today, these solutions are often central-
ized, meaning that they could have a single point of failure. In the future, such
mechanisms need to become more decentralized and adaptive. Along these lines,
collaborative, consensus-based approaches to resilience are of major interest. Much
broader categories of anomalies need to be defined that a system should be resilient
to. For example, temporary performance degradations or unintended side channels
need to be detected and mitigated, but the list is probably much longer. The physical
aspects of CPS is another example that could potentially provide novel uses cases for
simulation-based study of resilience – e.g., can a system recover from the impact of
physical attacks through software actions directed to reallocating functionalities
among physical components?

There is a well-recognized gap between theoretical results for improving resil-
ience and their experimentally validated applicability. The primary problem is that
opportunities for doing experimental work on resilience in real systems are highly
limited, and simulation-based experiments require tools that are expensive to use and
models that are expensive to develop. To narrow this gap to enable experimental
research on resilient system design using integrated high-fidelity simulations is an
important goal of our work. The urgency for progress is further increased by the
rapid expansion of data-driven methods that use machine learning for developing
both reflexive and deliberative control methods for active resilience.

Acknowledgment This work was supported in part by FORCES (Foundations Of Resilient
CybEr-physical Systems), which receives support from the National Science Foundation (NSF
award numbers CNS-1238959, CNS-1238962, CNS1239054, CNS-1239166), by the Air Force
Research Laboratory under award FA8750-14-2-0180, and by National Institute of Standards and
Technology.

References

Bhatia, N. P., & Szegő, G. P. (2002). Stability theory of dynamical systems. Springer-Verlag Berlin
Heidelberg. ISBN 978-3-540-42748-3.

Dai, S., & Koutsoukos, X. (2016). Safety analysis of automotive control systems using multi-modal
port-Hamiltonian systems. In 19th international conference on hybrid systems: Computation
and control (pp. 105–114) LNCS Vol 10012, Springer.

Davis, P. K. (1995). Distributed interactive simulation in the evolution of DoD warfare modeling
and simulation. Proceedings of the IEEE, 83(8).

de Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29–April 6, 2008. Proceedings, volume 4963 of Lecture Notes in
Computer Science (pp. 337–340). Springer.

Evans, P., & Annunziata, M. (2012, November 26). Industrial internet: Pushing the boundaries of
minds and machines. GE.

Fettweis, A. (1986). Wave digital filters: Theory and practice. Proceeding of the IEEE, 74(2),
270–327.

444 G. Karsai et al.

Fouladvand, M. E., Shaebani, M. R., & Sadjadi, Z. (2004). Intelligent controlling simulation of
traffic flow in a small city network. Journal of the Physical Society of Japan, 73(11),
3209–3214.

Gershenson, C., & Rosenblueth, D. A. (2012). Self-organizing traffic lights at multiple-street
intersections. Complexity, 17(4), 23–39.

Helbing, D., Siegmeier, J., & ̈ammer, S. L. (2007). Self-organized network flows. NHM, 2(2),
193–210.

Hemingway, G., Neema, H., Nine, H., & Sztipanovits, J. (2012, February). Gabor Karsai: Rapid
synthesis of high-level architecture-based heterogeneous simulation: A model-based integration
approach, simulation. Transactions of the Society for Modeling and Simulation International,
88(2), 217–232.

HLA standard. IEEE standard for modeling and simulation (M&S) high-level architecture (HLA) –
framework and rules ieeexplore.ieee.org/servlet/opac?punumber¼7179

http://fmi-standard.org
Kagermann, H., Wahlster, W., & Helbig, J. (2013, April). Recommendations for implementing the

strategic initiative INDUSTRIE 4.0, ACATECH report. National Academy of Science and
Engineering.

Kottenstette, N., Hall, J., Koutsoukos, X., Sztipanovits, J., & Antsaklis, P. (2013, May). Design of
networked control systems using passivity. IEEE Transactions on Control Systems Technology,
21(3), 649–665.

Koutsoukos, X., Kottenstette, N., Hall, J., Eyisi, E., LeBlanc, H., Porter, J., & Sztipanovits,
J. (2012, December). A passivity approach for model-based compositional design of networked
control systems. ACM Transactions on Embedded Computing Systems, Special Issue on the
Synthesis of Cyber-Physical Systems, 11(4), 31.

Laszka, A., Vorobeychik, Y., & Koutsoukos, X. (2015). “Resilient observation selection in
adversarial settings”, 54th IEEE conference on decision and control (CDC’15), Osaka, Dec
15–18.

LeBlanc, H., & Koutsoukos, X. (2013, April). Algorithms for determining network robustness,
ACM International Conference on High Confidence Networked Systems (HiCoNS 2013).
Philadelphia, PA, April 8–11, 2013. Heath LeBlanc and Xenofon Koutsoukos. “Resilient
synchronization in robust networked multi-agent systems”, Hybrid Systems: Computation and
Control 2013 (HSCC 2013). Philadelphia, PA, 8–11.

LeBlanc, H., Zhang, H., Koutsoukos, X., & Sundaram, S. (2013, April). Resilient asymptotic
consensus in robust networks. IEEE Journal on Selected Areas on Communication, Special
Issue on In-Network Computation: Exploring the Fundamental Limits, 31(4), 766–781.

Lou, J., & Vorobeychik, Y. (2016). Decentralization and security in dynamic traffic light control. In
Proceedings of the ACM symposium and Bootcamp on the science of security (pp. 90–92). IGI
Global.

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015). The
Internet of things: Mapping the value beyond the hype. McKinsey Global Institute.

Maroti, M., Kereskenyi, R., Kecskes, T., Volgyesi, P., & Ledeczi, A. (2014, June). Online
collaborative environment for designing complex computational systems. In The international
conference on computational science. Cairns: ICCS.

Mikami, S., & Kakazu, Y. (1994). Genetic reinforcement learning for co-operative traffic signal
control. In Proceedings of the first IEEE conference on evolutionary computation, 1994 (Vol.
1, pp. 223–228). IEEE World Congress on Computational Intelligence.

OpenStreetMap Contributors. (2017). Planet dump retrieved from https://planet.osm.org, https://
www.openstreetmap.org

Perkins, J., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C., Sherwood,
F., Sidiroglou, S., Sullivan, G., Wong, W., Zibin, Y., Ernst, M., & Rinard, M. Automatically
Patching Errors in Deployed Software. SOSP’09, October 11–14, Big Sky, Montana.

PORTICO. An open-source Run-Time Infrastructure for HLA-based distributed simulations –

www.porticoproject.org

18 Transportation Networks 445

http://ieeexplore.ieee.org/servlet/opac?punumber=7179
http://ieeexplore.ieee.org/servlet/opac?punumber=7179
http://fmi-standard.org
https://planet.osm.org
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.porticoproject.org

Pradhan, S., Dubey, A., Levendovszky, T., Kumar, P. S., Emfinger, W. A., Balasubramanian, D.,
Otte, W., & Karsai, G. (2016). Achieving resilience in distributed software systems via self-
reconfiguration. Journal of Systems and Software, 122, 344–363.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.
University Press Group Limited.

Roth, T., Song, E., Burns, M., Neema, H., Emfinger, W., & Szipanovits, J. (2017). “Cyber-physical
system development environment for energy applications”. In ASME power and energy con-
ference 2017, Charlotte, USA, 06/2017.

Royani, T., Haddadnia, J., & Alipoor, M. (2010). Traffic signal control for isolated intersections
based on fuzzy neural network and genetic algorithm. In Proceedings of the 10th WSEAS
international conference on signal processing, computational geometry and artificial vision,
ser.ISCGAV’10 (pp. 87–91).

Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., Goodwine,
B., Baras, J., & Wang, S. (2012). Toward a science of cyber-physical system integration.
Proceedings of the IEEE, Special Issue on Cyber-Physical Systems, 100(1), 29–44.

Teschl, G. (2012). Ordinary differential equations and dynamical systems. American Mathematical
Society. Providence, Rhode Island. ISBN 978-0-8218-8328-0.

Williams, S. (2008). Communication in mechanism design. Cambridge, UK, Cambridge University
Press.

446 G. Karsai et al.

	Chapter 18: Transportation Networks
	1 Introduction
	2 Methods for Implementing Passive Resilience
	2.1 Attack-Resilient Sensor Allocation
	2.2 Passivity-Based Architecture

	3 Methods for Implementing Active Resilience
	4 Simulation-Based Evaluation of Resilience
	5 Simulation Integration Architecture and Tool Kit
	5.1 Model Integration Platform
	5.2 Simulator Integration Platform
	5.3 Execution Integration Platform
	5.4 The Integrated CPSWT Tool Kit

	6 Example: Resilience Analysis for Transportation Networks
	6.1 Traffic Model
	6.2 Signalized Intersection Models
	6.3 Resilient Monitoring and Control Model
	6.4 Communication Network Model
	6.5 Attacker-Defender Games

	7 Future Developments and Promising Research Directions
	References

