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Abstract
Learning‐enabled components (LECs) such as deep neural networks are used increasingly
in cyber‐physical systems (CPS) since they can handle the uncertainty and variability of
the environment and increase the level of autonomy. LECs, however, may compromise
system safety since their predictions may have large errors, for example, when the data
available at runtime are different than the data used for training. This study considers the
problem of efficient and robust out‐of‐distribution detection for learning‐enabled CPS.
Out‐of‐distribution detection using a single input example is typically not robust and may
result in a large number of false alarms. The proposed approach utilises neural network
architectures that are used to compute efficiently the nonconformity of new inputs
relative to the training data. Specifically, variational autoencoder and deep support vector
data description networks are used to learn models for the real‐time detection of out‐of‐
distribution high‐dimensional inputs. Robustness can be improved by incorporating sa-
liency maps that identify parts of the input contributing most to the LEC predictions. We
demonstrate the approach using simulation case studies of an advanced emergency
braking system and a self‐driving end‐to‐end controller, as well as a real‐world data set for
autonomous driving. The experimental results show a small detection delay with a very
small number of false alarms while the execution time is comparable to the execution
time of the original LECs.
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1 | INTRODUCTION

Learning‐enabled components (LECs) such as neural networks
are used in many classes of cyber‐physical systems (CPS).
Semi‐autonomous and autonomous vehicles, in particular, are
CPS where LECs can play a significant role in perception,
planning, and control if they are complemented with methods
for analysing and ensuring safety [11, 33]. However, there are
characteristics of LECs that can complicate safety analysis.
LECs encode knowledge in a form that is not transparent.
Deep neural networks (DNNs), for example, capture features
in a multitude of activation functions that cannot be inspected
to ensure that the LEC operates as intended. High levels of
autonomy require high‐capacity models that further obscure

the system operation. Even if an LEC is trained and tested
extensively, it is typically characterised by a non‐zero error rate.
More importantly, the error estimated at design time may be
different than the true error because of out‐of‐distribution
data.

Since training data sets are necessarily incomplete, safety
assessment at design time is also incomplete. Design‐time
verification and analysis methods must be combined with
runtime monitoring techniques that can be used for safety
assurance. In real‐world CPS, the uncertainty and variability of
the environment may result in data that are not similar to the
data used for training. Although models such as DNNs
generalise well if the training and testing data are sampled from
the same distribution, out‐of‐distribution data may lead to
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large errors. An LEC is trained and tested using data available
at design time but must be deployed in a real system and
operate under possibly different conditions. Testing ensures
that the error is satisfactory for a large number of examples.
However, during the system operation, the LEC may still
encounter out‐of‐distribution inputs. Out‐of‐distribution
detection must quantify how different are the new test data
are from the training data and raise an alarm to indicate that
the LEC may give a prediction with a large error. Detection
methods must be robust and limit the number of false alarms
while being computational efficient for real‐time monitoring.

The inputs to the LECs in CPS are normally high‐
dimensional measurements from sensors, such as cameras,
LIDAR, and RADAR. It is difficult and not intuitive to define
and understand the out‐of‐distribution data in the feature
space of the original high‐dimensional data. Out‐of‐
distribution data are typically due to the different conditions
and environments in which the data are collected. Such sce-
narios and conditions are configured using a series of latent
variables in a low‐dimensional space. Therefore, the out‐of‐
distribution data considered in this study can be defined as
the data whose configurable latent variables are not within the
distribution of the training dataset. Although changes or de-
viations from the training distribution in some parameters
cannot be detected because only trivial changes have occurred
in the data space. Our detection task is to quantify the change
in the data space caused by these configurable parameters and
to alert when this change exceeds a certain threshold.

The proposed approach is based on conformal prediction
(CP) [4, 35] and conformal anomaly detection (CAD) [19]. The
main idea of these methods is to test if a new input example
conforms to the training data set by utilising a nonconformity
measure which assigns a numerical score indicating how
different the input example is from the training data set. The
next step is to define a p‐value as the fraction of observations
that have nonconformity scores greater than or equal to the
nonconformity scores of the training examples, which is then
used for estimating the confidence of the prediction for the
test input. In order to use the approach online, inductive
conformal anomaly detection (ICAD) is introduced in ref. [20],
where the original training set is split into the proper training
set and the calibration set, and the p‐values are computed
relative to calibration examples. If a p‐value is smaller than a
predefined anomaly threshold e, the test example can be
classified as an anomaly. The approach is used for sequential
anomaly detection of time trajectories in ref. [19] by using the
nearest neighbours and Hausdorff distance measuring the
nonconformity between trajectories. Combined with
exchangeability martingales, ICAD is used for change‐point
detection in ref. [34].

However, there are still challenges in applying such
methods for real‐time detection of high‐dimensional inputs in
CPS. Existing methods rely on nonconformity measures
computed using k‐nearest neighbours and kernel density esti-
mation and cannot scale to LECs with high‐dimensional in-
puts. Out‐of‐distribution detection using a single example is
typically not robust and may result in a large number of false

alarms that inhibit the CPS operation. Methods based on
martingales that incorporate multiple examples are not appli-
cable directly to CPS because the input sequence is time‐
correlated and not exchangeable.

The main contribution of the study is an approach for real‐
time detection of out‐of‐distribution inputs. The approach
leverages inductive conformal prediction and anomaly detec-
tion. In order to handle high‐dimensional inputs in real‐time,
variational autoencoders (VAEs) [18] and deep support vector
data description (SVDD) [29] are utilised for efficient
computation of the nonconformity score, which enables the
real‐time detection of out‐of‐distribution high‐dimensional
inputs. The VAE or the SVDD is trained using the same
training dataset as the monitored LEC. The learning model can
work properly when the test data are from the same distribu-
tion as the training dataset, but does not generalise well to the
out‐of‐distribution data. By testing whether the learning model
is behaving normally, we can detect whether the test data is
sampled from the same distribution as training dataset. Spe-
cifically, VAE model should accurately reconstruct the in‐
distribution input but reconstruct the out‐of‐distribution data
with a low quality; SVDD model should map the in‐
distribution data as close to the centre of the hypersphere as
possible, but map the out‐of‐distribution data far away from
the centre. Therefore, the reconstruction error of the test
example in VAE model and the distance of representation of
the test example to the centre of the hypersphere in the SVDD
model can be used as the nonconformity measure evaluating
the difference between the test example and the training
dataset. Furthermore, in order to use multiple examples for
detection, we apply different heuristic techniques for VAE‐ and
SVDD‐based methods. VAE is a generative model that allows
generating multiple examples in real‐time similar to the input
and computing multiple p‐values that increase the robustness
of detection. SVDD is a model trained to perform anomaly
detection, and in our method, it is combined with a test based
on a sliding window. It should be noted that the VAE and
SVDD neural networks may exhibit an intrinsic error of
computing nonconformity scores. However, the robustness of
the detection is improved considerably by taking into account
multiple input examples and comparing them with the cali-
bration nonconformity scores.

Another contribution of the study is a method for
improving the out‐of‐distribution detection by incorporating
saliency maps. Saliency maps aim to identify parts of the input
that contribute most to the LEC predictions [31, 37]. In our
approach, a saliency map is computed to quantify how much
the input features contribute to the LEC output and then is
used to weight the contribution of the input features to the
nonconformity scores. Therefore, the detection algorithm
weights the input features based on their influence on the
output of the LEC. The main benefit of this method is to
decrease the impact of nonconformal input features that do
not contribute to the LEC prediction. For high‐dimensional
inputs such as images, for example, it is possible that parts
of the image do not affect the LEC output. As an illustrative
example, the VAE may have difficulty generating fine‐
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granularity details of the original input image, however, such
fine‐granularity details may not affect the LEC output. We
integrate two algorithms for computing saliency maps into the
approach: (1) intergrated‐gradients optimised saliency (I‐GOS)
[27] and (2) VisualBackProp (VBP) [6]. The algorithms are very
efficient and can be used in real‐time.

The final contribution is the empirical evaluation using (1)
an advanced emergency braking system (AEBS), (2) a self‐
driving end‐to‐end controller (SDEC), and (3) an autono-
mous vehicle seasonal dataset (AVSD). The first two case
studies are implemented in CARLA [10], an open‐source
simulator for self‐driving cars. AVSD evaluates the approach
using the Ford autonomous vehicle seasonal data set [1]. The
AEBS uses a perception LEC to detect the nearest front
obstacle on the road and estimate the distance from the host
vehicle based on camera images. The distance together with
the velocity of the host car are used as inputs to a reinforce-
ment learning controller whose objective is to comfortably
stop the vehicle. Out‐of‐distribution inputs are generated by
varying a precipitation parameter provided by CARLA, which
introduces visual effects that may cause large error in the
distance estimation resulting in a collision. The simulation re-
sults demonstrate a very small number of false positives and a
detection delay less than 1 s. For the SDEC that comes with
CARLA [10], the empirical evaluation shows that the proposed
method can be used to detect a class of physically realisable
attacks in end‐to‐end autonomous driving presented in ref. [8].
The attacks are realised by painted lines on the road to cause
the self‐driving car to follow a target path. The objective of the
AVSD is to estimate the heading changes of a host vehicle
from images captured by a camera. A neural network is trained
in specific weather conditions and traffic scenarios but may
encounter different ones. The evaluation results show that the
proposed approach is effective using a real‐world data set. For
all cases, the execution time of the detection method is com-
parable to the execution time of the original LECs, which
demonstrates that the method can be used in real‐time.

The rest of the study is organised as follows. Section 2
discusses the related work. Section 3 describes the system
model and the problem. Sections 4 and 5 present the detection
algorithms using VAE and SVDD as the underlying neural
network architecture respectively. Section 6 extends the algo-
rithms by incorporating the saliency maps. Section 7 presents
the evaluation results and Section 8 concludes the study.

2 | RELATED WORK

Verification and assurance of CPS with machine learning
components is considered in ref. [30] in a broader context of
verified artificial intelligence. The challenges discussed in ref.
[30] include the integration of design‐time and runtime
methods to address the undecidability of verification in com-
plex systems and environment modelling. Out‐of‐distribution
detection can be used with recovery and reconfiguration
techniques to complement design‐time verification. Focussing
on design‐time techniques, an approach to identify regions of

the input space that lack training data and potentially larger
errors is presented in ref. [15]. The approach could be adapted
to predict at runtime if new inputs are from regions covered
during training or not. Compositional falsification of CPS with
machine learning components is introduced in ref. [11] and
demonstrated with a simulated AEBS. The approach is applied
at design time for identifying executions that falsify temporal
logic specifications and also identifies regions of uncertainty
where additional analysis and runtime monitoring is required.
A related approach for simulation‐based adversarial test gen-
eration for autonomous vehicles with machine learning com-
ponents is presented in ref. [33]. The technique is also used at
design time to increase the reliability of autonomous CPS and
can provide additional training data for out‐of‐distribution
detection.

Detection of out‐of‐distribution examples in neural net-
works has received considerable attention, especially in the
context of classification tasks in computer vision [16].
Correctly classified examples tend to have greater maximum
softmax probabilities than erroneously classified and out‐of‐
distribution examples. An approach for improving detection
by training anomaly detectors is proposed in [17]. An approach
for reducing the number of false alarms of out‐of‐distribution
image detection by adding small perturbations to the input is
presented in ref. [21]. The idea is similar to randomly sampling
from the latent space of the VAE that can also improve the
reliability of the detection. Such detection techniques do not
take into consideration the dynamical behaviour of CPS and
can exhibit a large number of false alarms. An approach that
aims to detect novelties based on the reconstruction error of
an autoencoder for a single input is presented in ref. [28]. The
approach is used for safe visual and LIDAR‐based navigation
of mobile robots. A similar approach using VAEs is proposed
in ref. [23] to estimate the uncertainty for a collision prediction
task for a robot car. As discussed in refs. [23, 28], out‐of‐
distribution detection and, in general, uncertainty estimation
is an important research direction for providing a more robust
detection.

Conformal anomaly detection (CAD) is proposed in ref.
[19] based on conformal prediction (CP) [35]. The essential
element in these methods is the definition of a nonconformity
measure defined by a function A that measures how different
a test example from the training data set. Then, a p‐value is
defined as the fraction of observations that have noncon-
formity scores greater than or equal to the nonconformity
scores of the training examples. A small p‐value corresponds
to a strange example relative to the training data set. The
efficiency of CAD method can be improved by using
inductive conformal anomaly detection (ICAD) [20], where
the original training set is split into a proper training set and a
calibration set, and the p‐values are computed relative to
calibration examples. Several anomaly detection approaches
based on the CAD and ICAD are raised in the literature, but
the nonconformity measures are defined differently, such as
k‐nearest neighbour (k‐NN) [20], kernel density estimation
(KDE) [32], and sub‐sequence local outlier factor [20]
nonconformity measures. Moreover, ICAD is combined with
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exchangeability martingales in ref. [34] for change‐point
detection. If the test input sequence is exchangeable, or it is
invariant with respect to any random permutation of inputs,
the corresponding p‐values should be independent and uni-
formly distributed between 0 and 1. The martingale can be
used to test if p‐values are independent and uniformly
sampled from 0 to 1, and furthermore, if the input sequence
is exchangeable.

Out‐of‐distribution detection may be oversensitive and
raise alarms when parts of the input that do not affect the
LEC output are changed slightly. Saliency maps are a visual-
isation tool for identifying which parts of the input contribute
most to the LEC predictions and are used in refs. [25, 36] to
help to understand if the models focus on reasonable cues in
an input image. Saliency maps can be computed using
gradient‐based methods [31] and deconvolution [37]. The
former approach uses backpropagation to compute the partial
derivatives with respect to the pixels in the input image, and
the latter uses deconvolution to map the feature activities in
intermediate layers to the input pixel space. Layer‐wise rele-
vance propagation (LRP) is introduced in ref. [3] as a method
to compute partial prediction contributions for input repre-
sentations by propagating the prediction back until the input
layer using the network weights and the neural activations
created by the forward pass. An integrated‐gradients optimised
saliency (I‐GOS) algorithm is raised in ref. [27] whose basic
idea is to optimise the saliency map so that the classification
score on the saliency‐masked image would maximally decrease.
Therefore, the saliency map indicates the influence of the
input features on the prediction. VisualBackProp [6] is
developed initially as a debugging tool and computes the sa-
liency maps by backpropagating the information of the feature
maps from deeper layers while simultaneously increasing the
resolution.

Adversarial examples can deceive the neural network into
predicting erroneous outputs by crafting the inputs with
deliberately designed perturbations [14]. Moreover, adversarial
attacks have been implemented to the physical domain trying
to design adversarial examples that are physically realisable
[12]. Recently, such physical adversarial examples are
deployed directly into an autonomous driving system, a
typical example of cyber‐physical systems [8]. Although
several defences are developed to withstand such adversarial
attacks [24], it has been proven that the defences can be
bypassed by adaptive attacks whose objective is to fool the
neural network and the defence technique simultaneously [9].
The physically realisable adaptive attacks are underexplored in
the literature.

3 | SYSTEM MODEL AND PROBLEM
FORMULATION

CPSs use extensively LECs to perform various tasks in order
to increase the level of autonomy. A typical simplified CPS
architecture with LECs (e.g., DNNs) for perception and con-
trol is shown in Figure 1. A perception component observes
and interprets the environment and provides information to a
controller, which, possibly using additional sensors (feedback
from the plant), applies an action to the plant in order to
achieve some task. In response to this action, the state of the
physical plant changes and the environment must be observed
and interpreted again to continue the system operation. An
end‐to‐end control architecture from perception to actuation
can also be used.

An LEC is designed using learning methods, such as su-
pervised and reinforcement learning. We assume that the LECs
are successfully trained, and the training and testing errors are
satisfactory. However, the training and testing data sets at
design time are necessarily incomplete and may under‐
represent safety‐critical cases. Out‐of‐distribution inputs, in
particular, which have not been used for training or testing,
may lead to large errors and compromise safety.

The inputs to perception and end‐to‐end control LECs are
high‐dimensional measurements from sensors such as cameras,
LIDAR, and RADAR. Out‐of‐distribution data in CPS typi-
cally due to data being collected under different conditions or
in a different environment. The scenarios and conditions under
which the dataset was generated can be configured using a
series of latent variables in a low‐dimensional space. Therefore,
the out‐of‐distribution can be defined as the data whose latent
variables are from a different distribution of the training
dataset.

The problem considered in this study is robustly detecting
out‐of‐distribution inputs in real‐time. Out‐of‐distribution
detection is crucial, for example, in order to enable decision
making by switching to a different control architecture or
human supervision. During the system operation, the inputs
arrive one by one to the perception LEC. After receiving each
input, the objective is to compute a valid measure of the dif-
ference between the test input and training dataset in the data
space and to alert when this difference exceeds a certain
threshold.

Online detection algorithms must be robust with a small
number of false alarms. The detection algorithms using a single
example are typically not robust and may result in a large
number of false alarms. The inputs in CPS are time‐correlated,
and therefore, they are not independent, which imposes a

F I GURE 1 Simplified CPS control
architecture.
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significant challenge to use multiple examples in detection.
Furthermore, for learning‐enabled CPS, out‐of‐distribution
detection must be performed in real‐time, which is very chal-
lenging because inputs to the LECs are high‐dimensional
measurements. The time and memory requirements of the
detection must be similar to the requirements of the LECs
used in the CPS architecture. Typical nonconformity measures
such as the k‐nearest neighbour (k‐NN) nonconformity mea-
sure [20] and the kernel density estimation (KDE) noncon-
formity measure [32] cannot scale to high‐dimensional inputs
because they require either storing the training data set or
estimating the density in a high‐dimensional space. It should be
noted that the system state can also be the input to the LEC.
How to estimate the state and how large the estimation error is
are beyond the scope of the problem considered in this study.

4 | VAE‐BASED DETECTION

Variational autoencoder (VAE) is a generative model that
learns parameters of a probability distribution to represent the
data [18]. A VAE consists of an encoder, a decoder, and a loss
function. The objective is to model the relationship between
the observation x and the low‐dimensional latent variable z
using the loss function Lðθ;ϕ; xÞ ¼ Ez

e
qϕðzjxÞ

�
log pθðxjzÞ

�
−

DKL½qϕðzjxÞkpðzÞ�, where θ and ϕ are neural network pa-
rameters. The first term in the loss function is the model fit,
and the second is the KL divergence between the approximate
posterior and the prior of z. A popular choice for the prior is
the Gaussian distribution. VAE‐based methods can utilise the
reconstruction error or reconstruction accuracy for anomaly
detection [2]. In this section, we introduce a VAE‐based
detection method based on inductive conformal anomaly
detection. The VAE allows generating multiple examples that
are similar to the input. If these examples are not conformal to
the training data, many of the corresponding nonconformity
scores will be very large indicating the test example is out of
the distribution of the training data set.

4.1 | Offline training and nonconformity
measure

Let us consider an LEC y = f(x) defining a mapping from input
x to output y. It should be noted that in this work only the
inputs are taken into consideration for out‐of‐distribution
detection. VAE is employed to measure the nonconformity
between the test input and the input distribution of the training
dataset of the LEC. Besides, VAE is an unsupervised learning
method in the sense that the labels are not required in addition
to the data inputs. Therefore, the training dataset of the
monitored LEC excluding the labels is used to train the VAE.
The set of input examples used for training the VAE is
denoted by {x1, …, xl}. During the system operation, a
sequence of inputs denoted by

�
x01;…; x0t;…

�
is processed

one‐by‐one. The task of the out‐of‐distribution detection is to
quantify how different the input sequence is from the training
data set. If the difference is large, the algorithm raises an alarm
indicating that the LEC may generate an output y with a large
error compared to the testing error obtained at design time.

Since the observations of the environment are highly time‐
correlated, the collected training data are not exchangeable. As
suggested in [35], reshuffling—a random permutation for the
training data set—is performed before training the VAE. After
reshuffling, the training data set is split into a proper training
set {(x1, y1), …, (xm, ym)} and a calibration set {(xm+1, ym+1),
…, (xl, yl)}. For each example in the calibration set, a function
A is used to compute the nonconformity measure that assigns
a numerical score indicating how different a test example is
from the training data set. The nonconformity scores of the
calibration examples are sorted and stored in order to be used
at runtime.

Given a new input x0t, the nonconformity score α0t is
computed using the nonconformity function A relative to the
proper training set, α0t ¼ A

�
fx1;…; xmg; x0t

�
: The computation

requires evaluating the nonconformity (strangeness) of x0t
relative to (x1, …, xm). The choice of the nonconformity
function A must ensure computing informative nonconformity
scores in real‐time. Using k‐NN, for example, requires storing
the training data set, which is infeasible for high‐dimensional
inputs. Instead, we learn an appropriate neural network ar-
chitecture that is trained offline using the proper training set
and encodes the required information in its parameters. This
neural network monitors the inputs to the perception or end‐
to‐end control LEC and is used to compute the nonconfor-
mity measure in real‐time.

Similar to the standard autoencoder, VAE attempts to
reconstruct the input image as accurately as possible. For an in‐
distribution input x, it should be reconstructed by the VAE
with a relatively small reconstruction error. Conversely, if the
test image is not sampled from the same distribution of the
training dataset, VAE cannot generalise well and will recon-
struct the test image with a low quality. The reconstruction
error is a good indication of the strangeness of the input
relative to the training set, and it is used as the nonconformity
measure. Similar to the standard autoencoder, VAE attempts to
reconstruct the input image as accurately as possible.

We use the squared error between the input example x and
generated output example x̂ as the nonconformity measure
defined as

α¼ AVAEðx; x̂Þ ¼ kx − x̂k2: ð1Þ

During the offline phase, for each example xj : j ∈ {m + 1,
…, l} in the calibration data set, we sample a single recon-
structed input x̂j from the trained VAE and compute the
nonconformity score αΓ

j using Equation (1). The precomputed
nonconformity scores of the calibration data are sorted and
stored in order to be used at runtime. The steps that are
performed offline are summarised in Algorithm 1.
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Algorithm 1 VAE-based out-of-distribution
detection

Input: Input training set {(x1, y1), …, (xl,
yl)}, input sequence

�
x01;…;x

0
t;…
�
, number

of calibration examples l − m, number of
examplesNgenerated bytheVAE,threshold
τ and parameter δ of CUSUM detector

Output: Output Boolean variable Anomt
Offline:
1: Split the training set {(x1, y1), …, (xl,

yl)}intothepropertrainingset{(x1,y1),
…, (xm, ym)} and calibration set {(xm+1,
ym+1), …, (xl, yl)}

2: Train a VAE using the proper training set
3: for j = m + 1 to l do
4: Generate x̂j using the trained VAE
5: αΓj ¼ AVAE

�
xj; x̂j

�

6: end for
7: {αm+1, …, αl} = sort

� �
αΓmþ1;…;α

Γ
l

��

Online:
8: S0 = 0
9: for t = 1, 2, … do
10: for k = 1 to N do
11: Sample x̂0t;k using the trained VAE

12: α0t;k ¼ AVAE
�
x0t; x̂

0
t;k

�

13: pt;k ¼
jfi¼mþ1;…;lg j αi≥α0t;kj

l−m
14: end for
15: Mt ¼

R 1
0 ∏

N
k¼1 epe−1

t;kde

16: St = max(0, St−1 + Mt − δ)
17: Anomt ← St > τ
18: end for

4.2 | Online detection

Given a test input x0t, the p‐value pt is computed as the fraction
of calibration examples that have nonconformity scores greater
than or equal to α0t

pt ¼
jfi¼mþ 1;…; lg j αi ≥ αtj

l
: ð2Þ

It should be noted that the computation of the p‐value can
be performed efficiently online since it requires storing only
the calibration nonconformity scores. If pt < e, the example x0t
can be classified as an anomaly. Using a single p‐value for
detecting out‐of‐distribution examples can lead to an over-
sensitive detector with a large number of false alarms that
inhibit the operation of the CPS. Our objective is to incor-
porate multiple examples into the detection algorithm and
compute a sequence of p‐values to test if there are many small
p‐values indicating an out‐of‐distribution input. The detail of
the online detection procedure is described below, and we also

provide the architecture in Figure 5 to better illustrate the
detection pipeline.

Given an input example x0t at time t, the encoder portion of
a VAE is used to approximate the posterior distribution of the
latent space. Typically, the posterior of the latent space is
approximated by a Gaussian distribution, whose mean is μt and

standard deviation is σt. Then, N points
n
z0t;1;…; z0t;N

o
are

sampled from the posterior that are used as input to the
decoder portion in order to generate multiple new examples
n
x̂0t;1;…; x̂0t;N

o
. Sampling from the posterior generates

encodings
n
z0t;1;…; z0t;N

o
so that the decoder is exposed to a

range of variations of the input example and outputs
n
x̂0t;1;…; x̂0t;N

o
.

For each generated example x̂0t;k, k ∈ {1, …, N}, the
nonconformity score α0t;k is computed as the reconstruction
error between the test input x0t and the generated example
using Equation (1). Such nonconformity measure AVAE cor-
responds to the ‘NCM’ block in the architecture. Then, the p‐
value pt,k is computed as the fraction of calibration examples
that have nonconformity scores greater than or equal to α0t;k
using Equation (2). It should be noted that, although the

generated examples
n
x̂0t;1;…; x̂0t;N

o
satisfy the exchangeability

assumption, they are sampled from a Gaussian distribution
conditioned by the input and are not sampled from the same
distribution as the calibration data set. Therefore, the N p‐
values {pt,1, …, pt,N} are not independent and uniformly
distributed in [0, 1]. However, if the input x0t is sampled from
the same distribution as the training data set, the p‐values will
be large, and they can be used for out‐of‐distribution
detection.

At runtime, for every new input example x0t received by the
perception or end‐to‐end control LEC at time t, a power
martingale [13] can be computed based on the sequence of p‐
values for some e as

Me
t ¼ ∏

N

k¼1
epe−1

t;k ;

and the simple mixture martingale [13] can be defined as

Mt ¼

Z 1

0
Me

tde¼

Z 1

0
∏
N

k¼1
epe−1

t;k de: ð3Þ

Both martingales will grow only if there are many small p‐
values in {pt,1, …, pt,N}, which will indicate an out‐of‐
distribution input. If most of the p‐values are relatively
greater than 0, the martingales are not expected to grow. We
use simple mixture martingale in our approach to avoid
parameter tuning required for the power martingale. Such
computation corresponds to the ‘Martingale test’ block in
Figure 2.
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In order to robustly detect when Mt becomes consistently
large, we use the cumulative sum (CUSUM) procedure [5].
CUSUM is a nonparametric stateful test and can be used to
generate alarms for out‐of‐distribution inputs by keeping track
of the historical information of the martingale values. The
detector is defined as S0 = 0 and St = max(0, St−1 + Mt − δ),
where δ prevents St from increasing consistently when the
inputs are in the same distribution as the training data. An
alarm is raised whenever St is greater than a threshold St > τ,
which can be optimised using empirical data [5]. Typically, after
an alarm, the test is reset with St = 0.

Algorithm 1 describes the VAE‐based real‐time out‐of‐
distribution detection. The nonconformity measure can be
computed very efficiently by executing the learnt VAE neural
network and generating N new examples. The complexity is
comparable to the complexity of the perception or end‐to‐end
LEC that is executed in real‐time.

5 | SVDD‐BASED DETECTION

VAEs and other autoencoder architectures are trained to
perform a task other than anomaly detection, assuming that the
reconstruction accuracy will be better for in‐distribution ex-
amples. Deep support vector data description (SVDD) is an
architecture trained to perform anomaly detection [29]. The idea
is to train a DNN to map the input data into a hypersphere of
minimum volume characterised by centre c and radius R. The
input space X is transformed to a compressed output space Z
while minimising the volume of the hypersphere that encloses
most of the input representations. Given a training data set
{x1, …, xn}, the one‐class deep SVDD [29] is based on the loss

min
W

1
n

Xn

i¼1

kϕðxi;WÞ − ck2 þ
λ
2

XL

ℓ¼1

kW ℓk
2
F ;

where ϕð� ;WÞ : X → Z denotes the neural network withL hid-
den layers and sets of weights W ¼

�
W 1;…;W ℓ;…; W L

�
,

c ∈ Z is the centre of the hypersphere, and the last term is a
weight regulariser with hyperparameter λ > 0, where ‖ ⋅‖F is the
Frobenius norm. One‐class deep SVDD learns to map the data
as close to centre c as possible by penalising the distance from
representations to the centre. The deep SVDD neural network
must not have bias terms or bounded activation functions, and
the centre c can be selected as the mean of the representations
from the initial inference on some training data to avoid trivial
solutions that map the input space to a single point [29]. Given a
new test example x, the distance of the representation ϕðx;W∗Þ

to the centre c of the hypersphere reflects how different the test
example is from the training data set and can be used as a
nonconformity measure. In contrast to VAEs, SVDD is not a
generative model and cannot be used to sample multiple ex-
amples. In order to use effectively the SVDD architecture in our
approach, we use a sliding window containing a sequence of
inputs as explained below.

5.1 | Offline training and nonconformity
measure

The offline phase of the SVDD‐based detection algorithm is
similar to the VAE‐based algorithm, but the only difference is
the nonconformity measure. After reshuffling the training data
set and splitting it into proper training data set and calibration
data set, a deep SVDD model is trained using the proper
training data set. The centre of the hypersphere c is fixed as the
mean of the representations from the initial pass on the proper
training data. After training, the neural network function
ϕðx;W∗Þ maps an input example x to a representation close to
the centre c. In‐distribution inputs are likely concentrated in a
relatively small area in the output space, while the out‐of‐
distribution inputs will be far away from the centre. The dis-
tance of the representation to the centre c of the hypersphere
can be used to evaluate the strangeness of the test example
relative to the proper training set and is defined as the
nonconformity measure

F I GURE 2 Architecture of the VAE‐based out‐of‐distribution detection. The grey block and dotted arrow are not executed when the saliency map is not
used in the detection. NCM stands for nonconformity measure, which corresponds to AVAE when the saliency map is not used, but to AVAE‐S when the saliency
map is used.
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α¼ ASVDDðxÞ ¼ kϕðx;W∗Þ − ck2: ð4Þ

The SVDD‐based method also uses a learnt model to
calculate the nonconformity score, and it can be used to
compute the nonconformity score in real‐time. During the
offline phase, the nonconformity scores for the calibration data
are precomputed using Equation (4) and sorted in order to be
used at runtime. The offline phase for the SVDD‐based de-
tector is shown in Algorithm 2.

Algorithm 2 SVDD-based out-of-distribution
detection

Input: Input training set {(x1, y1), …, (xl,
yl)}, input sequence

�
x01;…;x

0
t;…
�
, number

of calibration examples l − m, sliding
window size N, detector threshold τ

Output: Output Boolean variable Anomt
Offline:
1: Split the training set {(x1, y1), …, (xl,

yl)} into the proper training set {(x1,
y1), …, (xm, ym)} and calibration set
{(xm+1, ym+1), …, (xl, yl)}

2: Train a SVDD model using the proper
training set

3: for j = m + 1 to l do
4: αΓj ¼ ASVDD

�
xj
�

5: end for
6: {αm+1, …, αl} = sort

� �
αΓmþ1;…;α

Γ
l

��

Online:
7: for t = 1, 2, … do
8: α 0t ¼ ASVDD

�
x 0t
�

9: pt ¼
jfi¼mþ1;…;lg j αi≥α0tj

l−m

10: Mt ¼
R 1
0 ∏

t
i¼t−Nþ1 epe−1

i de

11: Anomt ← Mt > τ
12: end for

5.2 | Online detection

In order to improve the robustness of out‐of‐distribution
detection, it is desirable to use a sequence of inputs. Howev-
er, in contrast to the VAE, SVDD is not a generative model
and cannot be used to generate multiple examples similar to
the input. In the SVDD‐based method, we are using a sliding
window of inputs

�
x0t−Nþ1;…; x0t

�
. Figure 3 illustrates the

detailed online detection process of SVDD‐based method,
where the block ‘input masker’ is an identity function in this
method. In CPS, the inputs arrive at the perception or end‐to‐
end LEC one‐by‐one and they are time‐correlated, and
therefore, the inputs within the sliding window are not inde-
pendent. In order to apply this method to CPS, the size of the
sliding window N should be carefully chosen based on the
auto‐correlation analysis on the nonconformity scores of the
input sequence

�
α0t−Nþ1;…; α0t

�
. Within this sliding window,

the main factor that differentiates consecutive observations are
random disturbances and noise. Although the p‐values are not
guaranteed to be independent and uniformly distributed, out‐
of‐distribution inputs will still result in small p‐values, and
the martingale test can be used to identify sequences with
many small values. In this case, the simple mixture martingale
at time t can be defined as

Mt ¼

Z 1

0
Me

tde¼

Z 1

0
∏
t

i¼t−Nþ1
epe−1

i de: ð5Þ

Such martingale will grow only if there are many small p‐
values in this sliding window indicating out‐of‐distribution
inputs are present in the sequence. It should be noted that
the martingale Mt does not depend on the order of the input
examples

�
x0t−Nþ1;…; x0t

�
. Also, Mt must be initialised for the

first steps using, for example, random independent and uni-
formly distributed p‐values. Since we already use a sliding
window to compute Mt, we employ a stateless detector based
on the value Mt and a predefined threshold τ expressed as
Mt > τ.

F I GURE 3 Architecture of the SVDD‐based out‐of‐distribution detection. When the saliency map is not used in the detection, the grey block and dotted
arrow are not executed, and the input masker is an identity function. NCM stands for nonconformity measure, which corresponds to ASVDD.
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Algorithm 2 describes the SVDD‐based real‐time out‐of‐
distribution detection. Compared with the VAE, the SVDD‐
based method is more efficient since it does not require
generating multiple examples at each step. The martingale Mt
can be computed recursively by incorporating the p‐value for
the new input and omitting the last one in the sliding window.

6 | SALIENCY MAPS

The proposed out‐of‐distribution detection approach aims to
identify inputs that are nonconformal to the training data set.
Although the LEC predictions for such inputs may not have
large errors, they are generated from a different probability
distribution. However, it is possible that some nonconformal
features of the input do not contribute to the LEC prediction.
For high‐dimensional inputs such as camera images, for
example, it is possible that parts of the image do not affect the
LEC output. As an illustrative example, if the VAE has diffi-
culty generating fine‐granularity details of the original input
image, the algorithm presented in Section 4 will result in large
nonconformity scores. However, such fine‐granularity details
may not affect the LEC output. This section extends the
proposed approach by incorporating saliency maps that
quantify the spatial support of the LEC prediction of a given
input image into the out‐of‐distribution detection.

The purpose of saliency maps is to identify parts of the input
image that contribute most to the LEC predictions [31, 37]. In
our approach, a saliency map is computed to quantify how much
the input features of the image contribute to the LEC output.
Then, the saliency map is used to weight the contribution of the
input features to the nonconformity scores. Therefore, the
detection algorithm weights the input features based on their
influence on the output of the perception or end‐to‐end LEC in
the CPS architecture.

We utilise two algorithms for computing the saliency maps,
integrated‐gradients optimised saliency (I‐GOS) and Visual-
BackProp (VBP). I‐GOS is introduced in ref. [27] that opti-
mises for the saliency map so that the classification scores on
the masked image would maximally decrease, which reflects the
input features that have greatest influence on the prediction.
VBP is an algorithm that aims to highlight important regions
that contribute towards the predictions made by convolutional
neural networks [6]. The intuition of VBP is that the feature
maps contain less irrelevant information to the prediction
when moving deeper into the network. Since the resolution of
the feature maps becomes lower for deeper layers, VBP
computes the saliency map by back‐propagating the informa-
tion of feature maps from deeper layers while simultaneously
increasing the resolution.

Consider an LEC y = f(x) defining a mapping from the
input x to output y used to perform regression or classification.
The input image x is of size H � W � C where H, W, and C
denote the height, width, and channel respectively. We denote
each input element as xh,w,c where h ∈ {0, …, H − 1}, w ∈ {0,
…, W − 1}, and c ∈ {0, …, C − 1}. I‐GOS is initially designed
for the classification problem. As for regression, the algorithm

can be modified by optimising a saliency map s0 so that the
regression result on the saliency‐masked image would maxi-
mally change. In order to use the saliency map in the detection
algorithm, we convert s0 to a greyscale image s of size H �W.
VBP uses the feature maps outputted by the convolutional
layers and can be used for both regression and classification
tasks. In VBP, the generated saliency map s is already grey-
scaled of size H � W. Moreover, in order to deal with the
problem that different images will have different total contri-
butions, the saliency map should be normalised by the sum of
contributions for all pixels in the image. In summary, we can
define a function s = G(x0; f) that generates a greyscale saliency
map s for the LEC f given input image x0 using either I‐GOS
or VBP.

6.1 | VAE‐based detection with saliency
maps

We define the nonconformity measure by weighting the
squared error between the input example x and a generated
example x̂ from the VAE using the saliency map s

α¼ AVAE‐Sðx; x̂; sÞ ¼
1

H �W � C

XH−1

h¼0

XW−1

w¼0

XC−1

c¼0
sh;w

�
�
xh;w;c − x̂h;w;c

�2
:

ð6Þ

Therefore, the input features that influence the LEC pre-
dictions contribute more to the nonconformity measure.

During the offline phase of the algorithm, similar to the
VAE‐based detection method introduced in Section 4, the
training data set is reshuffled and split into a proper training set
and a calibration set. The proper training data set is used to
train both the LEC and the VAE network. For each example in
the calibration data set, we compute the saliency map, and the
nonconformity score is computed using Equation (6). The
nonconformity scores of the calibration data are sorted and
stored for monitoring at runtime.

Algorithm 3 VAE-based out-of-distribution
detection

Input: Input training set {(x1, y1), …, (xl,
yl)}, input sequence

�
x01;…;x

0
t;…
�
, number

of calibration examples l − m, monitored
LEC f(⋅), number of examples N generated
by the VAE, threshold τ and parameter δ of
CUSUM detector

Output: Output Boolean variable Anomt
Offline:
1: Split the training set {(x1, y1), …, (xl,

yl)} into the proper training set {(x1,
y1), …, (xm, ym)} and calibration set
{(xm+1, ym+1), …, (xl, yl)}

2: Train a VAE using the proper training set
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3: for j = m + 1 to l do
4: Generate x̂j using the trained VAE
5: Compute the saliency map sj = G(xj; f)
6: αΓj ¼ AVAE-S

�
xj; x̂j;sj

�

7: end for
8: {αm+1, …, αl} = sort

� �
αΓmþ1;…;α

Γ
l

��

Online:
9: for t = 1, 2, … do
10: Compute the saliency map s0t ¼ G

�
x0t;f

�

11: for k = 1 to N do
12: Generate x̂0t;k using the trained VAE

13: α 0t;k ¼ AVAE-S
�
x0t; x̂

0
t;k;s

0
t

�

14: pt;k ¼
jfi¼mþ1;…;lg j αi≥α0t;kj

l−m
15: end for
16: Mt ¼

R 1
0 ∏

N
k¼1 epe−1

t;kde

17: if t = 1 then
18: St = 0
19: else
20: St = max(0, St−1 + Mt−1 − δ)
21: end if
22: Anomt ← St > τ
23: end for

The detailed online detection procedure is shown in
Figure 2. At runtime, given an input example x0t, the saliency
map s0t ¼G

�
x0t; f

�
is used to compute the nonconformity

score. As described in Section 4, for each input example x0t, N
examples fx̂0t;1;…; x̂0t;Ng are generated from the VAE. For each
generated example x̂0t;k, the nonconformity score α0t;k is
computed by α0t;k ¼ AVAE‐Sðx0t; x̂

0
t;k; s

0
tÞ (Equation (6)), which is

represented as ‘NCM’ in the architecture. The corresponding
p‐value pt,k is calculated as Equation (2). Most of the p‐values
are expected to be much greater than 0, and the martingale Mt
computed by Equation (3) is used to test if x0t is an out‐of‐
distribution input. Finally, a CUSUM detector is used to
generate alarms for out‐of‐distribution inputs. Algorithm 3
summarises the VAE‐based out‐of‐distribution detection using
saliency maps.

6.2 | SVDD‐based detection with saliency
maps

In order to incorporate the saliency maps into the SVDD‐
based detection method, the input x is masked by the sa-
liency map s and is used as the new input to the SVDD
network. Each element of the masked image denoted by ~x is
computed by ~xh;w;c ¼ xh;w;c � sh;w:

During the offline phase, we compute the saliency map for
each example in the training data set and use it to mask the
example to create a new training data set fð~x1; y1Þ;…; ð~xl; ylÞg.
Then, the new training data set fð~x1; y1Þ;…; ð~xl; ylÞg is
reshuffled and split into the proper training set fð~x1; y1Þ;…;

ð~xm; ymÞg and calibration setfð~xmþ1; ymþ1Þ;…; ð~xl; ylÞg. The
proper training set is used to train a new SVDD network which
maps the inputs to a representation in a lower‐dimensional
hypersphere suitable for anomaly detection. The nonconfor-
mity measure ASVDD is defined as the distance of the repre-
sentation to the centre of the hypersphere (Equation (4)). For
each example in the new calibration data set, the nonconformity
score is computed using ASVDD and sorted for runtime
monitoring.

Algorithm 4 SVDD-based out-of-distribution
detection using saliency map

Input: Input training set {(x1, y1), …, (xl,
yl)}, input sequence

�
x01;…;x

0
t;…
�
, number

of calibration examples l − m, monitored
LEC f(⋅), sliding window size N, detector
threshold τ

Output: Output Boolean variable Anomt
Offline:
1: for i = 1 to l do
2: Compute the saliency map si = G(xi; f)
3: Mask the input xi using the saliency map

si and get ~xi
4: end for
5: Split the training set fð~x1;y1Þ;…; ð~xl;ylÞg

into the proper training set
fð~x1;y1Þ;…; ð~xm;ymÞg and calibration set
fð~xmþ1;ymþ1Þ;…; ð~xl;ylÞg

6: Train a SVDD model using the proper
training set

7: for j = m + 1 to l do
8: αj ¼ ASVDDð~xjÞ
9: end for
10: {αm+1, …, αl} = sort

� �
αΓmþ1;…;α

Γ
l

��

Online:
11: for t = 1, 2, … do
12: Compute the saliency map s0t ¼ G

�
x0t;f

�

13: Mask the input x0t using the saliency
map s0t and get input ~x0t

14: α0t ¼ ASVDDð~x
0
tÞ

15: pt ¼
jfi¼mþ1;…;lg j αi≥α0tj

l−m

16: Mt ¼
R 1
0 ∏

t
i¼t−Nþ1 epe−1

i de

17: Anomt ← Mt > τ
18: end for

During runtime monitoring, given the test input x0t, the
algorithm computes the saliency map s0t ¼G

�
x0t; f

�
and uses

saliency‐masked input ~x0t as the input to the SVDD network in
order to compute the nonconformity score α0t as well as the p‐
value for the test example. Similar to Section 5, a sliding
window is used to adapt the martingale test, and a stateless
detector is applied to generate alarms for out‐of‐distribution
examples. Such a detection pipeline is illustrated in Figure 3,
where the computation of ‘Input masker’ block corresponds to
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the Equation (6). Besides, the SVDD‐based detection algo-
rithm using saliency maps is shown in Algorithm 4.

7 | EVALUATION

We evaluate the proposed approach using (1) an advanced
emergency braking system (AEBS), (2) a self‐driving end‐to‐
end controller (SDEC), and (3) an autonomous vehicle sea-
sonal dataset (AVSD). The AEBS and SDEC are implemented
using CARLA [10], an open‐source simulator for self‐driving
cars. AVSD evaluates the approach using the Ford autono-
mous vehicle seasonal data set [1]. All the experiments are
conducted on a 16‐core i9 desktop with 32 GB RAM and a
single RTX 2080 GPU with 8 GB video memory.

7.1 | Advanced emergency braking system

7.1.1 | Experimental setup

The architecture of the AEBS is shown in Figure 4. A
perception LEC is used to detect the nearest front obstacle on
the road and estimate the distance. The distance together with
the velocity of the host car are used as inputs to a reinforce-
ment learning controller whose objective is to generate the
appropriate braking force in order to safely and comfortably
stop the vehicle.

The desirable behaviour is illustrated in Figure 5. The
AEBS detects a stopped lead car and applies the brake to
decelerate and avoid the potential collision. The initial ve-
locity of the host vehicle is v0, and the initial distance be-
tween the host car and the obstacle is d0. The goal of the
controller is to stop the car between Lmin and Lmax. The
sampling period used in the simulation is Δt = 1/20 s. In
order to simulate realistic scenarios, we introduce uncertainty
into the system. The initial velocity v0 is uniformly sampled
between 90 km/h and 100 km/h, and the initial distance d0 is
approximately 100 m. CARLA allows controlling the pre-
cipitation in the simulation using a parameter, which takes
values in [0, 100]. For training the perception LEC, and also

the VAE and SVDD used for out‐of‐distribution detection,
the precipitation parameter is randomly sampled from the
interval [0, 20]. The uncertainty introduced affects the error
of the perception LEC. It should be noted that this is just a
visual effect, and it does not affect the physical behaviour of
the car.

The perception LEC is implemented using a convolutional
neural network (CNN), which is trained using supervised
learning with a training data set consisting of 8160 images
obtained by varying the simulation parameters as described
above. The perception LEC has three layers of 24/36/48 �
(5 � 5) filters with ReLU activations and 2 � 2 strides, two
layers of 64/64� (3� 3) filters with ReLU activations and 1�
1 strides, three fully connected layers of 100/50/10 units with
ReLU activations and an output layer of size 1 with Sigmoid
activation. After 100‐epoch training, the mean absolute errors
for training and testing are 0.54 and 0.56 m respectively and are
used to select Lmin and ensure safety. The reinforcement
learning controller is trained using the DDPG algorithm [22]
with 1000 episodes and reward function which aims to stop the
vehicle between Lmin = 1 m and Lmax = 3 m. A simulation run
is shown in Figure 6. Initially, the distance between the host
and the lead car is 98.02 m, and the velocity of the host car is
97.13 km/h (= 26.98 m/s). After 140 steps or 7.00 s, the host
vehicle stops at 1.85 m from the lead car.

7.1.2 | VAE and SVDD training

The data set with the 8160 images used for training the
perception LEC is used as the proper training data set. In
addition, using simulations with the same random parameters,
we collect 2040 images for the calibration set. It should be
emphasised that the proper training set and the calibration set
should be reshuffled before training the VAE or SVDD. We
use a VAE with four layers of 32/64/128/256 � (5 � 5) filters
with exponential linear unit (ELU) activations and 2 � 2 max‐
pooling, one fully connected layer of size 1568 with ELU
activation, 1024 latent space, and a symmetric deconvolutional
decoder. A simple two‐phase learning schedule is employed
with initial searching learning rate η = 10−4 for 250 epochs,

F I GURE 4 Advanced emergency braking
system architecture.

F I GURE 5 Illustration of advanced emergency
braking system.
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and subsequently fine‐tuning η = 10−5 for 100 epochs. This
model is used in the VAE‐based out‐of‐distribution detection
method both with and without the saliency maps in order to
compute the nonconformity measure.

The deep SVDD is similar with four convolutional layers
of 32/64/128/256 � (5 � 5) filters with ELU activations and
2 � 2 max‐pooling, followed by one fully connected layer of

F I GURE 6 Episode with in‐distribution inputs.
F I GURE 7 Episode with out‐of‐distribution inputs.
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1568 units. As suggested in [29], we first train a deep con-
volutional autoencoder (DCAE) to initialise the deep SVDD.
After 250 (η = 10−4) + 100 (η = 10−5) epochs of DCAE
training, we copy the weights to the SVDD and set the
hypersphere centre c to the mean of the reduced space of the
initial forward inference. The one‐class deep SVDD objective
is used as the loss, and the neural network is trained for
additional 150 (η = 10−4) + 100 (η = 10−5) epochs. Since the
inputs to the SVDD‐based detector are different for the case
saliency maps are used, two different SVDD networks are
trained using the original inputs and saliency‐masked inputs
respectively.

7.1.3 | Experimental results

To characterise the performance of the out‐of‐distribution
detection, we use multiple simulation episodes that include
in‐ and out‐of‐distribution examples. Each episode starts with
a random initial velocity v0 of the host car. The AEBS is
activated upon detection of the lead car by the camera as
implemented in CARLA. We vary the precipitation parameter
r as

r ¼

8
<

:

r0 for t < t0
r0 þ βðt − t0Þ for t0 ≤ t ≤ t1
r0 þ βðt1 − t0Þ for t > t1

where r0 is the initial precipitation uniformly sampled from
[0, 10]; t0 ∈ {10, 11, …, 30} is selected randomly as the time
step the precipitation starts to increase; t1 ∈ {90, 91, …, 110}
is selected randomly as the time step the precipitation stops
increasing; and β ∈ [0.1, 0.5] is a randomly selected slope. In
some episodes r is always below 20 (in‐distribution), while in
other episodes r exceeds 20 and it is assumed that the
perception LEC receives out‐of‐distribution inputs. We simu-
late 200 episodes, and 108 of them are in‐distribution while 92
of them contain out‐of‐distribution inputs. An in‐distribution
and an out‐of‐distribution example are illustrated in
Figure 7a,c respectively.

In order to show that the VAE and deep SVDD models
are trained successfully and can be used for out‐of‐distribution
detection, we plot the distributions of the nonconformity
scores using different nonconformity measures (VAE‐ and
SVDD‐based using or not using saliency maps) in Figure 8.
More specifically, for VAE‐based nonconformity measures, an
input is fed into the VAE model to generate a single example,
and the nonconformity score is computed as the reconstruc-
tion error between the input and generated example (if saliency
map is used, the nonconformity score should be weighted by
the saliency map). The reconstructed images for both in‐ and
out‐of‐distribution inputs are shown in Figure 7b,d respec-
tively. From the figures we can see that, since the VAE is
trained over the data with no or little rain, it cannot generalise
well in the scenario with high rain, and some details in such

F I GURE 8 Original images and its
reconstructed images for both in‐ and out‐of‐
distribution data in advanced emergency braking
system.
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scenario, such as the rain on the ground, are not well recon-
structed, which then will result in a large nonconformity score.
For SVDD‐based nonconformity measures, the SVDD model
maps the input to the hypersphere, and the nonconformity
score is the distance between the representation to the centre
(if saliency map is used, the input to SVDD model should be
masked by the saliency map).

From the plots, we can see that, for all different noncon-
formity measures, the nonconformity scores of in‐distribution
data are much smaller than that of out‐of‐distribution data.
Normally, a threshold is defined on the nonconformity scores
to distinguish the in‐ and out‐of‐distribution data: if the
nonconformity score of an instance is greater than the pre-
defined threshold, such an instance will be identified as an out‐
of‐distribution data, and vice versa. If there is no overlap be-
tween the nonconformity scores for in‐ and out‐of‐distribution
data, it means that all nonconformity scores for in‐distribution
data are less than those for out‐of‐distribution data, so there
must be a threshold that can completely separate in‐ and out‐
of‐distribution data, which will result in zero false alarms. The

overlapping area of the distributions is inevitable since the
precipitation parameter is increased gradually during our data
collection, which results in some out‐of‐distribution data
having small changes from the in‐distribution data. It means
that we cannot find a threshold that can entirely separate in‐
and out‐of‐distribution data, and there must be false alarms
during the detection. Besides, the greater the overlap rate, the
more difficult to distinguish in‐ and out‐of‐distribution data,
which in turn leads to a higher false alarm rate. Therefore, we
measure and report the overlap rate in each plot to indicate the
performance of the nonconformity measure. Comparing
Figure 8a with Figure 8b, the SVDD‐based nonconformity
measures have better performance than the VAE‐based
nonconformity measures. Moreover, in order to compare the
performance between the methods using one example and
multiple examples, we also plot the distributions of the loga-
rithm of martingales using different nonconformity measures
(VAE‐ and SVDD‐based using or not using saliency maps) in
Figure 9. In VAE‐based methods, for each input, multiple
examples are generated, and the martingale is computed based

F I GURE 9 Distributions of the nonconformity scores in advanced emergency braking system.
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on the corresponding p‐values. As for SVDD‐based methods,
the martingale value is computed by applying the sliding
window technique. The overlapping area in Figure 9 using
multiple examples are smaller than ones of corresponding
plots in Figure 8 using a single example, which demonstrates
that the performance of the detector can be improved by
incorporating multiple examples.

We illustrate the approach using two episodes, and we
plot the ground truth and the predicted distance to the lead
car, the velocity of the host car, the p‐value of the VAE‐
based method, and the output of the detector S computed
using the logarithm of Mt and δ = 6. Since Mt takes very
large values, log Mt is used. We also plot the p‐value of the
SVDD‐based method and the logarithm of the SVDD‐based
martingale.

The results of the VAE‐ and SVDD‐based methods with
saliency maps are plotted similarly. Figure 10 shows one frame
of the camera image and its saliency maps generated by I‐GOS
and VBP. Due to space limitations, we include only the results
of the VAE‐based using I‐GOS and the SVDD‐based method

using VBP. We use N = 10 for the number of examples
generated by the VAE. For the SVDD‐based method, in order
to reasonably choose the size of the sliding window, we
perform the auto‐correlation analysis: we measure the auto‐
correlation coefficients on the nonconformity scores of the
input sequence and compute the mean absolute auto‐
correlation within different time scales, which is shown in
Figure 11. The auto‐correlation becomes smaller than 0.1
when the time scale is greater than 9. Therefore, we can choose
the time scale greater than 9. In the illustrative episode, the size
of the sliding window is set to 10.

Figure 6 shows simulation results for the in‐distribution
case. Most of the p‐values are much greater than 0, and the
martingale for all four approaches is small. The VAE‐based
method is more sensitive than the SVDD as indicated by the
larger value around 5 s. In this scenario, there is a speed limit
traffic sign that is not accurately reconstructed by the VAE
resulting in smaller p‐values. After the car passes the traffic
sign, the p‐values increase, and the martingale decreases. Such
effect can be attenuated by using SVDD‐based method or

F I GURE 1 0 Distributions of the martingales in advanced emergency braking system.
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introducing saliency map to the VAE‐based method. The
reasons are the SVDD‐based method does not use a recon-
structed image for nonconformity computing, while the sa-
liency map focuses the computation on the features that
contribute most to the output of the LEC.

An episode with out‐of‐distribution inputs is shown in
Figure 12. The parameter r exceeds 20 at time step 40 (2.0 s).
The error of the perception LEC starts increasing and reaches
almost 9 m. The controller is misled by the perception LEC and
does not stop the car which collides with the lead car (velocity is
greater than 0 when ground truth distance comes to 0). For all
four detection methods, the martingale grows as the p‐values
become smaller.

We evaluate the approach for the 200 episodes generated by
considering different values of N. We run each episode, and if
an alarm is raised, we stop the simulation, and we check if the
alarm is false. We compute the detection delay as the number of
frames from the time r exceeds 20. We select the detector
parameters τ and δ using a simple search for achieving the
average detection delay less than 25 frames and the number of
false alarms less than 2. It should be emphasised that we can
choose the detector parameters only based on the noncon-
formity scores of in‐distribution data as the other unsupervised
detection method. However, in our method, some out‐of‐
distribution data can be collected to improve the detector's
performance. With more out‐of‐distribution episodes
collected, the parameters can be better tuned, and the detector's
performance can be further improved. Table 1 reports the re-
sults for the VAE‐ and SVDD‐based methods. Furthermore, in
order to compare the performance of the detectors, we use the
same parameters for the methods with saliency maps, and
Table 1 summarises the results. The number of false alarms is
very small, and the delay for detection is smaller than 20 frames
or 1 s for all four detection methods. The VAE‐based method
uses a cumulative sum (CUSUM) procedure, which is para-
meterised by δ and τ. These two parameters control the trade‐
off among false positive, false negative, and detection delay.
The large value of σ and τ will result in the detector under‐
sensitive, and the detector will have a large number of false
negatives and long detection delay. On the other side, the small
value of σ and τ will have an over‐sensitive detector. Similar to
the VAE‐based method, the SVDD‐based method is

parameterised by the size of sliding window N and the
threshold of stateless detector τ. The large value of N and the
small value of τ will lead to an under‐sensitive detector, and vice
versa. The overlap rate in Figure 9a is around 32%, which in-
dicates that the false alarm rate is quite large when we directly
use the martingale value for detection without a CUSUM de-
tector. The false alarms of VAE‐based method reported in
Table 1 drops to almost zero by introducing the CUSUM de-
tector, demonstrating that the CUSUM detector can improve
the performance of the detector.

From the results for the methods with saliency maps, it can
be seen that the detector is more robust to small variations in
the input that do not affect the LEC prediction (and the
prediction error). For example, when the precipitation
parameter exceeds slightly the defined threshold for out‐of‐
distribution inputs (20), the prediction error remains very
small. Figure 12 shows that for small changes from the in‐
distribution data, the p‐values are larger in the case of sa-
liency maps, and therefore, out‐of‐distribution detection oc-
curs later which is more consistent with the prediction error.
The results are similar for the other experiments as summar-
ised in the increased average delay in Tables 1–4. The detection
delay in the methods with saliency maps is slightly greater,
which is because the detection methods with saliency maps
consider the influence of the input on the LEC output.

F I GURE 1 1 Original image and its saliency maps for advanced emergency braking system.

F I GURE 1 2 Mean absolute auto‐correlation of the nonconformity
scores in advanced emergency braking system.
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For example, when the precipitation parameter just ex-
ceeds 20 the influence to the LEC output (and the pre-
diction error are very small) and additional frames are
required for detecting out‐of‐distribution inputs. In addition,
missed alarms is an attractive performance metric for such a
detection system in CPS. Therefore we tune the parameters
achieving 0 false positives and report the missed alarms
(false negatives) in Table 2. The results reveal that our
approach has a small number of missed alarms for different
values of N.

7.2 | Self‐driving end‐to‐end control

7.2.1 | Experimental setup

The CARLA simulator comes with a self‐driving end‐to‐end
controller trained using imitation learning. The SDEC uses
camera images as inputs and computes steering, acceleration,

TABLE 1 False alarms and average delay for advanced emergency
braking system

Methods
Parameters
(N, σ, τ)/(N, τ)

False
positive

False
negative

Average delay
(frames)

VAE 5, 5, 42 2/108 0/92 17.91

5, 5, 49 0/108 0/92 19.84

10, 6, 156 0/108 0/92 18.65

10, 10, 106 0/108 0/92 19.30

20, 16, 250 2/108 0/92 17.63

20, 18, 240 0/108 0/92 18.46

VAE + IGOS 5, 5, 42 1/108 0/92 22.32

5, 5, 49 1/108 0/92 24.04

10, 6, 156 0/108 0/92 23.36

10, 10, 106 0/108 0/92 23.70

20, 16, 250 1/108 0/92 21.14

20, 18, 240 0/108 0/92 22.83

SVDD 10, 12 1/108 0/92 14.38

10, 14 0/108 0/92 17.78

15, 13 2/108 0/92 13.48

15, 15 0/108 0/92 15.36

20, 16 1/108 0/92 12.02

20, 17 0/108 0/92 13.29

SVDD + VBP 10, 12 2/108 0/92 15.32

10, 14 1/108 0/92 18.10

15, 13 1/108 0/92 14.68

15, 15 0/108 0/92 16.42

20, 16 1/108 0/92 13.28

20, 17 0/108 0/92 14.32

TABLE 2 Missed alarms and average delay for advanced emergency
braking system

Methods
Parameters
(N, σ, τ)/(N, τ)

Missed alarms
(False negative)

Average delay
(frames)

VAE 5, 6, 43 1/92 19.54

10, 8, 132 0/92 19.46

20, 19, 235 1/92 19.02

VAE + I‐GOS 5, 5, 53 1/92 24.08

10, 8, 130 2/92 24.05

20, 20, 232 0/92 23.96

SVDD 10, 15 1/92 18.12

15, 14 0/92 14.70

20, 18 0/92 13.94

SVDD + VBP 10, 15 1/92 19.21

15, 14 0/92 15.78

20, 18 1/92 14.76

TABLE 3 False alarms and average delay for real‐world perception
neural network

Methods
Parameters
(N, σ, τ)/(N, τ)

False
positive

False
negative

Average delay
(frames)

VAE 5, 3, 36 0/50 0/50 11.32

5, 5, 15 0/50 1/50 13.63

10, 5, 105 0/50 0/50 12.14

10, 8, 55 0/50 0/50 10.78

20, 10, 235 0/50 0/50 12.18

20, 17, 140 0/50 0/50 11.30

VAE + I‐GOS 5, 3, 36 0/50 0/50 13.42

5, 5, 15 0/50 0/50 16.10

10, 5, 105 0/50 0/50 15.08

10, 8, 55 0/50 0/50 12.74

20, 10, 235 0/50 0/50 15.32

20, 17, 140 0/50 0/50 14.12

SVDD 10, 4 0/50 0/50 10.62

10, 5 0/50 0/50 12.58

15, 4 0/50 0/50 11.24

15, 6 0/50 0/50 12.68

20, 5 0/50 0/50 10.14

20, 6 0/50 0/50 11.66

SVDD + sVBP 10, 4 0/50 0/50 11.46

10, 5 0/50 0/50 13.32

15, 4 0/50 0/50 11.34

15, 6 0/50 0/50 12.78

20, 5 0/50 0/50 10.74

20, 6 0/50 0/50 12.32
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and brake actuation signals applied to the car. The architecture
is shown in Figure 13.

The SDEC is implemented using a CNN trained by con-
ditional imitation learning with 14 h of driving data recorded
by human drivers [10]. The sampling period used here is
Δt = 1/10 s. For this example, our objective is to evaluate if the
method can be used to detect a class of adversarial attacks. An
approach for designing physically realisable attacks in end‐to‐
end autonomous driving is presented in [8], and a novel class
of hijacking attacks is introduced where painted lines on the

road cause the self‐driving car to follow a target path.
Figure 14b shows an image with the painted pattern on the
road.

In order to train the VAE and SVDD, we collect training
data using episodes without attacks. First, we generate 633
images in two different weather patterns (clear noon and
cloudy noon) and three different scenarios (turning right,
turning left, and going straight). Then, we reshuffle and
randomly split the training data into 506 images for the proper
training data set and 127 images for the calibration set. We use

F I GURE 1 3 Self‐driving end‐to‐end control
system architecture.

F I GURE 1 4 Original image, physical adversarial image and their saliency maps for self‐driving end‐to‐end control.

TABLE 4 Missed alarms and average delay for real‐world perception neural network

Methods Parameters (N, σ, τ)/(N, τ) Missed alarms (False negative) Average delay (frames)

VAE 5, 4, 24 1/50 12.48

10, 6, 90 0/50 11.68

20, 15, 180 0/50 12.02

VAE + I‐GOS 5, 4, 24 0/50 15.04

10, 6, 92 0/50 14.38

20, 15, 175 0/50 14.68

SVDD 10, 6 1/50 13.21

15, 5 0/50 11.74

20, 7 0/50 12.10

SVDD + VBP 10, 6 0/50 13.75

15, 5 0/50 12.22

20, 7 0/50 12.84
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the same VAE and SVDD architectures and hyperparameters
as in the AEBS.

7.2.2 | Experimental results

The evaluation focuses on the Right Corner Driving case,
which is reported as more vulnerable [8]. We run 105 simu-
lation episodes described in ref. [8] with different attacks such
as positions and rotations of the two black lines which are
chosen to cause traffic infractions. In 69 out of the 105 epi-
sodes, the attack is successfully causing a vehicle crash. Our
approach detects the attacks in all 105 episodes. We plot the
p‐values and detector output S of the VAE‐based method, the
p‐values and the logarithm of the SVDD‐based martingale for
episodes with and without attacks shown in Figure 15 and 16

respectively. The size of the sliding window N for SVDD‐
based method is chosen based on the auto‐correlation anal-
ysis on the nonconformity scores of the input sequence. The
mean absolute auto‐correlation is smaller than 0.1 when the
time scale is greater than 7, and therefore, we can choose
N = 10 in our illustrative episodes. In addition, Figures 15 and
16 show the results of the detection methods using saliency
maps. Figure 14 shows the original (in‐distribution) image,
physical adversarial image, and their saliency maps. For the in‐
distribution (no‐attack) episode, most of the p‐values are much
greater than 0, while the martingales for all approaches are
small. In the adversarial episode, there are two black lines
painted on the road as shown in Figure 14d, and the vehicle is
misled to a crash. The p‐values are almost 0, and the martin-
gales grow very large, indicating the input images are out‐of‐
distribution.

F I GURE 1 5 Episode with in‐distribution inputs. F I GURE 1 6 Episode with attacked inputs.
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7.3 | Autonomous vehicle seasonal dataset

7.3.1 | Experimental setup

In order to evaluate the approach in a real‐world environment,
we use the Ford autonomous vehicle seasonal data set [1],
which is used to train a perception neural network whose task
is to predict the heading changes of the host vehicle from the
images captured by a camera. The sampling rate of the camera
is Δt = 1/7 s. The data set provides the raw images and ground
truth pose (position and orientation) of the vehicle in a global
frame. The images are collected under seasonal variation in
weather and include various lighting, construction, and traffic
conditions experienced in typical urban environments [1]. For
using the data set to evaluate our approach, we pre‐process the
data to compute heading changes of the host vehicle by con-
verting quaternions to Euler angles and calculating the yaw
difference, and we synchronise the input images with the
heading changes.

We select the data set for one vehicle (V1) and one drive
(Log1) as the training data set. The set contains data collected
in cloudy weather and freeway, overpass, and bridge drive
scenarios. We reshuffle and randomly split the training data
into 3556 images for the proper training data set and 889 for
the calibration set. The proper training data set is used to train
the perception, VAE, and SVDD networks.

The perception network is a CNN whose architecture is
similar to the NVIDIA end‐to‐end self‐driving controller [7].
After 100‐epoch training, the mean absolute error for training
and testing are 0.012° and 0.016° respectively. The VAE and
SVDD networks used for detection use the same architec-
tures and hyperparameters as in the AEBS and SDEC
examples.

7.3.2 | Experimental results

We evaluate the approach using 100 episodes, 50 of which
are in‐distribution and 50 out‐of‐distribution. For out‐of‐
distribution data, we use a set (Log3) with data collected in
sunny weather and residential driving scenario. Each episode
contains 140 sequential frames and has duration 20 s. We
illustrate the approach using two episodes, and we plot the
prediction errors of the heading change, the p‐values and
detector output of the VAE‐based method with and without
saliency maps, and the p‐values and the logarithm of the
SVDD‐based martingale with and without saliency maps. The
results are shown in Figure 17 and Figure 18 respectively.
Similar to the AEBS and SDEC, in order to choose a
reasonable size of sliding window N for SVDD‐based
method, we analyse the auto‐correlation function on the
nonconformity scores of the input sequence. The mean ab-
solute auto‐correlation is smaller than 0.1 when the time scale
is greater than 6. In our illustrative episode, we choose
N = 10.

We also show the in‐ and out‐of‐distribution input images
and their saliency maps in Figure 19. For the in‐distribution

episode, most of the p‐values are far away from 0, and the
martingales in all approaches are small indicating there is no
out‐of‐distribution input detected. In the out‐of‐distribution
episode, the predicted errors are greater than the in‐
distribution episode. For all approaches, the p‐values are
small, and the martingales grow very large showing the input
images are not in the same distribution as the training
data set.

We also report the number of false alarms and average
detection delay time in Table 3, and the number of missed
alarms in Table 4 by considering different values of N and
detector parameters σ and τ. From the results, the number of
false alarms and missed alarms are very small and the delay for

F I GURE 1 7 Episode with in‐distribution inputs.
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detection is smaller than 20 frames. The results also show that
the SVDD‐based methods have short detection delay than the
VAE‐based methods.

7.4 | Computational efficiency

The VAE‐based and SVDD‐based methods can compute the
nonconformity scores in real‐time without storing training
data. Table 5 reports the minimum (min), first quartile (Q1),
second quartile or median (Q2), third quartile (Q3), and
maximum (max) of (1) the execution times of the LECs in
AEBS, SDEC, and AVSD, (2) the execution times of the I‐
GOS‐ and VBP‐based saliency map algorithms, and (3) the

execution times of the VAE‐based and SVDD‐based detectors
with and without saliency maps for different values of N.

The results show that the VBP‐based algorithm is slightly
more efficient than the I‐GOS. Since the VAE‐based method
uses N examples in each time step to compute the nonconfor-
mity scores, the execution time is larger than the execution time
of the SVDD‐based method. The execution time of SVDD‐
based detection method is independent of the window size N
since the martingale can be computed recursively for the sliding
window. The execution times are similar to the execution times
of the perception and end‐to‐end control LECs and much
smaller than the corresponding sampling time (50 ms in AEBS,
100 ms in SDEC and 1000/7 ms in AVSD), and thus, the
methods can be used for real‐time out‐of‐distribution detection.

Furthermore, in order to demonstrate current techniques
struggle to cope with high‐dimensional inputs, we apply the k‐
nearest neighbour (k‐NN) nonconformity measure [26] for
detecting out‐of‐distribution data in the experiment of
advanced emergency braking system. The k‐NN nonconfor-
mity measure is defined as the sum of the distances between
the test example and its k nearest neighbours in the proper
training dataset,

αk‐NN ¼
Xk

i¼1

disti;

where disti is the distance from test example to ith nearest
examples in the proper training dataset, and we use the
Euclidean distance as the distance metric between two images.
Given 8160 images with a resolution 224 � 224 � 3 in the
proper training dataset and k = 10, the execution time is
around 2 s, which is much more greater than the sampling time
of braking system, and therefore, such nonconformity measure
cannot scale to high‐dimensional inputs.

8 | CONCLUSION

In this study, we demonstrated a method for out‐of‐
distribution detection in learning‐enabled CPS. The method
is based on inductive conformal prediction and anomaly
detection but uses VAEs and SVDD to learn models to effi-
ciently compute the nonconformity of new inputs relative to
the training set and enable real‐time detection of high‐
dimensional out‐of‐distribution inputs. In addition, the sa-
liency maps can be incorporated to improve the robustness of
the detector. Our evaluation is based on two simulation case
studies of an AEBS and an SDEC as well as a real‐world data
set for autonomous driving. The results demonstrate a very
small number of false positives and detection delay while the
execution time is comparable to the execution time of the
original LECs. Promising future work is to combine the out-
puts of the neural network into out‐of‐distribution detection.
Another possible direction is to explore the physically realis-
able adaptive adversarial attacks and to adapt our approach to
such attacks.

F I GURE 1 8 Episode with out‐of‐distribution inputs.
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