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Abstract:
The FDI and DX communities have developed complementary approaches that exploit structural
relations in the system model to find efficient solutions for the residual generation and residual
evaluation steps in fault detection and isolation in dynamic systems. This paper compares three
different structural techniques, two from the DX community and one from the FDI community.
To simplify our comparison, we start with a common modeling approach that employs bond
graphs. We describe the residual generation methods used by the three approaches, and
apply them to a standard three tank configuration to demonstrate their diagnostic ability for
continuous, nonlinear systems.

1. INTRODUCTION

The needs for increased performance, safety, and reliability
of engineering systems provide the motivation for devel-
oping Integrated Systems Health Management (ISHM)
methodologies. Our focus in this paper is on model-based
approaches for online fault detection, isolation, and identi-
fication (FDII) in complex nonlinear systems. Model-based
approaches to diagnosis are general, apply across multiple
operating regions, and have the potential for overcoming
the device dependency problem.

Traditionally, two different communities: (1) the Sys-
tems Dynamics and Control Engineering (FDI) commu-
nity (e.g., [Gertler, 1998] and [Patton, et al., 2000]),
and (2) the Artificial Intelligence Diagnosis (DX) commu-
nity (e.g., [Hamscher, et al., 1992] and [Reiter, 1987]),
have developed model-based diagnosis approaches. The
two communities have employed different kinds of models,
and made different assumptions concerning robustness of
the generated solution with regard to modeling errors,
measurement noise, and disturbances. However, there are
common principles that govern the methods developed by
the two communities. This was outlined in a 2002-03 study
conducted by the French IMALAIA group [Cordier, et al.,
2004], which laid the groundwork for a common terminol-
ogy between Analytic Redundancy (ARR) methods used
in the FDI community and conflict resolution methods
used in the DX community. However, this analysis applied
only to diagnosis methods for static systems.

More recently, the DX community has developed meth-
ods such as possible conflicts [Pulido and Alonso, 2000]
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[Pulido and Alonso, 2004] and analysis of temporal causal
graphs [Mosterman and Biswas, 1999] [Manders et al.,
2000] for diagnosis of continuous systems. These methods
are based on the structural analysis of dynamic models,
much like the ARR schemes developed by the FDI com-
munity. The two communities use different algorithms, but
the overall framework for fault isolation is similar, defined
by a two-step process: (i) residual generation, followed
by (ii) residual evaluation [Gertler, 1998] [Patton, et al.,
2000].

The goal of this paper is to make a systematic comparison
of the algorithms used by the two communities. However,
the comparison task can be complicated by the nature and
form of the dynamic system models that form the basis
for the model-based diagnosis algorithms. Therefore, to
keep the scope of this paper manageable, we start with a
common modeling framework,in our case, the bond graph
modeling scheme [Karnopp, et al., 2000], and compare and
contrast the ARR approach developed by [Samantaray
et al., 2006] with possible conflicts [Pulido and Alonso,
2004], and temporal causal graph-based diagnosis methods
[Mosterman and Biswas, 1999] for continuous nonlinear
dynamic systems. In particular, the residual generation
and evaluation algorithms used by the three methods are
compared, and the similarities between the algorithms are
established.

The rest of this paper is organized as follows. Section 2
briefly reviews the bond graph modeling approach, and a
systematic method for deriving causal information from
bond graphs. The bond graph model of a nonlinear, con-
trolled three tank system is used as a running example
to demonstrate the residual generation step for the three
diagnosis algorithms. Section 3 describes the residual gen-
eration and residual evaluation schemes for the three algo-



rithms, and then a comparative analysis of the approaches.
Section 4 presents a comparison of the diagnosability ca-
pability of the three algorithms, and the conclusions of the
paper.

2. BOND GRAPH MODELING FOR DIAGNOSIS

Bond graphs are labeled, directed graphs, that present a
topological, domain-independent, energy-based methodol-
ogy for modeling the dynamic behavior of physical sys-
tems [Karnopp, et al., 2000] [Samantaray and Boua-
mama, 2008]. They provide a common modeling frame-
work across multiple energy domains, (e.g., mechanical,
electrical, fluid, and thermal). Building system models
follows an intuitive approach where energy flow paths
between system components are captured by a topological
structure. In this structure, system components appear as
nodes, and the energy flow paths appear as links or bonds.
System component behaviors are modeled from a small set
of primitive elements: (i) energy storage elements (capaci-
ties, C, and inertias, I); (ii) dissipative elements (resistors,
R); (iii) source elements (sources of effort, Se, and sources
of flow, Sf ), that add or remove energy from the system;
and (iv) junctions (series, 1, and parallel, 0), that represent
ideal energy connections for sets of elements. This repre-
sentation provides a systematic framework for capturing
causal relations between system variables. Standard math-
ematical models of dynamic system behavior, such as the
state space and I/O formulations, can be systematically
derived from bond graph models.

Our running example, the three tank system configuration,
made up of three tanks {T1, T2, T3}, and four valves V0, V1,
V2, and V3 (see Fig. 1), resembles a continuous industrial
process. Valves V1, V2, and V3 are always completely open.
We assume four sensors: two, {P1, P2}, measure the fluid
pressure in tanks T1 and T3, the third, {F1}, measures
the in-flow into tank T1, and the fourth {F2}, measures
the outflow from tank T3. A control loop defined by a
function f(x), where x is the measured pressure in tank
T1 determines the opening of valve V0. For this study, we
consider seven different faults in the plant: change in tank
T1, T2, T3 capacities, and partial blocks in the valves V1,
V2, V3, and in the input pipe.

P1P1 P2P2

F1F1
F2F2

Output

Large fluid source

T1 T2 T3

V1 V3V2V0

Fig. 1. Three tank schematic

Fig. 2 shows the bond graph model for the plant. The
tanks are modeled as fluid capacitances, and the valves
and pipes as resistances. 0− and 1− junctions represent
the common effort (i.e., pressure) and common flow (i.e.,
flowrate) points in the system, respectively. Measurement
points, shown as De and Df components, are connected
to junctions. The faults listed above appear as explicit
parameters of the bond graph model.
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Fig. 2. Bond graph model of the plant. f(x), a function of
the tank pressure T1 controls the resistance Rvalve of
valve V0.

2.1 Deriving Temporal Causal Graphs

Causality can be automatically assigned to the bonds of a
model using four types of causal constraints [Karnopp, et
al., 2000]: (1) fixed causality for source elements, Se, and
Sf , (2) constrained causality for 0- and 1-junctions, (3)
preferred (i.e., integral) causality for energy storage ele-
ments, C and I, and (4) arbitrary causality for dissipative
elements, R. Temporal Causal Graphs(TCGs) developed
by [Mosterman and Biswas, 1999] extend the traditional
causal constraints described above, by including temporal
constraints that are important for analysis of dynamic sys-
tems. They are directly derived from bond graph models
by a simple extension to the causality algorithms (e.g.,
SCAP [Karnopp, et al., 2000]). For purposes of diagno-
sis, we exploit the causal and temporal relations between
process parameters and the measurement variables pro-
vided by the TCG for residual generation and analysis.

The TCG for the three tank plant (Fig. 1) is shown
in Fig. 3. Junctions and resistors define instantaneous
magnitude relations, and capacitors and inertias define
temporal effects on causal edges. For this example, to
simplify the TCG structure, all = links and corresponding
variables have been removed.

2.2 Constituent Equations

Using the constituent equations for components and junc-
tions and following the causal links, one can systematically
derive state space and input/output models of system be-
havior [Karnopp, et al., 2000] [Roychoudhury, et al., 2007].
Example constituent equations are: (1) e6 = 1

Ct1

∫
f6ḋt for

capacitor Ct1, where e6 and f6 correspond to the pressure
in the tank, and net flowrate into the tank (i.e., the dif-
ference between input and output flowrate), respectively,
and (2) f9 = f10 = f11 and e9 = e10 +e11 for a 1−junction
in Fig. 2.

3. STRUCTURAL METHODS FOR RESIDUAL
GENERATION AND ANALYSIS

This section discusses the ARR, PC, and TCG approaches
to residual generation.

3.1 ARRs: The Diagnostic Bond Graphs approach

An Analytical Redundancy Relation (ARR) [Cordier, et
al., 2004] is a constraint deduced from the model of the
system containing only measured variables. The constraint



Fig. 3. Temporal causal graph of the three tank system.

also includes a subset of potential fault parameters of
the system, and the fault isolation task links measured
deviations in the variables to possible fault parameters.
Fault isolation, i.e., residual evaluation can be defined
as a logical combination of measurement deviations and
implicated fault parameters.

ARRs are derived from the set of over-determined equa-
tions obtained from the structural system model. In the
bond graph framework, this translates to first generating
equations that correspond to the conservation laws at each
0− and 1− junction (see section 2.2), and manipulating
these equations till only known (i.e., measured and input)
variables remain. For example, starting with the equation
e9 = e10 + e11 in section 2.2, the next substitution would
generate, e9 = measurement P1, and P1 = Rv1 .f10 +

1
Ct2

∫
f12.dt, and this substitution process would continue

till all variables, such as f10 and f12 are substituted by
other measurements, such as F1, F2 and P2. Once the
right form of equation is generated, a check is made to
see if this equation (residual) is structurally independent
of previously generated ones. However, this method for
ARR derivation from bond graphs incurs high computa-
tional costs for equation derivation and structural equiv-
alence checking, and the method cannot be applied when
unknown variables cannot be eliminated because of the
presence of algebraic loops and nonlinear non-invertible
constraints [Medjaher, et al., 2005]).

To solve these problems, [Samantaray et al., 2006] pro-
pose a method where sensor variables are represented as
sub-graphs that are derived by inverting the causality
associated with the sensor variable bond. For example,
the measurement De : P1 may be imposed as the effort
enforcer in Fig. 2, and this would put the capacitance
Ct1 in derivative causality. This ensures the decoupling of
the residuals. Five different configurations for these sub-
graph models are considered: (1) inverted causality in an
effort or flow sensor, (2) non-inverted causality in an effort
or flow sensor, and (3) inversion of a signal sensor, Ds,
to a signal source, Ss (this is a special case for dealing
with controllers). The bond graph of the system with all
these substitutions using preferred derivative causality is
called the Diagnostic Bond Graph (DBG) [Samantaray
and Bouamama, 2008].

Fig. 4 shows the DBG of the three-tank system with the
causality on the sensors inverted. Table 1 shows the fault
signature matrix derived from the DBG with the faults
as rows, and the four ARRs as columns. Entry (i, j) = 1
in this table implies that ARRj is sensitive to faulti. A
0 implies the ARR is not affected by the corresponding
fault. Column I shows the isolation capabilities of this
approach. An entry of 1 for a fault in this column implies
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Fig. 4. DBG of the three-tank system including the flow
measurements that correspond to the residuals (Df∗ :
R1, Df∗ : R4), and the pressure measurements that
correspond to the residuals (Df∗ : R2, Df∗ : R3).

that it is uniquely isolable, a 0 implies that it is not. For
our example, fault parameters Ct2 , Rv1 , and Rv2 cannot
be uniquely isolated.

Table 1. Signature matrix of the analytical
redundancy relations found for the laboratory

plant.

ARR1 ARR2 ARR3 ARR4 I

Ct1 0 1 0 0 1

Ct2 0 1 1 0 0

Ct3 0 0 1 0 1

Rv1 0 1 1 0 0

Rv2 0 1 1 0 0

Rv3 0 0 0 1 1

Rpipe 1 0 0 0 1

3.2 Possible conflict(PCs) for Consistency based Diagnosis

The possible conflicts methods is related to consistency
based diagnosis approaches commonly employed in the
DX community [Reiter, 1987]. Possible conflicts (PCs)
[Pulido and Alonso, 2000] [Pulido and Alonso, 2004],
represent subsystems that produce conflicts when faults
occur. Like ARRs, they are minimal subsets of equations
with the analytical redundancy property to detect and
isolate faults [Pulido and Alonso, 2004]. PCs are computed
using a three steps process: (1) Generate an abstract
representation of the system, as an hypergraph (HSD),
(2) Derive Minimal Evaluation Chains, i.e., the smallest
connected subsystems (Hec ⊆ HSD) that define an over
constrained set of relations, which can be solved locally,
and (3) Generate solutions by local propagation; each
possible solution is called a Minimal Evaluation Model,



or MEM, and it can be used to predict the behavior of a
subsystem.

The set of constraints in a MEC with a MEM is called
a Possible Conflict (PC). When MEMs are evaluated
with available observations and produce inconsistencies,
then the PC is confirmed as a conflict. The method for
generating PCs is different from the ARR approach, but
the ARRs described in the last section and the PCs are
structurally equivalent [Pulido, et al., 2007]. Causal as-
signments in ARRs and MEMs can be paired up and
shown to be equivalent. Possible Conflicts represent the
same structural information for all the MEMs obtained
from a MEC. It has been shown that the calculation of PCs
use the minimality criteria in terms of sets of constraints
but ARRs use the structural independence criterion. For
diagnosis, discrepancies between model predictions and
measurements are linked back to individual PCs, from
which fault hypotheses are derived. Like the ARR scheme,
fault hypotheses consistent across all observed discrepan-
cies are retained.

The hypergraph, HSD, can be derived from the bond
graph model using a procedure similar to deriving the
TCG (see section 2.1). The difference is that no causal
information is required, and no specific details about
temporal information is included. Later, when the MECs
are constructed, causal information between the effort and
flow variables are used to generate the directed and-or
graph of each MEC. For example, the first 1−junction
in the bond graph model establishes the relation between
variables, e0, e1 and e2 (e1 = e0 − e2). Similarly, e1

is related with f1 through the resistor element. Causal
relations from the bond graph model and more explicitly
represented in the TCG, help establish the directionality
and sequence of computations to derive MEMs from the
AND-OR graph.

The three tank model produced 53 MECs, 4 MEMs, and 4
PCs. Fig. 5 illustrates a possible conflict. The right part of
the figure represents the discrepancy node for this possible
conflict, e6. This node compares the value of the effort e6

computed using the MEM represented in the left part of
the figure with the sensor reading P1. The computation
of the required value(s) in the MEM occurs bottom-up,
i.e., we start with sensor P2 and compute effort e16. Using
efforts e16 and e12, we compute effort e14, and so on.
Dashed lines in the MEM represent temporal constraints
that are solved by integration (i.e., simulation).

Table 2 lists the resulting signature matrix with faults
as rows and the PCs as columns. Again, column I shows
the isolation capabilities of the approach. Like the ARR
scheme, faults in Ct2 , Rv1 , and Rv2 cannot be uniquely
isolated.

3.3 The TCG Approach

The TCG approach to online fault detection and isolation
is implemented as the TRANSCEND system [Moster-
man and Biswas, 1999] [Biswas et al., 2003]. Unlike the
ARR and PC schemes, the fault detection approach is
implemented as an independent process with an observer
and a statistical fault detector, but we do not focus on
that difference in this paper. The fault isolation scheme
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Fig. 5. Possible Conflict PC2 found for the three-tank
system. Ct1, Ct2, Rv1, and Rv2, are the parameters
implicated by this PC. e6, e12, and f10 are values
computed for each time step. F1, P1, and P2 are the
measurements.

Table 2. Signature matrix of the possible con-
flicts found for the laboratory plant.

PC1 PC2 PC3 PC4 I

Ct1 0 1 0 0 1

Ct2 0 1 1 0 0

Ct3 0 0 1 0 1

Rv1 0 1 1 0 0

Rv2 0 1 1 0 0

Rv3 0 0 0 1 1

Rpipe 1 0 0 0 1

is implemented a three step process: (1) hypothesis gener-
ation after fault detection, (2) fault signature generation
for all hypothesized faults, and (3) hypothesis refinement
through progressive monitoring. Again, the online FDI
algorithm is not the focus of this paper. Instead we focus
on the fault signature generation process, and its relation
to residual generation by the ARR and the PC methods
described earlier.

The residual generation scheme used in TRANSCEND
models the deviations in measurements and the fault
effects using a qualitative reasoning framework. Deviation
in individual measurements are represented as a ± change
in the magnitude and slope of a measured signal residual
(i.e., y(t)− ŷ(t)), where a ± value indicates a change above
(below) normal for a measurement residual (or a positive
(negative) residual slope). A 0 implies no change in the
measurement value (or a 0 (flat) residual slope). Note
that for dynamic systems, both the measurement deviation
and slope can change with time, i.e., a measurement
representation can go from (+, +) to (+, 0) or (+,−). Fault
parameter changes are also represented as ± values. For
example, R+

pipe implies a fault where the pipe resistance
increases above normal, and R−

pipe implies a fault where
the pipe resistance decreases to below its nominal value.

Fault signatures, i.e., the effect of a fault on a measurement
are also expressed in the qualitative framework defined
above. More formally, a qualitative fault signature is ex-



pressed as: Given a fault f , and measurement m, a qual-
itative fault signature, FS(fm), of order k, is an ordered
(k + 1)-tuple consisting of the predicted magnitude and
1st through kth order time-derivative effects of a residual
signal of measurement m, defined from the time point of
occurrence of fault f , expressed as qualitative values: below
normal (−), normal (0), and above normal (+). Typically
k is chosen to be the order of the system [Manders et al.,
2000].

Given a set of possible fault parameters and a set of
measurements associated with a system, the qualitative
fault signatures can be derived from the TCG model of
the system by forward propagation from the fault para-
meter along the edges of the TCG to the measurement
node [Mosterman and Biswas, 1999]. All deviation propa-
gations start off as 0th order effects (magnitude changes).
When an integrating edge in the TCG is traversed, the
magnitude change becomes a first order change, i.e., the
first derivative of the affected quantity changes. Each sub-
sequent traversal of an integral edge increases the order
of the fault signature by 1. As an example, the fault
signature for R+

pipe on pressure measurement P1 is (0, +),
indicating an increase in pipe resistance will cause no
change in tank 1 pressure at the point of fault occurrence,
and a gradual increase in pressure after the occurrence of
the fault.

Table 3 lists the fault signatures derived for all possible
single faults on the four measurements P1, P2, F1, and
F2. An additional symbol used in the fault signatures is
∗, which captures indeterminate effects due to the quali-
tative framework used for signatures as discussed above 1 .
Column I shows isolation capabilities (1 implies isolable,
0 implies not uniquely isolable) of this approach. The
additional direction of change information helps improve
discriminability. For example, fault CT2 is uniquely isolable
in the TCG approach but not in the PC and ARR ap-
proaches. Like the ARR and PC approach, faults Rv1 and
Rv2 cannot be uniquely isolated.

The fault signature generation algorithm is computation-
ally efficient when compared to traditional ARR and PC
schemes. It is linear in the size of the TCG with no
algebraic loops, and a low order polynomial when algebraic
loops are present. However, with the use of the DBG
structure, the ARR scheme can be made equivalent in
complexity to the TCG scheme.

Table 3. Fault Signature matrix for the TCG
approach

P1 P2 F1 F2 I

CT1 +∗ 0+ ∗∗ 0+ 1

CT2 0+ 0+ 0∗ 0+ 1

CT3 0+ +− 0∗ +− 1

RV1 0− 0+ 0∗ 0+ 0

RV2 0− 0+ 0∗ 0+ 0

RV3 0− 0− 0∗ +− 1

Rpipe 0+ 0+ +∗ 0+ 1

1 An indeterminate effect occurs when there are at least two paths
of the same order in the TCG that propagate + and - effects, so the
resultant effect is unknown.

4. DISCUSSION AND CONCLUSIONS

How are fault signatures related to residual generation,
and more specifically to ARRs and PCs? There are dif-
ferences between the algorithms used for generating the
ARRs, PCs, and FSMs. But the equivalence in their
methodological approaches can be attributed to the rela-
tion between diagnostic bond graphs with inverted causal-
ity and the TCG scheme that is based on preferred causal-
ity. The DBG structures imply that the ARR relations
are derived as transfer functions from measurement to
input. All fault parameter values included in this trans-
fer functions are possible candidates if the corresponding
ARR value is non zero. Residual analysis is performed by
performing a logical ’AND’ on the individual ARR results.
A single fault hypothesis is established if a particular fault
parameter appears in all non zero ARRs, and does not
belong to an ARR that remains 0.

For the TCG scheme, the analysis is along the pre-
ferred causality direction, i.e., from the fault parameter to
the measurement, conditioned the inputs. Therefore, the
transfer function is derived from inputs to measurements
in the direction of preferred causality. Fault hypotheses
are established by matching fault signatures to individual
measurement deviations (magnitude change and slope),
and a single fault hypothesis is established, only when
one fault parameter is consistent with all of the observed
measurement changes. Due to shortage of space, we do not
present a formal analysis of the equivalence in this paper,
but we will present this in a future expanded journal paper.

The PC scheme is between the ARR and the TCG meth-
ods. It derives PCs by combining constituent equations,
till the resultant equation contains just measurement and
input (i.e., known) variables and system parameters. Since
it uses the equation framework like the ARRs, its discrim-
inability is identical to the ARR scheme. However, PC
schemes are designed to use mixed integral and derivative
causality relations, and, therefore, they can produce differ-
ent fault signature matrices with different diagnosability
properties [Pulido, et al., 2007] [Svard and Nyberg, 2008].
It remains to be seen if we can formally establish whether
the use of mixed causality residual generation approaches
increases the theoretical diagnosability of the system given
a set of measurements. An important issue to be consid-
ered is that the structure of each PC or ARR can be
seen as equivalent to a minimal subset of over-determined
equations within the TCG, i.e, PCs and ARRs identify
minimal structures in TCGs, which can form the basis for
fault isolation using minimal fault signature matrices.

Another difference is the way each approach deals with
temporal information. Whereas ARRs and PCs only model
the causal and the temporal information between variables
and their derivatives [Blanke, et al., 2003], the qualitative
fault signatures approach uses a more informative struc-
ture, the temporal causal graph. The additional informa-
tion helps relate the direction of change in a variable to
a fault hypothesis. This approach uses qualitative infor-
mation to drive the diagnosis task. The use of this kind
of information allows one to obtain a more informed fault
isolation space than the PCs or the ARRs, and this results
in better discriminability for the TCG scheme. [Ligeza
and Gorny, 2000] have proposed a TCG-like scheme, where



they derive the TCG structure from a Simulink model
of a system as opposed to a bond graph. The generality
of this approach for non linear systems still needs to
be established. Koscielny, et al. [Koscielny, et al., 2006]
define discriminability matrices that take into account
the sign of the observed deviation, but these deviations
are obtained from experts’ heuristic knowledge. All three
methods discussed in this paper, derive discriminability
and fault signature information systematically from the
bond graph model of the system.

A more comprehensive comparison of different compilation
methods for diagnosis is presented in [Pulido and Alonso,
2004]. In this paper, we keep our focus on methods
that exploit the causal structure implied by the bond
graph models, which facilitates the residual generation
process, and reduces the computational complexity for all
three methods. In future work, we will develop a more
systematic comparison framework that is supported by
systems dynamics theory, and can be described formally
within the BRIDGE framework to capture discriminability
of sets of measurements and diagnosability of systems. We
will also extend our approach to cover sensor and actuator
faults, in addition to the parametric faults that we have
discussed in this paper. Last, it is important to extend
the comparison to different and more complex forms
of nonlinear systems, where both quantitative analysis
becomes more complex, and qualitative analysis looses
discrimination power.
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