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Abstract
Online diagnosis methods require large computa-
tionally expensive diagnosis tasks to be decom-
posed into sets of smaller tasks so that time and
space complexity constraints are not violated. This
paper defines the distributed diagnosis problem in
the Transcend qualitative diagnosis framework,
and then develops heuristic algorithms for generat-
ing a set of local diagnosers that solve the global
diagnosis problem without a coordinator. Two ver-
sions of the algorithm are discussed. The time com-
plexity and optimality of these algorithms are com-
pared and validated through experimental results.

1 Introduction
Online fault diagnosis is a key component for develop-
ing health monitoring and adaptive control techniques to
maintain the safety and operational performance of mission-
critical systems under adverse conditions. In model based
diagnosis, the system model provides the basis for generating
and analyzing fault hypotheses that explain the observed dis-
crepancies in system behavior. For large systems analyzing
faulty behaviors is computationally expensive, especially if
the algorithm requires a single, composite model of the entire
system. This motivates the need to develop methodologies for
decomposing the diagnosis task into sets of smaller subtasks
that reduce the overall computational and space complexity
of online fault isolation. Each subtask can be built into a lo-
cal diagnosis module, and results produced by the individual
modules can be composed to derive a correct global diagno-
sis.

Previous work on distributed diagnosis has focused on sys-
tems with discrete behaviors, such as a set of interconnected
processors [1], [2]. An approach for decentralized diag-
nosis has been presented in [3] where the local diagnosers
communicate with a coordination process that assembles a
global diagnosis result. The coordination process often re-
quire significant communication with the local diagnosers,
which brings into question the reliability and scalability of
these approaches. In one of the algorithms mentioned in [3]
(protocol 3), the coordinator is redundant and local diag-
nosers generate globally valid diagnoses. However, the prob-
lem of how to construct such diagnosers is not addressed. A
distributed diagnosis approach, where each local diagnoser
communicates directly with other diagnosers has been pre-
sented in [4]. Initially, each diagnoser finds a set of local di-

agnoses and then communicates with its neighbors to further
reduce the number of consistent diagnoses. The design prob-
lem is formulated as a distributed constraint satisfaction prob-
lem. The graph that represents the constraints between the
fault hypotheses and the observations is partitioned to mini-
mize the communication between local diagnosers. A similar
approach that supports reconfigurable systems has been pre-
sented in [5]. System components are represented by local in-
put/output automata and the partitioning is based on the phys-
ical connections of the system and not the communication
requirements. A distributed diagnosis method that does not
require coordination between local diagnosers has been pro-
posed in [6], but the structure of the local models makes the
local diagnosis and communication extremely complicated.

Our approach extends the Transcend framework [7],
and develops a method for designing distributed diagnosers
for continuous systems. Given a set of faults and measure-
ments and a global system model, we construct independent
diagnosers that together make the system completely diag-
nosable. Two diagnosers are independent if they do not have
to share information in establishing unique global diagnosis
results. Complete diagnosability is the ability to uniquely iso-
late every fault candidate in the system given a set of measure-
ments. We propose two algorithms. The first ensures that the
local diagnosers do not share measurements, i.e., there is no
communication between the diagnosers. This decomposition
may not always be possible, and the second algorithm relaxes
the assumption to allow overlapping measurements, but still
ensures that the local diagnosis results are globally valid.

The general problem of finding independent fault sets sub-
sumes the set covering problem [8], which is known to be NP-
Complete. To overcome this complexity, our algorithm starts
with each fault as an independent set, and systematically
merges faults in a way that each fault within a set is uniquely
globally distinguishable for a set of non-overlapping mea-
surements. Heuristics that favor balanced (i.e., equal-sized)
sets help cut down on the exponential merge process. De-
tails of the algorithms, their computational complexity, and
experiments conducted on multi-tank systems and a reverse-
osmosis system are presented in this paper.

2 Background
The Transcend architecture employs a model-based ap-
proach based on analysis of transients to isolate abrupt faults
in process components. It combines a novel qualitative
scheme with a quantitative parameter estimation scheme for
fault isolation and identification in continuous systems. Dy-



namic system models are constructed using bond graphs [9].
Faults map to component parameters in the bond graph.
Transcend focuses on abrupt faults that are modeled as
discrete and persistent changes in component parameters. An
abrupt fault is a change in a component parameter value that
occurs at a much faster rate than the nominal dynamics of the
system.

The occurrence of an abrupt fault results in transient behav-
ior in the system. Fault isolation in Transcend is based on
a qualitative analysis of the fault transient dynamics. Specif-
ically, the magnitude and slope of the transient residual, de-
rived from measurements, are mapped onto {+,0,−} sym-
bols (after energy-based filtering [10]) for qualitative match-
ing against fault signatures.

2.1 Qualitative fault isolation
Fault isolation is developed on a graphical model representa-
tion, the Temporal Causal Graph (TCG), that is derived auto-
matically from a bond graph model of the system [7].
Definition 1 A Temporal Causal Graph (TCG) is a directed
graph < V,L,D >. V = E ∪ F, where V is a set of ver-
tices, E is a set of effort variables and F is a set of
flow variables in the bond graph, L is the label set {=
,1,−1, p, p−1, pdt, p−1dt} (p is a parameter name of the
physical system model). The dt specifier indicates a temporal
edge relation, which implies that a vertex affects the deriv-
ative of its successor vertex across the temporal edge, and
D⊆V ×L×V is a set of edges. ¥
The TCG captures the causality of physical effects in the sys-
tem, and retains the dynamics expressed in the bond graph
model. The TCG in effect specifies the signal flow graph, al-
beit in a form where each edge relation contains at most one
component parameter value.

We illustrate fault isolation in Transcend, as well as
the new algorithm developed in this paper, using a hypo-
thetical physical system that consists of six fluid tanks con-
nected to each other with pipes, with a source of flow into
the first tank and a pipe for draining from each of the
tanks. In the bond graph model, all the pipes are mod-
eled by resistances and tanks are modeled as capacities,
making this a sixth order system. Fig. 1 shows the sys-
tem with its corresponding bond graph. Pipe Ri drains
tank Ci and pipe Ri j connects tanks Ci and C j. The set of
possible faults i.e., F = {C1, . . . ,C6,R1, . . . ,R6,R12, . . . ,R56},
includes changes in all tank capacities, drain pipe resis-
tances and connecting pipe resistances. A + (−) super-
script implies a fault that results is an increase (decrease)
in parameter value. For example, C−i indicates a de-
crease in tank i capacitance. The set of measurements
M = {e1, f 2,e6, f 7,e11, f 12,e16, f 17,e21, f 22,e26, f 27},
includes all tank pressures and flow rates through the drain
pipes. Fig. 2 shows the TCG for the tank system.
Transcend follows a hypothesize-and-test approach to

diagnosis. The key aspect of the approach is the notion of the
fault signature, which captures the predicted transient behav-
ior at and after the point of fault occurrence.
Definition 2 A fault signature of order N is an ordered N-
tuple consisting of the predicted magnitude and 1st through
Nth order time-derivative effects of a residual signal in re-
sponse to a fault, expressed as qualitative values: below nor-
mal (−), normal (0), and above normal (+). Typically N is
chosen to be the order of the system. ¥
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Figure 1: Six-tank system and its bond graph model.

During hypothesis generation, the algorithm identifies the set
of component parameters with a hypothesized direction of
change in the parameter that explains the observed deviation.
The TCG is then used to generate the fault signatures for all
measurements for all of the hypothesized faults. During hy-
pothesis refinement, as time progresses, new symbolic mea-
surement variables that become available are matched against
the fault signatures for each hypothesized candidate. If a sig-
nature becomes inconsistent with the observed behavior, the
candidate is dropped. A systematic analysis of the qualitative
diagnosis establishes the discriminatory power of qualitative
fault signatures.

Lemma 1 In a purely qualitative framework, faults can be
discriminated if the signature shows the direction of abrupt
change and the direction of change immediately following the
abrupt change, i.e., (+,+), (+,−), (−,+)and (−,−). How-
ever, (+,+)and (−,−)signatures imply an unstable system,
therefore, they are unlikely.
If there is no abrupt change, then the first direction of change
in the measured signal provides discriminatory information
i.e., (0..+) and (0..−). ¥

This lemma implies that a single measurement can distin-
guish at most four faults. This gives a measure of the maxi-
mum number of faults that can be isolated for a set of mea-
surements. The above lemma also informs us when the
qualitative fault isolation scheme can discriminate no further
among fault candidates [11]. The results have been used in
measurement selection algorithms [12] to find the minimum
number of measurements that establish complete diagnosabil-
ity given a set of faults. These ideas are exploited in a differ-
ent way to establish independent fault sets in the next section.

3 Designing Distributed Diagnosis Systems

System variable dependencies in a mathematical model for
continuous system behavior are expressed as continuous
functions of time. Changes in any part of a continuous sys-
tem propagate to all other parts, therefore, decomposition is
not easily achieved by exploiting the temporal properties of
event propagation. In this work, we make use of the topolog-
ical properties of the bond graph model, and the TCG models
derived from these bond graphs to design non-interacting di-
agnosers. The diagnosers satisfy the strong constraint that a
local diagnosis result is globally valid. Our algorithms for
partitioning fault sets are based on this property.
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Figure 2: Temporal causal graph for the six-tank system.

3.1 Complete Diagnosability and Measurements
A fault isolation scheme must have the capability to uniquely
isolate all single faults of interest in a physical system. Given
an adequate system model, the ability to diagnose all faults
depends on the measurements chosen for diagnostic analysis.

Definition 3 Given a set of faults F = { f1, f2, . . . , fl} and a
set of measurements M = {m1,m2, . . . ,mn}, a fault isolation
scheme achieves complete diagnosability if it can uniquely
isolate all possible single faults fi, i ∈ [1 . . . l] given the mea-
surements in M. ¥

In the Transcend structure this translates to (∀i, j ∈
[1, l], i 6= j)(∃mk ∈ M) FS( fi,mk) 6= FS( f j,mk) where
FS( fi,m j) is the fault signature for measurement m j given
that fault fi occurs, and the inequality of fault signatures is de-
fined in terms of the discriminatory power of measurements
given by Lemma 1.

For example, consider the six-tank system in Fig. 1. Let us
assume that the faults of interest are tank capacity decreases,
i.e., C−1 and C−2 , and the outlet pipe resistance blocks, i.e.,
R+

2 . If the pressures at the bottom of the two tanks, i.e., the
effort variables e1 and e6 in the bond graph model, are the
measured variables, then by inspecting the fault signatures in
Table 1, we see that we can uniquely isolate the three faults.
This is because each fault has at least one distinguishing fault
signature from the rest of the fault set. If e6 were the only
measured variable, then the set of faults are no longer diag-
nosable because C−1 and R+

2 have the same signatures for e6.

Fault e1 e6

C−1 {+−+−+−+} {0+−+−+−}
R+

2 {0 0+−+−+} {0+−+−+−}
C−2 {0 +−+−+−} {+−+−+−+}

Table 1: Fault signatures from tanks 1 and 2 for the six-tank
system.

The problem of measurement selection, i.e. finding a
minimal set of measurements to isolate all single faults in
the system, is an instance of the set covering problem [8;
13], which is known to be NP-complete. Consequently, there
is no efficient algorithm that can guarantee an optimal solu-
tion for this problem. The exponential complexity may not be
an issue because measurement selection is typically executed
at design time to solve the sensor placement problem.

3.2 Independence of faults for diagnosis
To derive a set of distributed noninteracting local diagnosers,
we define the notion of independence of faults in a system.
We start with a strong definition of independence, and de-
velop an algorithm for partitioning the fault set F into sub-
sets in a way that the diagnosers use no overlapping mea-
surements. We then relax the definition of independence,
and derive a new algorithm that generates local diagnosers

that provide globally correct diagnosis but allow overlapping
measurements between diagnosers.
Definition 4 Two fault sets P1,P2 ∈ F, are said to be strongly
independent for diagnosis given measurement set, M, if there
exists two sets Q1,Q2 ⊆ M, such that (i) P1 is globally diag-
nosable for measurement set Q1, (ii) P2 is globally diagnos-
able for measurement set Q2, and (iii) Q1∩Q2 =∅ ¥

Assume P1 = {C−1 },P2 = {C−2 } and M = {e1,e6}. P1
and P2 are independent fault sets because Q1 = {e1} can
uniquely isolate C−1 and Q2 = {e6} can diagnose C−2 . P1 =
{C−1 },P2 = {C−2 ,R+

2 } are also independently diagnosable for
M = {e1,e6} because Q1 = {e1} and Q2 = {e6} and Q1 ∩
Q2 =∅.

3.3 Algorithm for Partitioning the Fault Set
To develop a systematic formulation for the problem we first
define a fault signature matrix. The rows in this matrix corre-
spond to the faults { fi|1≤ i≤ l} and the columns correspond
to the available measurements {m j|1 ≤ j ≤ n}. This matrix
is denoted as FSM = [FS( fi,m j)]l×n ,where FS( fi,m j) is the
fault signature for measurement m j given fault fi.
Definition 5 The distinguishing measurement set for fault
fi ∈ F is defined by the mapping Dis : F → 2M where
Dis( fi) = {M′ ⊆M | fi is diagnosable given M′} ¥

We assume Dis( fi) 6=∅ as all faults should be diagnosable
by a global diagnoser. Our task is to find a covering of fault
sets, {Pi | :

⋃
1≤i≤N Pi = F}, such that the number of sets, N

is a maximum (N ≤ l), that satisfies

(∀Pi,Pj ∈ F)

[
⋃

fi∈Pi

Dis( fi)

]
⋂


 ⋃

f j∈Pj

Dis( f j)


 =∅

In other words, the optimal solution to the above problem,
is to find the partition of independent fault sets that covers all
faults and is of maximum size. Each fault set Pi, has an asso-
ciated measurement set Qi ⊆M such that Qi =

⋃
f j∈Pi

Dis( f j),
and we denote the solution to the problem as (Pi,Qi)i=1,...,N .

However, the problem of finding these different (Pi,Qi)
pairs itself is exponential as all combinations of measure-
ments need to be considered for each fault. This makes the
covering problem doubly exponential in computational com-
plexity. To derive practical solutions to this problem, we in-
troduce heuristic search methods.

Algorithm Description
We explain the search space for the covering problem using
a search tree. The root node of this tree contains n sets (to-
tal number of measurements), where each set is a two-tuple,
(Pi,Qi). Qi = mi,1≤ i≤ n, and Pi is the corresponding distin-
guished fault-set for mi.1 If a measurement cannot, by itself,

1A distinguished fault set is a set of faults that are diagnosable
given Qi, i.e., Qi =

⋃
f j∈Pi

Dis( f j)



Fault e1 f2 e6 f7 e11 f12 e16 f17 e21 f22 e26 f27
C−1 +−+−+− +−+−+− 0+−+−+ 0+−+−+ 0 0+−+− 0 0+−+− 0 0 0+−+ 0 0 0+−+ 0 0 0 0+− 0 0 0 0+− 0 0 0 0 0+ 0 0 0 0 0+

C−2 0 +−+−+ 0 +−+−+ +−++−+ +−−+−+ 0+−+−+ 0+−+−+ 0 0+−+− 0 0+−+− 0 0 0+−+ 0 0 0+−+ 0 0 0 0+− 0 0 0 0+−

C−3 0 0+−+− 0 0+−+− 0+−++− 0+−−+− +−+−+− +−+−+− 0+−+−+ 0+−+−+ 0 0+−+− 0 0+−+− 0 0 0+−+ 0 0 0+−+

C−4 0 0 0+−+ 0 0 0+−+ 0 0+−++ 0 0+−−+ 0+−+−+ 0+−+−+ +−+−+− +−+−+− 0+−+−+ 0+−+−+ 0 0+−+− 0 0+−+−

C−5 0 0 0 0+− 0 0 0 0+− 0 0 0+−+ 0 0 0+−− 0 0+−+− 0 0+−+− 0+−+−+ 0+−+−+ +−+−+− +−+−+− 0+−+−+ 0+−+−+

C−6 0 0 0 0 0+ 0 0 0 0 0+ 0 0 0 0+− 0 0 0 0+− 0 0 0+−+ 0 0 0+−+ 0 0+−+− 0 0+−+− 0+−+−+ 0+−+−+ +−+−+− +−+−+−

R+
12 0+−+−+ 0 +−+−+ 0−++−+ 0−+−+− 0 0−+−+ 0 0−+−+ 0 0 0−+− 0 0 0−+− 0 0 0 0−+ 0 0 0 0−+ 0 0 0 0 0− 0 0 0 0 0−

R+
23 0 0+−++ 0 0+−+− 0+−++− 0+−+−+ 0−+−+− 0−+−+− 0 0−+−+ 0 0−+−+ 0 0 0−+− 0 0 0−+− 0 0 0 0−+ 0 0 0 0−+

R+
34 0 0 0+−+ 0 0 0+−+ 0 0+−++ 0 0+−+− 0+−+−+ 0+−+−+ 0−+−+− 0−+−+− 0 0−+−+ 0 0−+−+ 0 0 0−+− 0 0 0−+−

R+
45 0 0 0 0+− 0 0 0 0+− 0 0 0+−+ 0 0 0+−+ 0 0+−+− 0 0+−+− 0+−+−+ 0+−+−+ 0−+−+− 0−+−+− 0 0−+−+ 0 0−+−+

R+
56 0 0 0 0 0+ 0 0 0 0 0+ 0 0 0 0+− 0 0 0 0+− 0 0 0+−+ 0 0 0+−+ 0 0+−+− 0 0+−+− 0+−+−+ 0+−+−+ 0−+−+− 0−+−+−

Table 2: Fault signatures for the six-tank system example.

completely diagnose any fault, its fault set is empty. A recur-
sive procedure is then employed to generate the subsequent
levels of the tree, starting with level 1, the children of the root
node. Nodes at level i+1 in the tree are generated by creating
all possible merged pairs of measurement sets from the par-
ent nodes at level i, and computing the corresponding distin-
guishing fault-sets for the new measurement sets. For exam-
ple, if the partition for a node is {(P1,Q1),(P2,Q2),(P3,Q3)},
the following nodes will be formed as children of this
node: {(P12,Q1 ∪Q2),(P3,Q3)}, {(P13,Q1 ∪Q3),(P2,Q2)},
and {(P23,Q2 ∪ Q3),(P1,Q1)}. Note that Pi j, the distin-
guished fault set formed by the merger of Qi and Q j can in-
clude more faults than Pi ∪Pj because the two sets of mea-
surements can, in theory, uniquely diagnose more faults than
the sum of the faults that each can diagnose. For example, a
single measurement can at most uniquely diagnose 4 differ-
ent faults, but two measurements can diagnose up to 42 = 16
different faults.

The merge process is repeated at the next level of search till
a partition P = P1, . . . ,PN is obtained such that

⋃
Pi = F . Note

that a partition generated at level i of the tree is preferred to
a partition generated at level j, where i < j. This is because
the partition at level i will have a greater number of sets than
the partition at level j. In our work, two partitions generated
at the same level are given equal preference. In the future,
we will introduce further criteria to differentiate among parti-
tions generated at the same level (e.g., sets balanced by size).

A breadth-first search (BFS) solution to the fault set cover-
ing problem is exhaustive, therefore, if no solution is found in
level i, the merge opeator described above will be applied to
all nodes at this level to generate the fault partitions at level
i+ 1. If one or more goal nodes are found at a level the BFS
algorithm terminates, and all solutions at this level are defined
as “optimal.” Since all nodes at each level are expanded, the
search space, and, the search time are doubly exponential. It
may happen that the only solution found is (F,M), and the
search tree is expanded to k levels to find this solution, where
|M| = k, the minimum number of measurements required to
completely diagnose the fault set.

Our algorithm uses the BFS control structure, but applies
heuristics to reduce the space time complexity of the search.
If a goal node is found at a particular level, the algorithm
terminates. If a goal node is not found in the current level,
our algorithm chooses the best node for expansion, using a
heuristic function h = |⋃ fi∈Pi

fi|, the number of faults that
are diagnosable in node Pi. The node with the largest h value

Algorithm 1
Input: Set of l faults F = { fi |i = 1, . . . , l},

Set of n measurement M = {M j | j = 1, . . . ,n},
The Temporal Causal Graph

• Compute FSM =
[
FS( fi,m j)

]
l×n

• Generate root

• REPEAT:
Check for goal node
Calculate h values for each node
IF: Goal node is found

Output this node
Break

ELSE:
Expand node with highest h value

is chosen for expansion. In general, a fault may be globally
diagnosable in more than one set of a partition. In this case,
we assign the fault to the smaller set. This results in balanced
sets within a node.

Relaxing the Definition of Independent Faults
A primary reason for not allowing overlapping measurements
is to keep the communication overhead between the diag-
nosers to a minimum. However, if the only solution Algo-
rithm 1 produces is (F,M), we can relax the condition for
non overlapping measurements and generate local diagnosers
that generate global diagnoses.

Definition 6 Two fault sets P1,P2 ∈ F, are said to be weakly
independent for diagnosis given measurement set, M, if there
exists two sets Q1,Q2 ⊆ M, such that (i) P1 is globally diag-
nosable for measurement set Q1, and (ii) P2 is globally diag-
nosable for measurement set Q2. ¥

The algorithm to derive the set of diagnosers under the
weak independence condition takes on a different structure.
Our goal is to allow overlapping measurements but minimize
the overlap to keep the communication overhead low. We as-
sume additional information about the system structure, i.e.,
the k interacting subsystems are known. Associated with each
subsystem are the set of measurements Mi, and the set of
faults Fi, such that

⋃
1≤i≤k Mi = M and

⋃
1≤i≤k Fi = F . Fur-

ther, Also ∀i, j such that i 6= j, Mi∩M j =∅ and Fi∩Fj =∅.
We use this to derive k local diagnosers, one for each subsys-
tem.

Each subsystem may have faults that cannot be diagnosed



uniquely by the measurements in its subsystem. For each
such fault, the distinguishing measurement set is calculated
and then the least number of additional measurements re-
quired to make this fault uniquely diagnosable is added to
the measurements of the subsystem the fault belongs to. It
is clear that allowing overlap of measurements results in an
exponential algorithm as all possible ways in which the mea-
surements can be grouped is by itself exponential. We can
further restrict the search space if we give preference to se-
lecting measurements from neighboring subsystems, if this
information is available. In this case, the minimal overlap
problem can be solved in polynomial time on the average.
However, in the worst case, this algorithm will still be expo-
nential.

4 Performance Evaluation
We first analyze the heuristic algorithm under strong in-
dependence and then present experimental results of this
algorithm on two multi-tank systems and Reverse Osmosis
System. This is followed by the result obtained from the
six-tank system under the weak independence condition.

To analyze the time complexity of the heuristic algorithm
under strong independence, assume |F | = l and |M| = n.
The root node starts with n sets. For each measurement
set Qi, we identify the set of faults Pi diagnosable by the
measurements in Qi. The faults in Pi have unique fault
signatures for the measurements in Qi and they are computed
by traversing the columns of the fault signature matrix, FS,
that correspond to the measurements in Qi. This operation
can be computed in O(l2n) time. After combining the sets
Pi, we merge all pairs of Qi’s to obtain the measurement
sets of the children nodes. Therefore we have (n

2) nodes in
the next level and each node will have (n− 1) measurement
sets (Qi’s). Computing the Pi’s for each node at this level
is also O(l2n). Since we are expanding only one node,
we will have only (n−1

2 ) children. The number of nodes
generated is (n

2)+ (n−1
2 )+ (n−3

2 )+ . . .+(2
2) = O(n3) as there

are at most n levels. Hence the total complexity is O(l2n4),
which polynomial in the number of faults and the number of
measurements.

We apply the heuristic partitioning algorithm under
strong independence to the six-tank system example of
Fig. 1, and compare the results obtained with the breadth-
first search scheme results. For this example, we chose
the fault set F = {C−1 , . . . ,C−6 ,R+

12, . . . ,R
+
56}, which in-

cluded all the tank capacitances and the connecting pipe
resistances. The set of measurements considered was
M = {e1, f 2,e6, f 7,e11, f 12,e16, f 17,e21, f 22,e26, f 27},
which included all tank pressures and flow rate through the
connecting pipes. The fault signature table for the fault and
measurement set are shown in Table 2.

The breadth first search came up with sev-
eral possible “optimal” covers, which included
({C1},{e1}),({R23,R34,R45,R56},{e6,e11,e16,e21,e26}),
({C2,R12},{ f 7}),({C3},{ f 12}),({C4},{ f 17}),({C5},{ f 22}),
({C6},{ f 27}); ({C1},{e1}),({C2,R12},{e6}),({C3,R23},
{e12, f 7}),({C4,R34},{e16, f 12}),({C5,R45},{e21, f 16}),
({C6},{ f 27}),({R56},{e26, f 22}) and many more which
we have not listed here. The superscripts have been dropped
for improving readability.

The output of our heuristic algorithm for the same example

was ({C1},{e1}),({C2,R12},{e6}),({C3,R23},{e12, f 7}),
({C4,R34},{e16, f 12}),({C5,R45},{e21, f 16}),({C6},{ f 27}),
({R56},{e26, f 22}). The solution generated by the heuristic
algorithm has seven sets, therefore, it is one of the optimal
solutions generated by the BFS algorithm. When one com-
pares the number of node expansions required to generate
the solutions, the BFS search searched involved 183074
node expansions, and our algorithm derived its solution
with 203 node expansions. We have run a number of other
experiments with the six tank system, and in almost all cases,
the heuristic covering algorithm found an optimal solution
expanding 1% of the nodes that were generated by the BFS
algorithm. This demonstrated that the heuristic algorithm is
efficient and generates acceptable solutions. This algorithm
is scales up well for large systems such as a ten-tank system
as well. We ran additional experiments on 10 and 20 tank
systems to demonstrate how well the partitioning algorithm
scales up. The results were similar to the six tank system and
not reported here.

The algorithm that allows overlapping mea-
surements produced the following partition:
({C1,R12},{e1, f 2,e6}),({C2,R23},{e6, f 7,e11}),
({C3,R34},{e11, f 12,e16}),({C4,R45},{e16, f 17,e21}),
({C5,R56},{e21, f 22,e26}),({C6},{e26, f 27})). Here we
assumed each tank and the pipe connecting it to the tank
to its right to belong to the same subsystem. The pressure
measurement in the tank, and the flow out of each tank were
the two measured variables for each subsystem. The faults
included the decrease in capacitance of each tank and the
increase in flow resistance in the pipe connecting each tank
to its next tank. As expected, the capacitance Ci in the ith
tank is uniquely diagnosable by the effort variable of that
tank. However, to uniquely diagnose the faults in the inter-
connecting pipes, this algorithm adds the pressure variable of
the adjoining tank to the measurements of subsystem i and
makes all faults in Fi uniquely diagnosable.

4.1 Reverse Osmosis System
We also applied this algorithm under strong independence to
design distributed diagnosers for the Reverse Osmosis (RO)
system, which is a component of a Water Recovery system
(WRS) constructed at the NASA Johnson Space Center as a
test-bed for long duration human life support in space. Fig. 3
shows the schematic of the Reverse Osmosis system. It con-
sists of a feed pump which brings water into the system fol-
lowed a coil which acts as a reservoir for water before it is
pumped in by the recirculation pump into a membrane. The
membrane cleans water by a filtering action. Purified water
leaves the membrane and goes to the next subsystem. Water
that did not pass though the membrane goes into a recycle
loop (Primary or Secondary) and is pumped into the mem-
brane again. This system, and the Transcend FDI results
are discussed in detail in [14].

In this experiment, we consider only the primary operating
mode of this system. Faults of interest are the feed pump,
with corresponding component parameters {I f p,R f p}, faults
in the membrane corresponding to {Cmemb,Rmemb} and faults
in the recirculation pump corresponding to {Iep,Rep}. There
are five measurements in the system; (i) the pressure at the
output of recirculation pump (e37), (ii) fluid pressure at the
membrane (e16) (iii) flow through the membrane (f25), (iv)
pressure in the return path of the loop (e23) (v) input flow to



F-M e37 e16 e23 f30
I−f p 0 0 - + . 0 0 + . . 0 - + . . + - . . .

R+
f p 0 0 0 + - 0 0 0 - . 0 0 + - . 0 - + . .

C+
memb 0 - + . . - + . . . - + . . . 0 0 + - .

R−memb 0 0 - + . 0 - + . . 0 - + . . 0 0 0 + -
I−ep + - + . . 0 + . . . 0 + . . . 0 0 + - .
R−ep 0 + - + . 0 0 + . . 0 0 + . . 0 0 0 + -

Table 3: Faults with corresponding measurement signatures
for the RO system.

the RO (f30).
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Figure 3: Reverse Osmosis system process engineering dia-
gram.

Table 3 shows the fault signatures for the faults and mea-
surements used in this experiment. The algorithm comes
up with a scheme where three separate diagnosers can be
implemented. The partition obtained by this algorithm is
({I f p,R f p},{ f 30}),({Cmemb},{e23}),({Rmemb, Iep,Rep},
{e37,e16}).

5 Conclusions
This paper has developed a methodology for designing dis-
tributed diagnosers for complex continuous systems by par-
titioning the given fault set into sets of independent faults.
The problem of finding both strongly as well as weakly in-
dependent sets have been addressed. The resulting local di-
agnosers satisfy the property that a local diagnosis result is
also globally correct, therefore our approach does not need a
coordinator module. By partitioning the system into strongly
independent sets, we significantly reduce the computational
complexity of the overall diagnosis task. As discussed ear-
lier, the nature of continuous dynamics and the interactions
between components of a physical system makes it difficult to
divide the system into independent subsystems. In this work,
we exploit the fault signatures derived from the TCG model
of the physical process that capture the transient dynamics in
qualitative form, to derive independence among fault sets.

In future work, we would like to improve the preliminary
algorithm that finds sets that have the minimal overlap. This
will minimize the communication requirements between di-
agnosers. Then it is still possible to design interacting diag-
nosers that are computationally efficient for online applica-
tions.
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