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Abstract—A Wireless Sensor Network (WSN) deployed for
detection applications has the distinguishing feature that sensors
cooperate to perform the detection task. Therefore, the decoupled
design approach that is typically used to design communication
networks, where each network layer is designed independently,
does not lead to the desired optimal detection performance.
Cross-layer design has been recently explored for the design of
MAC protocols for parallel topology (single hop) networks, but
little work has been done on the integration of communication
and information fusion for tree networks. In this work, we design
the optimal Transmission Control Policy (TCP) that coordinates
the communication between sensor nodes connected in a tree
configuration, in order to optimize the detection performance.
We integrate the Quality of Information (QoI), Channel State
Information (CSI), and Residual Energy Information (REI) for
each sensor into the system model. We formulate a constrained
nonlinear optimization problem to find the optimal TCP design
variables. We solve the optimization problem using a hierarchical
approach where smaller local optimization problems are solved
by each parent node to find the optimal TCP design variables for
its child nodes. We compare our design with the max throughput
and decoupled design approaches.
Keywords: Decentralized detection, networked information
fusion, transmission control policy, optimization

I. INTRODUCTION
The deployment of Wireless Sensor Networks (WSNs) in

decentralized detection applications is motivated by the avail-
ability of low cost sensors with computational capabilities,
combined with the advances in communication network tech-
nologies. In Decentralized Detection (DD), multiple sensors
collaborate to distinguish between two or more hypotheses.
In many practical applications, sensors are distributed geo-
graphically and connected in a tree configuration to sample
the environment, pre-process the data, and communicate the
information to the fusion center for final decision-making. The
tree topology is preferred over direct transmission as it saves
sensor energy and minimizes the fading channel effect.
The classical problem for DD with the tree configuration

is to find the local sensor detection strategies (quantization
rules) to minimize a system-wide cost function using different
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channel models [1]. This classical quantization problem is
unlikely to play a major rule in modern WSNs. The reason
is twofold: 1) performance loss due to quantization decays
rapidly with the number of information bits in the packet
payload [2], [3], and 2) the payload of a packet could be
considered large enough to represent local sensor information
with adequate accuracy, as additional bits in the payload are
unlikely to affect power or delay, given the relatively large
packet overhead [4], [5]. On the other hand, the deployment
of WSNs in detection applications brings new challenges to the
field. In addition to the design of signal processing algorithms
at the application layer that has been previously addressed [6],
protocols for other communication layers have to be designed
to optimize the detection performance.
The layered approach commonly adopted to design wireless

networks may not be appropriate for detection applications.
Although the layered approach provides simplicity in the de-
sign due to the decoupling of system layers, it neither provides
the optimal resource allocation nor exploits the application
domain knowledge. As an example, throughput is a com-
mon performance metric used to design media access control
protocols. In DD applications, maximizing the throughput
is not the prime objective, rather, maximizing the quality
of the information received that yields the best detection
performance is the prime objective. Accordingly, a cross-layer
design approach is desired for efficient implementation of
WSNs in decentralized detection applications.
The cross-layer design approach has been recently explored

for the design of Media Access Control (MAC) protocols
for parallel topology (direct transmission) sensor networks in
detection applications. Decision fusion over slotted ALOHA
MAC employing a collision resolution algorithm is studied
in [7]. Identical sensors are considered, and the objective
is to analyze the detection performance. A more thorough
investigation of the design of MAC transmission policies to
minimize the error probability has been considered in [8],
where sensors are assumed non-identical, and the MAC policy
is assumed stochastic. The approach is also generalized to
the multi-cluster networks. The cross-layer approach is also
considered in [5] where an integrated model for the physical
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channel and the queuing behavior for sensors is developed. The
design problem is to choose the code rate and the number of
sensors to minimize the error probability for an FDMA system,
where orthogonal channels are used between sensors and the
fusion center.
Some work has been done on the integration of commu-

nication and information fusion for tree networks. Energy-
efficient routing for signal detection in WSNs is considered
in [9], where the objective is to find the optimal route for
local data from a target location to the fusion center, to
maximize the detection performance or to minimize the energy
consumption. Cooperative routing for distributed detection
in large sensor networks is studied in [10] using a link
metric that characterizes the detection error exponent. Optimal
communication rate allocation for multihop sensor networks
deployed for DD is studied in [11], where no medium access
contention is assumed. For a survey on the interplay between
signal processing and networking in sensor networks, see [12]
and the references therein.
We addressed the design of optimal TCP for parallel-

topology sensor networks in [17]. In this paper, we extend the
work to design the optimal TCP that coordinates the communi-
cation between sensor nodes connected in a tree configuration.
We integrate the physical layer, MAC layer, and the detection
application layer in one unified system model, that captures
the Quality of Information (QoI), Channel State Information
(CSI), and Residual Energy Information (REI) for each sensor.
Our approach is to express the detection performance measure
as a function of the parameters of the integrated system model,
and solve a constrained optimization problem to obtain the
TCP variables that maximize the detection performance.
In making our modeling choices, we are motivated by the

desire to develop a system model that captures the basic
features of practical sensor networks, while being amenable
to analysis. Specifically, we make the following design as-
sumptions: 1) Tree topology. It is a general topology since
it encompasses both the serial and parallel topologies for
detection networks. 2) Digital transmission. Although uncoded
analog transmission is optimal in a sensor network under
certain conditions (see, e.g., [13]), digital transmission is still
the choice for cost-effective, commercial off-the-shelf deploy-
ments of sensor network applications. The digital transmission
promotes the ON/OFF channel model, where the packet is
either received successfully or discarded. 3) Slotted ALOHA
MAC. The traditional assumption of a dedicated orthogonal
channel between each sensor node and its parent node may not
be feasible in practice. Slotted ALOHA multiaccess scheme,
on the other hand, has been successfully deployed in practice.
We use a simplified version of the slotted ALOHA protocol,
ignoring the protocol specifics, to keep the analysis tractable.
We summarize the contributions of our work as follows:

1) Integrated model for the detection system. The model
captures the physical channel, MAC protocol, and the detec-
tion application models, and their interactions. The model also
incorporates the QoI, CSI, and REI measures for each sensor.
2) Design of a complete transmission control policy. We

design the TCP for the tree topology rather than the common
parallel topology (single-hop network), and for a finite number
of sensors, rather than asymptotically. The TCP variables
include retransmission probabilities, communication rates, and
power allocation across sensors. 3) Enhanced detection per-
formance. We show that the proposed design approach has a
significant improvement in the detection performance over the
classical decoupled and maximum throughput approaches.
The rest of the paper is organized as follows: Section II

presents the problem formulation. Section III explains the
system model. Section IV presents the solution of the opti-
mization problem to obtain the optimal TCP design. Section
V briefly explains two classical design approaches to be
compared with the proposed design. Section VI presents a
numerical example, and the work is concluded in Section VII.

II. PROBLEM FORMULATION
Figure 1 illustrates the detection system architecture, where

a set ofN wireless sensors, and a fusion center denoted by FC,
are arranged in a tree structure, and collaborate to detect the
phenomenon of interest. We assume the tree structure is pre-
specified, possibly based on sensor locations, and therefore
the routing problem is not considered. Initially, the fusion
center broadcasts a message containing the location of the
phenomenon (target, smoke,...etc) to be detected, soliciting
information from different sensors. Each sensor responds to
its parent with the following information: 1) sensor location,
2) the average signal to noise ratio of the measured phe-
nomenon at the sensor location, and 3) the energy the sensor
will devote to the detection process. This information could be
obtained in practice as follows: 1) the sensor location could
be estimated by different localization methods [14], and is
used, along with channel measurement techniques, to estimate
the CSI for the sensor. 2) The average signal to noise ratio
of the measured phenomenon, representing the QoI, could be
estimated by the sensor using the distance between the sensor
and the phenomenon location, prior information about the phe-
nomenon measured, and the information of the channel state
between the sensor and the phenomenon location. 3) Finally,
the energy devoted for the detection process, representing the
REI, is estimated by the sensor from the battery charging state
and the desired remaining useful life of the sensor.
Two approaches are possible to calculate the optimal trans-

mission control policy. The global approach, where the fusion
center receives the information from all sensors (through their
respective parents), calculates the optimal transmission control
policy for each sensor by solving a constrained nonlinear
optimization problem, and transmits the values of the TCP
variables back to the relevant sensors. This global approach
may not be feasible in large sensor networks as it is not
scalable with the network size, in addition to the fact that the
design parameters have to be propagated back from the fusion
center down to all network nodes. A more practical approach
is the local approach, where each parent node solves a smaller
local optimization problem to specify the locally optimal TCP
variables for its child nodes.
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Figure 1. Detection architecture for a tree-topology WSN. Sensors communi-
cate their observations in a multihop fashion over slotted ALOHA multiaccess
channels to the fusion center.

Some sensors may not contribute to the detection process,
due to either low quality of information (e.g. phenomenon is
too far), low channel state (e.g. high noise or long distance
to the parent node), or not enough energy to transmit to the
parent node (e.g. not enough battery power or long distance
to the parent node combined with bad channel quality). The
fusion center (global approach) or the parent nodes (local
approach) transmit the TCP variables only to the sensors which
are specified by the optimization algorithm to be reliable to
contribute to the detection task. The resulting values of the
TCP variables remain valid for the given location as long as
the quality measures for each sensor did not change from the
last run of the optimization algorithm.
After each sensor receives the optimal values of the TCP

variables, the detection process proceeds as follows: the fusion
center broadcasts a message to initiate a detection cycle at
the local wireless sensors. Each local sensor samples the
environment by collecting a number of observations, and then
forms a data packet and communicates its message to the
parent node over a shared wireless link using the slotted
ALOHA multiaccess control scheme. Parent nodes relay the
information of the child nodes, in addition to their own
information, through the tree network until reaching the fusion
center. Finally, the fusion center makes a final decision after a
fixed amount of time representing the maximum allowed delay
for detection.
Our focus in this paper is different from the classical

decentralized detection literature. We do not treat the problem
of optimal local quantization rules at each sensor. Rather, we
focus on the problem of optimal network design for detection
applications. To obtain a tractable solution, we assume that
observations are sent to the fusion center directly without
in-network processing. However, the analysis presented here
is also applicable when considering in-network compression,
although the resultant objective function may result in more
complex analysis. In general, since in-network processing
results in information loss, while saving network bandwidth
and sensor energy, our work could be regarded as an upper
bound on the detection performance and a lower bound on the

network performance.

III. SYSTEM MODEL
The detection scheme described above suggests a layered

approach to system modeling, as depicted in Figure 2. The
physical layer represents the wireless channel model, and
defines system parameters such as the communication bit rate
and the energy consumed in communicating sensor informa-
tion to the fusion center. The Media Access Control (MAC)
layer represents the slotted ALOHA protocol model, and de-
fines the protocol-specific parameters such as the transmission
probability. Finally, the application layer represents the sensing
model, and defines the model of the observations obtained by
local sensors.

A. Wireless Channel Model
We present a model for the wireless channel between each

parent-child pair in the tree detection network. We focus on
the case where the sensor nodes and the fusion center have
minimal movement and the environment changes slowly. Since
detection applications typically have low communication rate
requirements, the coherence time of the wireless channel could
be considered much larger than the transmission frame length.
Accordingly, only the slow fading component of the wireless
channel is considered. Figure 3 shows the fading channel
model, where w(t) is an additive white Gaussian noise with
power spectral density N0/2. The term m(d) represents the
mean path attenuation for a sensor node at a distance d from
its parent, where the dependence on time t is dropped since
slow fading is considered. We use the Hata path-loss model
for the mean path attenuation, where the total dB power loss
is given by [15]:

PL = 20 log10

(
4πd0
λ

)
+ 10ρc log10(d/d0)︸ ︷︷ ︸
μc

+Xσc
(1)

where d0 is a reference distance corresponding to a point
located in the far field of the transmit antenna, λ is the
wavelength of the propagating signal, ρc is the path loss
exponent, d is the distance between the transmitting and
receiving antennas (i.e. child and parent nodes), and Xσc

is
a zero-mean Gaussian random variable with variance σ2

c . The
power loss (in dB) is therefore a Gaussian random variable
with mean μc and variance σ2

c , i.e. PL ∼ N (μc, σ
2
c ).

The given wireless channel represents an unreliable bit pipe
for the data link layer, with instantaneous Shannon capacity
C = W log2

(
1 + Pr

N0W

)
bps, where W is the channel

bandwidth and Pr is the signal power received by the parent
node. Using Shannon coding theorem, the data link layer could

Layer Model
Application Sensing model

MAC Slotted ALOHA
Physical Fading wireless channel

Figure 2. A layered approach to detection system modeling.
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Figure 3. Block diagram for the wireless communication channel. The
transmitted signal is subject to large-scale fading and additive white Gaussian
noise.

achieve arbitrary communication rates R up to the channel
capacity using appropriate coding schemes. Given the state of
the art coding schemes that approach the Shannon capacity, we
can approximately assume that the fusion center can perform
error-free decoding for any transmission with bit rate R < C.
Therefore, the channel is considered “ON” when R < C and
“OFF” otherwise, giving rise to the two-state channel model
akin to the one presented in [5]. Noting that Pr = Pt10

−PL/10,
where Pt is the average signal power transmitted by the local
sensor, and using the result that PL ∼ N (μc, σ

2
c ), we get the

probability for the channel being “ON” during a transmission:

P [ON] = λc = Φ

[
1

σc

(
10 log

Pt

N0W (2
R
W − 1)

− μc

)]
(2)

where Φ(.) is the cumulative distribution function for the stan-
dard normal PDF. We note that the Channel State Information
(CSI) relevant to our model is represented by the statistics
σc, μc, and N0.

B. Media Access Control Protocol Model
We assume a slotted ALOHA multiaccess communication

protocol between each parent node and its child nodes, where
each packet requires one time slot for the transmission, all time
slots have the same length, and all transmitters are synchro-
nized. Furthermore, we assume simultaneous transmission of
parent and child nodes, which could be achieved in practice by
sending and receiving on different frequency bands. Finally,
subtrees that do not have a common parent (excluding the root
node, i.e. the fusion center) do not interfere.
The detection cycle, demonstrated in Figure 4, has length

τ , which defines the delay for detection. The detection cycle
is divided into a number of transmission slots Li, for nodes
at the same depth i of the tree, and sharing a common parent.
The relationship between the number of slots for consecutive
depths is given by Li+1 = miLi, where mi is a positive
integer. In the following discussion, we designate the set of
all child nodes for sensor k by Ck, and the set of all siblings
(excluding sensor k) by Bk.
At the beginning of every time slot, each local sensor k

collects a number of observations nk and forms an information
packet for transmission over the wireless channel. The sensor
then attempts to transmit to its parent with probability qk,
transmission power Pk, and communication rate Rk. The
sensor attempts transmission at each time slot, despite the
status of its previous transmission attempts. The final decision

qk, Rk, Pk

Decision
. . . . . .L1

Transmission slots

. . . . . .L2

. . . . . .L3

τ

. . . . . .

Figure 4. Detection cycle of length τ is divided into L1 slots for nodes at
depth 1 that have the same parent, L2 slots for nodes at depth 2, and so on.
The number of slots at each depth is an integer multiple of the number of
slots at the previous depth. Inside each slot, each sensor attempts transmission
with the indicated TCP parameters.

is taken at the fusion center using the information received
during the detection cycle. The process repeats for every
detection request initiated by the fusion center.
The communication rate could be expressed with the aid of

Figure (5) as follows:

Rk =
bLink

τ
+

1

mi

∑
v∈Ck

ZvRv,
∑
v∈Ck

Zv = mi (3)

where b is the number of encoding bits for each observation,
i is the depth of the sensor, and Zv is the number of times
the child sensor v successfully transmitted during the mi time
slots. The first term in (3) represents the information collected
by the sensor node, and vanishes if the node functions as a
relay node for its child nodes. The second term represents the
information received from the child nodes and vanishes for
leaf nodes.
We note that in the above description for the MAC protocol,

we ignored the acknowledgement slots and any protocol
specifics required for synchronization or rate negotiation to
simplify the analysis. Also, we ignored the packet overhead,
which is a reasonable approximation for practical WSN pro-
tocols with large packet payload.
Now, we calculate the overall probability of a successful

packet transmission, including the wireless channel effect.
We note from (3) that the communication rate of interme-
diate nodes is a random variable, being dependent on the
information received from its child nodes. Accordingly, ac-
curate formulation for the problem requires modification of
(2) to include the randomness of the communication rate.
Unfortunately, no closed form solution could be obtained

j

k

Rk nk

k k k

Rv
nv

. . . . . .
mi transmission slots

depth i

Figure 5. The communication rate for node k is the sum of the communica-
tion rate required to send its local observations and the communication rates
of its child nodes that successfully transmitted during the previous mi time
slots.



for the channel ON probability in this case. Even If we
approximated the sum in the second term of (3) by a Gaussian
random variable using the Central Limit Theorem, and used
the approximation of R to derive the new probability of
success, we would obtain, after some manipulations, a sum
of two Log Normal random variables, which does not have
a closed-form probability distribution. Therefore, to keep the
analysis tractable, we resort to a suboptimal solution, where
the communication rate for each node is represented by its
expected value. Accordingly, equation (2) is still applicable,
where R represents the average communication rate. Now,
at any given time slot, the probability of a single packet
transmission by sensor k is given by qk

∏
v∈Bk

(1 − qv).
Further, this packet will be successfully received by the parent
node if the state of the physical channel between the child
node k and the parent node is “ON” during this time slot.
Therefore, using (2), the total probability of a successful
packet transmission by sensor k is given by:

λk = qk

[ ∏
v∈Bk

(1 − qv)

]
Φ

[
10

σk
c

log
P k
t

N0W (2
R̄k
W − 1)

−
μk
c

σk
c

]
(4)

where R̄k is obtained by taking the expected value for (3) and
noting that Zv is a binomially distributed random variable with
E[Zv] = miλv

R̄k =
bLink

τ
+

∑
v∈Ck

λvR̄v (5)

C. Energy Model
To formulate the energy model for each sensor, we first

introduce the definition for the network lifetime. The network
lifetime L could be defined as the average time span from
the deployment to the instant when the network can no longer
perform the task [12]. The network lifetime could be expressed
as:

L =
E0 − Ew

frEr
(6)

where E0 =
∑N

i=1 e
0
i is the total initial energy in all sensors

at the time of deployment, Ew =
∑N

i=1 e
w
i is the total wasted

energy remaining in sensor nodes when the network cannot
perform the assigned task, fr is the average sensor reporting
rate defined here as the number of detection cycles per unit
time, and Er =

∑N
i=1 e

r
i is the expected energy consumed by

all sensors in one detection cycle. The total wasted energy
could be defined for our detection problem as the energy
required to achieve a minimum pre-specified value for the
detection performance measure.
In general, we can include the energy allocation problem in

our formulation, i.e. finding optimal eri values for all sensors
that maximize the detection performance while guaranteeing
a minimum network lifetime. In this work, however, we focus
on the optimal TCP problem, and therefore we resort to a
simpler energy formulation. First, we assume that ewi is the
energy remaining in the sensor battery when the sensor is not

capable of operating its electronic circuits for computations
and communication, which is fixed and known for each sensor.
Second, we assume that the reporting energy for each sensor
eri is a fixed percentage of its net useful energy at the time of
sensor deployment. Using these two assumptions, we get the
following expression for the energy consumed by each sensor
in one detection cycle:

erk =
e0k − ewk
frL

∀k (7)

which could be calculated for any desired network lifetime
L. The total energy consumed by each sensor is divided
between transmission and reception (except for leaf nodes).
By assuming that the energy consumed in the reception
process is proportional to the detection cycle lifetime with
proportionality constant α, and by noting that the expected
number of transmissions by sensor k during a detection cycle
is Liqk, we get:

P k
t =

(erk/τ)− α

qk
=

1

qk
(pk − α) (8)

where pk is the average transmission power over one detection
cycle, which summarizes the Residual Energy Information
(REI) for each sensor. Using (8) in (4), we get:

λk = qk

[ ∏
v∈Bk

(1− qv)

]
Φ

[
ak −

(
10

σk
c

)
log qk

(
2

R̄k
W − 1

)]
(9)

where ak = 1
σk
c

(
10 log pk−α

N0W
− μk

c

)
. We note that α < pk =

erk/τ for the sensor to be able to transmit the information. In
addition, α = 0 for leaf nodes.

D. Sensing Model
We consider a detection application where a set of sensors

are randomly placed in a surveillance area to detect the
presence of an object. Sensors have fixed positions, which
could be estimated using different localization algorithms. The
surveillance area is divided into a number of range resolution
cells that are probed by local sensors upon receiving a com-
mand from the fusion center. We focus our work on detection
using signal amplitude measurements. Therefore, when there is
an object at a specific resolution cell, the observation at sensor
k, located at dk distance from the object, could be expressed
as:

xk =
ε

d
η/2
k

+ wk (10)

where ε is the amplitude of the emitted signal at the object, η
is a known attenuation coefficient, typically between 2 and 4,
and wk is an additive white Gaussian noise with zero mean
and variance σk2

s .
The detection problem could be defined as the following

binary hypothesis testing problem, for each time slot i:

H0 : xk[j, i] = wk[j, i] j = 1, 2, . . . , nk

H1 : xk[j, i] = μk + wk[j, i] j = 1, 2, . . . , nk (11)



where μk = ε/d
η/2
k , and nk is the number of observations

obtained by sensor k at each time slot. We note that noise
samples are independent across sensors, i.e., the observations
at local sensors are independent across time and space, but not
necessarily identically distributed since some sensors may be
closer to the measured phenomenon, and noise variances are
assumed unequal. We present the following two propositions,
without proof, due to space limitations.

Proposition 1. The optimal test statistic at the fusion center
for the given system description is given by (13), where ri1...ijvj

is a Bernoulli distributed random variable taking the values
0 or 1, with success probability as in (9), representing the
success or failure of receiving a packet from sensor vj (located
at depth j) in the slot sequence i1 . . . ij (slot i1 is divided
into m1 i2 slots, which is divided into m2 i3 slots, and
so on). l represents the depth of the tree, and xv[j, i1 . . . il]
represents observation number j received from sensor v in the
slot sequence i1 . . . il.

The expression in (13) is simply a weighted sum of the
observations received at the fusion center. The complexity of
the equation comes from the fact that successful reception of
the observations of child nodes at the fusion center depends
on the success of the transmission of all parent nodes up to
the fusion center.
We adopt the deflection coefficient as a detection perfor-

mance measure, defined as [16]:

d2 =
(E[V ;H1]− E[V ;H0])

2

var[V ;H0]
(12)

which provides more tractable results in our study. The deflec-
tion coefficient is also closely related to other performance
measures, e.g., Receiver Operating Characteristics (ROC)
curve. In general, the detection performance monotonically
increases with increasing the deflection coefficient.

Proposition 2. The deflection coefficient for the detector in
(13) is given by (14), where cv = (μv/σv

s )
2.

We define the deflection coefficient for individual sensors
as d2v = nvcv and adopt it as a measure of its Quality of
Information (QoI). Using (5) in (14), we obtain our objective
function in (15).
Table I lists the model parameters and their description. The

third column classifies each parameter according to its method
of calculation as either given from the application knowledge,
estimated online, calculated, or as a design parameter. The
fourth column highlights the parameters that are a measure of
the REI, CSI, or QoI for each sensor. The last column classifies
each parameter according to its relevant layer in the system
model.

IV. TCP DESIGN FOR OPTIMAL DETECTION
The optimization problem could be summarized as follows:

max
q,R̄

d2 s.t. 0 ≤ qi ≤ 1, R̄i ≥
∑
v∈Ci

λvR̄v i = 1 : N (16)

Table I
MODEL PARAMETERS

Param. Description Calculation Notes Layer
W Channel bandwidth G

Ph
ys
ic
al

La
ye
r

N0 Power spectral density E CSI
μc Mean path loss C (1) CSI
σ2
c Path loss variance E CSI

Pt Transmission power D
R Communication bit rate D
L Number of comm. slots C (3)

M
A
C

La
ye
r

b Number of encoding bits G
q Retransmission probability D
τ Delay for detection G

A
PP
.

La
ye
rn Number of observations C (3)

c Signal to noise ratio G QoI
e Energy/detection cycle G REI

E: Estimated, G: Given, C (): Calculated (eq. number), D: Design

Although this problem could be solved by existing algorithms
(e.g. interior point method) for a local maximum, we note that
the objective function in (15) gets more complicated as the
tree depth increases. Adding the fact that all design variables
have to be propagated back to tree nodes, a more practical
approach is clearly needed. If we look at the objective function
expression in (15), we note that it reflects the tree hierarchy,
i.e. the last term in the expression represents the contribution
of the leaf nodes, preceded by the contribution of the parents
of the leaf nodes, and so on, until reaching the sensor nodes
at the top level of the tree (depth=1). This could be shown by
expressing the objective function using the following recursive
equation:

d2 =
τ

b
JFC , Jk =

∑
v∈Ck

λv

[
R̄v(cv − ck) + Jv

]
(17)

where Jk = 0 for leaf nodes and ck = 0 for the fusion
center node. This structure of the objective function suggests
a local optimization approach for the problem, where we start
by optimizing Jv for sensors at depth l − 1 and continue the
local optimization recursively using (17), until reaching the
fusion center. This approach is practical since the solution of
each local optimization problem could be carried out locally
at each parent node. The solution approach is illustrated in
Figure (6).

J10 J11 J12

JFC

J14J13

FC

13 14

10 11 12

1 2 . . . 3 4 5 . . . 6 . . . 7 8 . . . 9

Figure 6. Hierarchical optimization for the TCP design problem. Subtrees
are locally optimized starting from the leaf nodes.



V =

L1∑
i1=1

∑
v1∈Cf

nv1∑
j1=1

ri1v1

⎡
⎢⎣
(

μv1

σ
v1

2

s

)
xv1 [j1, i1] +

m1∑
i2=1

∑
v2∈Cv1

nv2∑
j2=1

ri1i2
v2

⎡
⎢⎣
(

μv2

σ
v2

2

s

)
xv2 [j2, i1i2] + . . . +

ml−1∑
il=1

∑
vl∈Cvl−1

nvl∑
jl=1

ri1...il
vl

(
μvl

σ
vl

2

s

)
xvl

[jl, ili2 . . . il]

⎤
⎥⎦ . . .

⎤
⎥⎦

(13)

d2 = L1

∑
v1∈Cf

λv1

⎡
⎢⎣nv1cv1 + m1

∑
v2∈Cv1

λv2

⎡
⎢⎣nv2cv2 + . . . + md−1

∑
vl∈Cvl−1

λnvl
cvl

⎤
⎥⎦ . . .

⎤
⎥⎦ (14)

d2 =
τ

b

∑
v1∈Cf

λv1

⎡
⎢⎣R̄v1cv1 +

∑
v2∈Cv1

λv2

⎡
⎢⎣R̄v2 (cv2 − cv1) +

∑
v3∈Cv3

λv3

⎡
⎢⎣R̄v3 (cv3 − cv2) + . . . +

∑
vd∈Cvd−1

λvd
R̄vd

(cvd − cvd−1
)

⎤
⎥⎦
⎤
⎥⎦ . . .

⎤
⎥⎦ (15)

By substituting (9) in (17), we can express the local opti-
mization problem at parent node k as follows:

max
∑
i∈Ck

qi

⎡
⎣∏
j∈Bi

(1− qj)

⎤
⎦ [

R̄i(ci − ck) + Ji
]

× Φ

[
ai −

(
10

σi
c

)
log qi

(
2

R̄i
W − 1

)]
s.t. 0 ≤ qi ≤ 1, R̄i ≥

∑
v∈Ci

λvR̄v = ri (18)

We note that Ji and ri are fixed values, obtained from
solving the local optimization problems at lower levels
in the hierarchy. Let the number of child nodes for
sensor k is Nk, and denote the decision variables by
x =

[
q1 q2 . . . qNk

R1 R2 . . . RNk

]
, where x ∈

R
2Nk , and the objective function by J(x), then the optimiza-
tion problem could be rewritten on the form:

min
x

−J(x) subject to Ax ≥ b (19)

where

A =

[
I −I 0

0 0 I

]T
, b =

[
0 −1 r

]T (20)

I is the identity matrix, 0(1) is the vector/matrix of
all zeros (ones) with appropriate dimensions, and r =[
r1 r2 . . . rNk

]T . We have considered a similar problem
for single hop networks in [17]. The only difference is the
constant vector r in place of the zero vector in the constraint
equation. The vector r arises due to the dependency of the
communication rate of parent nodes on the rate of child nodes.
We do not repeat the analysis here due to space limitations, but
we summarize the main result in the following proposition.

Proposition 3. The maximum value of the objective function in
(18) occurs either when one sensor transmits with probability
one and all other sensors remain silent, or at a stationary
point of the objective function, i.e. at x∗ where ∇J(x∗) = 0.

Since we may have multiple stationary points in the inte-
rior of the objective function domain, the proposition does
not guarantee obtaining the global maximum. However, the
proposition is still useful for the following reasons: 1) it avoids
the case where the optimization algorithm may terminate at
the local maximum qi = 1, qj = 0, while a better local
maximum maybe at one of the stationary points, and 2) it

provides information about the choice of the initial point for
the optimization algorithm, where initial points near the corner
points qi = 1, qj = 0 have to be avoided.

V. PERFORMANCE COMPARISON
We compare our design approach to the following two

approaches.
Decoupled design. In this approach, each layer is designed

separately. In the conventional slotted ALOHA, the MAC
sublayer is designed to minimize the probability of collision,
without regard to the QoI or CSI of each node. Minimum
probability of collision occurs at qk = 1/Nk, and consequently
P k
t = pkNk. The physical layer is designed to guarantee
a minimum probability of successful packet transmission, λ.
Using (2), we obtain:

R̄i = W log2

(
1 + 10[0.1σ

i
c(ai−Φ−1[λ])+logNk]

)
(21)

and using (17), the deflection coefficient is given by:

d2 =
τ

b
JFC , Jk =

λk

Nk

(
1−

1

Nk

)Nk−1 ∑
v∈Ck

[
Jv + (cv − ck)R̄i

]
(22)

where we assumed different value of λ for each set of
competing nodes. To make a fair comparison, we do not
assume a pre-set value of λk. Rather, we optimize λk values to
yield the maximum deflection coefficient. The rate constraint
in (18) reduces to:

λk ≤ min
v∈Ck

Φ

[
av −

(
10

σv
c

){
log

(
2

R̄i
W − 1

)
− logNk

}]
(23)

Max Throughput Design. We follow the same hierarchical
approach in defining and solving for the maximum throughput
design. The throughput of any relay node k is defined as:

Tk =
∑
v∈Ck

λvR̄v (24)

The objective is to choose the design variables qv and Rv

to locally maximize the throughput. The constriant on the
communication rate of node v could be expressed in terms of
its throughput as R̄v ≥ Tv. The optimization problem could
be formulated as:

maxTk =
∑
v∈Ck

λvR̄v s.t. R̄v ≥ Tv (25)
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Figure 7. Detection tree network for the example problem. Labels on each
edge represent μc, σc, e (in mJ), and Signal to noise ratio, respectively.

where Tv = 0 for leaf nodes. The optimal design variables
could then be substituted back in (17) to evaluate the deflection
coefficient.

VI. NUMERICAL EXAMPLE
We consider the tree network in Figure 7, with system

parameters as indicated. We use W = 2 × 103 Hz, N0 =
10−10, and b = 16 bits. We use the interior-point algorithm to
calculate the optimal solution in each case.
Figure (8) shows the deflection coefficient versus the delay

for detection. The decoupled design approach shows the worst
performance, since it does not take into account the application
layer, in addition to the decoupling between the physical and
MAC layers. The max throughput design outperforms the
decoupled design, since it integrates both the physical and
MAC layers. The cross-layer approach outperforms the two
other approaches, by integrating the application layer (quality
of the sensors) into the design process. This performance
enhancement comes with no additional complexity since the
optimization problem is very similar in the cross-layer and the
max throughput design approaches. Therefore, for any value
of the delay for detection, the detection performance is the
highest for the cross-layer design. As another interpretation, to
obtain the same detection performance from the other designs
as in the cross-layer approach, the delay for detection has to
increase significantly. Some values of the deflection coefficient
may not be achievable by the other design approaches for any
arbitrary value of the delay for detection.
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Figure 8. Deflection coefficient as it varies with the delay for detection.

VII. CONCLUSIONS

We presented a cross-layer design approach for the Trans-
mission Control Policy of tree wireless sensor networks
deployed for detection applications. The TCP includes the
transmission probabilities, communication rate, and power
allocation for each sensor. The approach outperforms the max
throughput and decoupled design approaches, for arbitrary
delay for detection. The extension of this approach to mobile
sensor networks and the inclusion of in-network information
fusion are currently under research.
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